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1. Introduction

Determination of skin permeability is an important is-
sue in the area of transdermal drug delivery and environ-
mental toxicity. Transdermal delivery offers a less invasive 
means to administer drugs. In addition the concentration of 
the drugs can be maintained at a steady state. Identifying a 
compound’s potential to be toxic via a transdermal route is 
critical for certain high-risk occupations such as chemical 
manufacturers and painters.

In the area of skin permeability, a common modeling ap-
proach is to develop empirical models from experimentally 
derived databases [7,9,13,14]. However, skin permeability 
databases are typically small in size and numerous incon-
sistencies exist within them. Vecchia and Bunge provide a 
fully validated skin permeability database where each data 
point met a set of defined criteria for inclusion [17]. Despite 

enforcing the validation criteria, the size of the database re-
mains small and the range of the predictors is limited. An-
alytical approaches have been proposed by Edwards and 
Langer [2] to model skin permeability. However, with this 
approach, assumptions are made on the behavior of the 
system. These assumptions are difficult to validate and the 
resulting description of the system is often over simplified. 
The functional nature of the skin as a barrier is complex. 
This complexity results in uncertainty that cannot exclu-
sively be described by random measures. Hence, predict-
ing skin permeability can be deemed an ambiguous en-
deavor and fuzzy modeling provides a mean to account 
for this ambiguity. Estimating the skin permeability coef-
ficients of compounds is vital to determining potential for 
toxic exposure and transdermal drug delivery.

Pannier et al. [11] and Keshwani et al. [6] have shown 
that rule-based fuzzy modeling of skin permeability is a 
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Abstract
Two Mamdani type fuzzy models (three inputs–one output and two inputs–one output) were developed to predict the permeabil-
ity of compounds through human skin. The models were derived from multiple data sources including laboratory data, published 
data bases, published statistical models, and expert opinion. The inputs to the model include information about the compound 
(molecular weight and octonal–H2O partition coefficient) and the application temperature. One model included all three parame-
ters as inputs and the other model only included information about the compound. The values for mole molecular weight ranged 
from 30 to 600 Da. The values for the log of the octonal–H2O partition coefficient ranged from –3.1 to 4.34. The values for the ap-
plication temperature ranged from 22 to 39 8C. The predicted values of the log of permeability coefficient ranged from –5.5 to –
0.08. Each model was a collection of rules that express the relationship of each input to the permeability of the compound through 
human skin. The quality of the model was determined by comparing predicted and actual fuzzy classification and defuzzification 
of the predicted outputs to get crisp values for correlating estimates with published values. A modified form of the Hamming dis-
tance measure is proposed to compare predicted and actual fuzzy classification. An entropy measure is used to describe the ambi-
guity associated with the predicted fuzzy outputs. The three input model predicted over 70% of the test data within one-half of a 
fuzzy class of the published data. The two input model predicted over 40% of the test data within one-half of a fuzzy class of the 
published data. Comparison of the models show that the three input model exhibited less entropy than the two input model. 
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promising approach. However, the rules for these models 
were strictly data driven and examination of the results re-
vealed inconsistencies that can be attributed to sparse data 
in some regions. This paper presents a Mamdani fuzzy 
modeling scheme where rules are derived from multiple 
knowledge sources such as previously published databases 
and models, existing literature, intuition and solicitation of 
expert opinion to verify the gathered information.

The output or consequence of a Mamdani-type model is 
represented by a fuzzy set. To assess model performance, 
a crisp estimate of the consequence is usually made by de-
fuzzification methods such as the centroid, weighted aver-
age, maximum membership principle and mean member-
ship principle [15]. The crisp values can be compared to the 
actual values from the data set and a correlation coefficient 
can be determined. Depending on the shape of the output 
fuzzy set, defuzzification methods do not effectively char-
acterize the output with the corresponding ambiguity as-
sociated with the prediction. The nature of the ambiguity 
in the prediction might be of interest to researchers in the 
area of skin permeability. An alternative strategy could be 
implemented such that the actual values of the output infer 
an ordinal set representing a three point fuzzy classifica-
tion (low, medium and high) that could be compared to the 
actual fuzzy classification using distance measures. In ad-
dition, the ambiguity associated with the predicted fuzzy 
sets can be quantified by calculating entropy [4].

The purpose of this study was to develop generalized 
rule based fuzzy models from multiple knowledge sources 
to predict skin permeability and subsequently test its per-
formance by comparing defuzzified outputs to actual val-
ues from test data and comparing predicted and actual 
fuzzy classifications. The overall approach followed in this 
study is illustrated in Figure 1. The process begins with 
knowledge acquisition, continues to model building and 
then finally testing the model performance. In the context 
of skin permeability, this approach is not common in that it 
combines information from multiple sources for model de-
velopment. In the context of fuzzy modeling, the proposed 
approach of converting the predicted fuzzy output and the 
actual crisp value into fuzzy classification sets is not well 
defined in literature.

2. Theory

2.1. Mamdani-type fuzzy modeling

As the complexity of a system increases, the utility of fuzzy 
logic as a modeling tool increases. For very complex sys-
tems, few numerical data may exist and only ambiguous 
and imprecise information and knowledge is available. 
Oduguwa et al. [10] recognized and attempted to capture 
qualitative aspects of the engineering design process. 

Figure 1. Overall approach to develop skin permeability Mamdani models. 
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Fuzzy logic allows approximate interpolation between 
input and output situations [15]. Two main types of fuzzy 
modeling schemes are the Takagi–Sugeno model and the 
fuzzy relational model. The Takagi–Sugeno scheme is a 
data driven approach where membership functions and 
rules are developed using a training data set. The param-
eters for the membership functions and rules are sub-
sequently optimized to reduce training error. The rela-
tionship in each rule is represented by a localized linear 
function [1]. The final output is a weighted average of a set 
of crisp values. The Mamdani scheme is a type of fuzzy re-
lational model where each rule is represented by an IF–
THEN relationship. It is also called a linguistic model be-
cause both the antecedent and the consequent are fuzzy 
propositions [1]. The model structure is manually devel-
oped and the final model is neither trained nor optimized. 
The output from a Mamdani model is a fuzzy membership 
function based on the rules created. Since this approach is 
not exclusively reliant on a data set, with sufficient exper-
tise on the system involved, a generalized model for effec-
tive future predictions can be obtained.

Consider a simple two input–one output Mamdani type 
fuzzy model. The rule structure is represented in Figure 
2. Each row of membership functions constitutes an IF–
THEN rule, also defined by the user. Depending on the val-
ues used, the input membership functions are activated to 
a certain degree. The contributed output from each rule re-
flects this degree of activation. The final output is a fuzzy 
set created by the superposition of individual rule actions 
(Figure 2).

2.2. Defuzzification methods

The fuzzy output is obtained from aggregating the out-
puts from the firing of the rules. Subsequent defuzzifica-
tion methods on the fuzzy output produce a crisp value. 
Two common techniques for defuzzification are the max-
ima methods and area-based methods, which are briefly ex-
plained. Several such methods are explained by Ross [15].

2.2.1. Maxima methods
The maxima methods identify the locations where maxi-
mum membership occurs. Either one such point is selected 
as the defuzzified value (Figure 3A) or an average of all 
points with maximum membership is selected as the crisp 
value (Figure 3B). The advantages of the maxima methods 
are their simplicity and speed [12]. The major disadvantage 
is loss of information as only rules of maximum activation 
are considered.

2.2.2. Area-based methods
A popular area-based defuzzification procedure is the cen-
troid method. As the term implies, the point of the output 
membership function that splits the area in half is selected 
as the crisp value (Figure 3c). This method however does 
not work when the output membership function has non-
convex properties.

Depending on the shape of the membership function of 
the output, defuzzification routines may not produce effec-
tive values for the predicted output. For example, in Figure 
4A, the predicted output indicates a high degree of ambi-
guity. However, the defuzzified value using the mean-max 
membership principle that does not convey the ambigu-
ity. The centroid method has drawbacks when the output 
membership function is non-convex (Figure 4B). The de-
fuzzified value is at a point that has low membership. In 
an effort to compensate for these drawbacks, an alternative 
approach to model validation is proposed that uses a dis-
tance measure to compare actual and predicted fuzzy clas-
sifications consisting of three point ordinal sets.

2.3. Distance measures between fuzzy sets

For two fuzzy sets A and B in the same universe, the Ham-
ming distance [16] is an ordinal measure of dissimilarity. 

Figure 2. Example of a Mamdani type fuzzy inference system. 

Figure 3. Different defuzzification methods: (A) max-member-
ship principle; (B) mean-max-membership principle; (C) cen-
troid principle. Note: x* is the defuzzified value. 
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The Hamming distance (HD) is defined as:

 (1)

where n is the number of points that define the fuzzy sets 
A and B, μA(xi) the membership of point xi in A and μB(xi) 
is the membership of point xi in B. The Hamming distance 
is smaller for fuzzy sets that are more alike than those that 
are less similar. In comparing an actual fuzzy set to the pre-
dicted fuzzy set, a small Hamming distance is ideal. In our 
study, the model-testing phase involved comparison of 
predicted and actual fuzzy classifications (low, medium 
and high). For example, if the actual value was classified 
low and the predicted value was classified medium, then 
the prediction is off by one class. If the actual value was 
classified low and the predicted value was classified high, 
then the prediction is off by two classes. In this case, the 
classifications for actual and predicted are fuzzy (for exam-
ple, 0.60 low, 0.35 medium, 0.05 high). A modified form of 
the Hamming distance measure is proposed in the methods 
section. This new measure was developed in lieu of certain 
drawbacks with the Hamming distance.

Consider the example classification sets in Table 1. For 
an actual classification set of (low = 1, medium = 0, high 
= 0), the distance formula was applied to evaluate the de-
gree of misclassifications for a number of possible pre-
dicted sets. An exact match would result in a distance of 
0. When the prediction is off by one class, the distance is 1 
and when the prediction is off by two classes, the distance 
is 2. The Hamming distance is also calculated in each case. 
From the results in Table 1, the proposed distance measure 
is better than the Hamming distance at distinguishing be-
tween different levels of classification. In cases i, j, k and l, 
the Hamming distance (HD) gave the same value for dif-

ferent predicted fuzzy classifications. The proposed mod-
ified Hamming distance gave different values that effec-
tively distinguish between these cases.

2.4. Entropy of a fuzzy set

Entropy is a measure of fuzziness associated with a fuzzy 
set. The degree of fuzziness can be described in terms of a 
lack of distinction between a fuzzy set and its complement. 
For a fuzzy set A, entropy [7] is calculated as:

 (2)

where n is the number of points that define A, and μA(xi) is 
the membership of point xi in A. In this study, the concept 
of entropy was used to quantify the ambiguity associated 
with the predicted fuzzy outputs. In the absence of actual 
values, entropy values are essentially a measure of confi-
dence in outputs predicted by a fuzzy model.

3. Methods

3.1. Knowledge acquisition phase

A Mamdani-type fuzzy model involves developing mem-
bership functions and defining the subsequent rules. Three 
main knowledge sources were used to obtain information 
in this regard. A description of these sources and examples 
of information acquired from each are described below.

3.1.1. Skin permeability database
A fully validated database from Vecchia and Bunge [17] 
was used as a guide during model development. This da-
tabase is one of the most comprehensive available, where 

Figure 4. Problems with defuzzification methods: (A) draw-
back of maxima method; (B) drawback of centroid method. 
Note: x* is the defuzzified value. 

Table 1. Sample calculations to compare the Hamming dis-
tance and the proposed modified Hamming distance

               Actual fuzzy                     Predicted fuzzy                
               classification                       classification 

Case   Low   Medium    High    Low    Medium    High      Da        HDb

a 	 1.0 	 0.0 	 0.0 	 1.0 	 0.0 	 0.0 	 0.0 	 0.0
b 	 1.0 	 0.0 	 0.0 	 0.9 	 0.1 	 0.0 	 0.1 	 0.2
c 	 1.0 	 0.0 	 0.0 	 0.8 	 0.2 	 0.0 	 0.2 	 0.4
d	  1.0 	 0.0 	 0.0 	 0.8 	 0.1 	 0.1 	 0.3 	 0.4
e	  1.0 	 0.0 	 0.0 	 0.6 	 0.4 	 0.0 	 0.4 	 0.8
f 	 1.0 	 0.0 	 0.0 	 0.5 	 0.5 	 0.0 	 0.5 	 1.0
g	  1.0 	 0.0 	 0.0 	 0.6 	 0.2 	 0.2 	 0.6 	 0.8
h	  1.0 	 0.0 	 0.0 	 0.5 	 0.3 	 0.2 	 0.7 	 1.0
i 	 1.0 	 0.0 	 0.0 	 0.0 	 1.0 	 0.0 	 1.0 	 2.0
j 	 1.0 	 0.0 	 0.0 	 0.0 	 0.2 	 0.8 	 1.8 	 2.0
k	  1.0 	 0.0 	 0.0 	 0.0 	 0.1 	 0.9 	 1.9 	 2.0
1 	 1.0 	 0.0 	 0.0 	 0.0 	 0.0 	 1.0 	 2.0 	 2.0

a Modified Hamming distance calculated using Equation (3).
b Hamming distance calculated using Equation (1).
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each included case has to meet pre-define criteria to vali-
date its inclusion. Information on octanol–water partition 
coefficient (log Kow), molecular weight (MW), temperature 
(T), experimental skin permeability coefficients (log Kp) are 
some of the parameters included for each point in the da-
tabase. log Kow ranged from –3 to 5, MW ranged from 30 to 
600, temperature ranged from 22 to 39 °C and log Kp ranged 
from –6 to 0. The database was helpful in determining the 
number of membership functions needed for each param-
eter included in the models and their properties. For ex-
ample, prior work that involved developing a data driven 
fuzzy model using this database indicated that 25, 32 and 
37 °C were suitable position for the centers of membership 
functions in the temperature domain [6].

3.1.2. Skin permeability literature and previous models
Discussion on the theory of skin permeability and the bar-
rier nature of the skin are provided by Flynn [3]. Pub-
lished models by Potts and Guy [13,14], Moody et al. [9] 
and Kirchner et al. [7], Pannier et al. [11], Keshwani et al. 
[6] and Magnusson et al. [8] provide an understanding on 
the influence of certain input parameters on skin permea-
bility and the corresponding impact on assigning member-
ship functions. For example, a review of literature indicates 
that hydrophilic and lipophilic compounds may follow dif-
ferent pathways in penetrating the skin [14]. This infor-
mation is reflected in the discontinuity between the mem-
bership functions for compounds that are hydrophilic and 
lipophilic (seen in Figure 7).

3.1.3. Expert opinion
The database, literature and models can only guide the de-
velopment of preliminary membership functions and rules. 
For data driven fuzzy models, optimization routines mod-
ify the membership functions for a training data set. For 
Mamdani models, solicitation of expert opinion can be con-
sidered a pseudo-optimization step. The main information 
solicited from the expert was regarding the nature of the 
inputs and output membership functions and the subse-
quent rules. For example, it was suggested that the effect of 
molecular weight levels off at both low and high extremes. 
This information is reflected in the shape of the low and 
high membership functions on the molecular weight do-
main (seen in Figure 8).

3.2. Model development phase

Two Mamdani models were created. The inputs used in the 
first model were log Kow, molecular weight, and tempera-
ture, and the predicted output was the skin permeability 
coefficient (log Kp). The inputs in the second model were 
log Kow, and molecular weight predicting log Kp. The fuzzy 
logic toolbox in MATLAB [16] was used to build the fuzzy 
inference systems. Based on the information collected from 
the various sources, membership functions were created 
for each input and the output and subsequent rules were 
developed for each model. The fuzzy inference system was 
then presented to the expert for suitable modifications to 
the membership functions and the rules.

3.3. Proposed distance measure

As indicated in the theory section, a modified form of the 
Hamming distance is proposed which enables better dis-
tinction between different levels of classification (see Table 
1). The proposed distance measure D(A, P) is defined as:

(3)

where A is the actual fuzzy classification, P the predicted 
fuzzy classification, n the number of classes that define A 
and P, μA(xi) is the membership of point xi in A and μP(xk) is 
the membership of point xk in P.

3.4. Model testing phase

Test data consisting of three inputs (log Kow, MW, T) and 
two inputs (log Kow, MW) was obtained from the Vecchia 
and Bunge database [17]. The models were tested in two 
ways.

3.4.1. Comparing fuzzy classifications
The three output membership functions created in both 
models are categorized as low, medium and high. The ac-
tual value from the test data was evaluated using the pa-
rameters of these membership functions to produce a fuzzy 
set represented by three points (Figure 5). This fuzzy set 
represents the degree of belongingness (μ) to each of the 
three categories (low, medium and high). The predicted  
 
 

Figure 5. Obtaining fuzzy classification set for actual value. 
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output from the Mamdani model is a fuzzy set represented 
by 101 points. Based on the relative contributions from each 
output membership function (high, medium and low), the 
predicted fuzzy set of 101 points was reduced to a fuzzy set 
of three points (Figure 6). The relative contributions from 
each output membership function were estimated by inte-
grating the predicted fuzzy set over the range of the mem-
bership function. Equations (4)–(6) were used to develop 
the predicted fuzzy classification:

 (4)

 
(5)

 (6)

In the above equations, μL(P), μL(P), and μL(P) constitute 
the predicted fuzzy classification, μi (P) is the membership of 
each point in the predicted fuzzy set and a–f are the ranges 
of the output membership functions defined in Figure 6.

For each test case, an actual fuzzy classification and a 
predicted fuzzy classification were obtained. The modified 
Hamming distance measure (3) was used to determine the 
similarity between the two fuzzy sets. Apart from a com-
parison to actual values, the ambiguity associated with 
each predicted value was quantified using an entropy mea-
sure (2) as defined in the theory section.

3.4.2. Defuzzifying the predicted output
The centroid method was used to defuzzify the output of 
the Mamdani models. The crisp predictions were com-
pared to the actual values from the test data and R2 esti-
mate of correlation was calculated. This is a common form 
of comparison utilized for most modeling strategies. How-
ever, defuzzifying the output results in a loss of informa-
tion regarding the ambiguity of the prediction. In the ab-
sence of actual values, the confidence in the prediction can 
be determined based on the degree of ambiguity.

4. Results

4.1. Membership functions and rules

The first Mamdani model was developed with three in-
puts (log Kow, MW, and temperature) to predict log Kp as 
an output. The second model was developed with two in-
puts (log Kow and MW). Four membership functions were 
developed for log Kow (Figure 7) to linguistically represent 
hydrophilic to highly lipophilic compounds. The range of 
log Kow used in the model is –4 to 8. There is a disconti-
nuity between the hydrophilic and the lipophilic mem-
bership functions. This stems from the hypothesis that hy-
drophilic compounds may penetrate the skin in a manner 
different from lipophilic compounds [14]. Hence, there is a 
lack of knowledge and information available on the com-
pounds with a log Kow that occurs between the hydrophilic 
and lipophilic membership functions. A Mamdani model-
ing scheme enables representation of this lack of knowl-
edge in the model structure.

Three membership functions were developed for molec-
ular weight (Figure 8) representing low, medium, and high 
linguistic classes. The range for MW used in the model is 
from 10 to 1000. The high molecular weight membership 
function is important as data for most existing models does 
not contain information for such heavy compounds. 

Figure 6. Obtaining fuzzy classification set for predicted fuzzy 
output. 

Figure 7. Membership functions for log Kow. 

Figure 8. Membership functions for molecular weight. 
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Three membership functions were developed for tem-
perature (Figure 9) representing room, skin, and core body 
temperature. The range for temperature was 20–40 °C. 
Three membership functions were developed for log Kp 
(Figure 10) representing low, medium, and high permea-
bility. The range of the output was from –8 to 0 with least 
permeability occurring at –8.

Based on gathered information and expert opinion, 36 
rules (Table 2) were developed to map the input member-
ship functions to the output membership functions for the 
three input model. Similarly, 21 rules were developed for 
the two input model. The two input model contains mul-
tiple rules where the same antecedents result in a different 
consequence. This stems from the fact that absence of tem-
perature as an input adds more ambiguity to the prediction 
of log Kp. The output (log Kp) is predicted as low, medium, 
or high, based on the combination of the input membership 
functions (Table 3).

4.2. Comparing predicted and actual fuzzy classification

During the testing of each model, fuzzy classifications were 
created for the predicted and actual values using defined  

 
 
 
 
 

 
 
 
 
 
 
 
output membership functions (Figures 6 & 7). Each fuzzy 
classification set was represented by three membership val-
ues: high, medium, and low. The proposed distance for-
mula was applied in each test case and an estimate of clas-
sification was obtained. The distribution of the calculated 
distances for both models is provided in Figures 11 and 12. 
Referring back to Table 1, a distance measure of one im-
plies that the model prediction was one fuzzy class away 
from the actual value. A distance measure of two implies 

Table 2 Rules developed for three input model

IF log Kow                          AND MW          AND T               THEN log Kp

Hydrophilic 	 Low 	 Room 	 Medium
Hydrophilic 	 Low 	 Skin 	 Medium
Hydrophilic 	 Low 	 Core 	 High
Hydrophilic 	 Medium 	 Room 	 Low
Hydrophilic 	 Medium 	 Skin 	 Medium
Hydrophilic 	 Medium 	 Core 	 Medium
Hydrophilic 	 High 	 Room 	 Medium
Hydrophilic 	 High 	 Skin 	 Low
Hydrophilic 	 High 	 Core 	 Low
Low lipophilicity 	 Low 	 Room 	 Medium
Low lipophilicity 	 Low 	 Skin 	 Medium
Low lipophilicity 	 Low 	 Core 	 Medium
Low lipophilicity 	 Medium 	 Room 	 Low
Low lipophilicity 	 Medium 	 Skin 	 Low
Low lipophilicity 	 Medium 	 Core 	 Medium
Low lipophilicity 	 High 	 Room 	 Low
Low lipophilicity 	 High 	 Skin 	 Low
Low lipophilicity 	 High 	 Core 	 Low
Medium lipophilicity 	 Low 	 Room 	 High
Medium lipophilicity 	 Low 	 Skin 	 High
Medium lipophilicity 	 Low 	 Core 	 High
Medium lipophilicity 	 Medium 	 Room 	 Medium
Medium lipophilicity 	 Medium 	 Skin 	 High
Medium lipophilicity 	 Medium 	 Core 	 High
Medium lipophilicity 	 High 	 Room 	 High
Medium lipophilicity 	 High 	 Skin 	 Medium
Medium lipophilicity 	 High 	 Core 	 High
High lipophilicity 	 Low 	 Room 	 Low
High lipophilicity 	 Low 	 Skin 	 Medium
High lipophilicity 	 Low 	 Core 	 Medium
High lipophilicity 	 Medium 	 Room 	 Medium
High lipophilicity 	 Medium 	 Skin 	 Low
High lipophilicity 	 Medium 	 Core 	 Low
High lipophilicity 	 High 	 Room 	 Low
High lipophilicity 	 High 	 Skin 	 Low
High lipophilicity 	 High 	 Core 	 Low

Figure 9. Membership functions for temperature.

Figure 11. Calculated distance measures—using Equation 
(3)—for three input model test data.

Figure 12. Calculated distance measures—using Equation 
(3)—for two input model test data.

Figure 10. Membership functions for log Kp. 
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that the model prediction was two fuzzy classes from the 
actual value. Results for the three input model (Figure 13) 
indicate that 71% of the test data were predicted within half 
a fuzzy class of the actual value. For the three input model, 
47% of the test data was predicted within half a fuzzy class 
of the actual value. In both models, all the test data was 
predicted within one fuzzy class of the actual value. How-
ever, the performance of the three input model does appear 
to be significantly better.

4.3. Comparing predicted defuzzified values to actual values

The fuzzy outputs from both models were defuzzified us-
ing the centroid principle (9). The crisp predictions were 
then compared to the actual values from the test data and 
estimates of RMSE and correlation were calculated. The 

three input model had an R2 of 0.61. The correlation be-
tween actual and defuzzified predicted values for the three 
input model is shown in Figure 13. The three input model 
had an R2 of 0.45. The correlation between actual and de-
fuzzified predicted values for the two input model is shown 
in Figure 14. Based on R2 values, the three input model has 
a better performance in predicting crisp log Kp values. In 
both models, the performance appears to be better at com-
pounds with higher permeability values.

4.4. Ambiguity for each prediction

The entropy measure (2) was used to quantify the ambi-
guity or confidence associated with each test prediction in 
both models. Figure 15 shows the distribution of this mea-
sured entropy for all test cases in the three input model.  

Table 3. Rules developed for two input model

IF log Kow                                            AND MW                THEN log Kp

Hydrophilic 	 Low 	 Medium

Hydrophilic 	 Low 	 High

Hydrophilic 	 Medium 	 Low

Hydrophilic 	 Medium 	 Medium

Hydrophilic 	 High 	 Medium

Hydrophilic 	 High 	 Low

Low lipophilicity 	 Low 	 Medium

Low lipophilicity 	 Medium 	 Low

Low lipophilicity 	 Medium 	 Medium

Low lipophilicity 	 High 	 Low

Medium Lipophilicity 	 Low 	 High

Medium Lipophilicity 	 Medium 	 Medium

Medium Lipophilicity 	 Medium 	 High

Medium Lipophilicity 	 High 	 High

Medium Lipophilicity 	 High 	 Medium

High lipophilicity 	 Low 	 Low

High lipophilicity 	 Low 	 Medium

High lipophilicity 	 Medium 	 Medium

High lipophilicity 	 Medium 	 Low

High lipophilicity 	 High 	 Low

Figure 13. Actual log Kp vs. predicted log Kp for three input 
model test data.

Figure 14. Actual log Kp vs. predicted log Kp for two input 
model test data.

Figure 15. Calculated entropy (using Equation (2)) for three in-
put model test data.

Figure 16. Calculated entropy (using Equation (2)) for two in-
put model test data.



Rul e-b as ed Ma md a n i-ty p e f u z z y mo d e li n g o f s k i n p erm ea bi l i ty   293

 
 
 
 
Figure 16 shows the distribution of entropy values for test 
cases used in the two input model. Figure 17 compares the 
predicted fuzzy output from two sample test cases. Case 
1 had a calculated entropy of 0.097, and case 2 had a cal-
culated entropy of 0.655. From the shape of the member-
ship function, there is more confidence in the prediction for 
case 1 than case 2. Hence, the calculated entropy measures 
quantify the ambiguity based on shape assessment.

5. Discussion

Analysis of the developed Mamdani models involved com-
parison of actual and predicted fuzzy classifications, cor-
relation between actual and defuzzified crisp values, and 
calculating entropy to quantify ambiguity. Table 4 com-
pares the performance of the three input model versus the 
two input model. In every category, the performance of the 
three input model was better. The R2 value obtained for the 
three input Mamdani model is comparable to results from 
data driven models by Keshwani et al. [6] using the test 
data from the same database. Magnusson et al. [8] devel-
oped crisp rule-based models to classify compounds based 
on skin permeability. While a direct comparison between 
the models is not feasible, the degree of classification of the 
Mamdani models developed in this study is comparable 
to results presented by Magnusson et al. [8]. The key dif-
ference is that the predictions in the models presented by 
Magnusson et al. [8] were crisp and not fuzzy as is the case 
in this study. Taking a fuzzy approach enables the repre-
sentation of ambiguity associated with each prediction.

The R2 values obtained for the models are less 
than results from some previously published models 
[6,7,9,11,13,14]. However, most previously published mod-
els were entirely data driven and optimized for a specific 
data set. The Mamdani-type model developed is not opti-
mized for a specific data set, and hence it is reasonable to 
obtain a lower R2 value. With more thorough knowledge 
acquisition and selection of the most significant inputs, the 
Mamdani-type model will have a better performance. Us-
ing multiple knowledge sources and moving away from 
fitted models can yield a more generalized model for fu-
ture predictions with new data.

The entropy measures calculated describe the ambigu-
ity associated with the fuzzy prediction. From Figure 17, it 

is clear that the prediction for case 1 is much better than 
case 2. For future predictions, when the actual value is not 
known, the entropy measure provides an estimate of confi-
dence for the prediction (fuzzy or defuzzified). Data-driven 
models provide a crisp estimate for future predictions. But 
other than referring to past performance with test data, 
there is no clear estimate on how good the prediction is for 
the new data point. Using entropy measures to quantify 
ambiguity addresses this issue.

6. Conclusion

Two Mamdani-type models were developed to predict skin 
permeability coefficients using octanol–water partition co-
efficient, molecular weight, and temperature as inputs. Us-
ing multiple knowledge sources, membership functions 
and rules were developed to provide generalized models 
not optimized for a specific data set.

Apart from correlation estimates of actual and defuzzified 
predictions, an alternative analysis was performed involv-
ing comparison of actual and predicted fuzzy classifications. 
A distance measure was used to compare actual and fuzzy 
classifications. The proposed measure is a modification of 
the Hamming distance often used to compare distances be-
tween fuzzy sets. One of the drawbacks of the proposed dis-
tance measure is that it does not take into account the di-
rection of misclassification. The entropy measure used also 
appears to have a drawback: it does not clearly distinguish 
between unimodal and slightly bimodal fuzzy outputs.

The Mamdani model developed is a knowledge-driven 
predictive model that is not common in skin permeability 
literature. A major advantage of this modeling approach is 
that it enables the use of entropy measures to quantify am-
biguity associated with future predictions. This provides a 
measure of confidence for predicting log Kp for compounds 
when the actual value is unknown. Potential uses of the 
presented models include rapid assessment of skin perme-
ability of compounds to identify candidates for transder-
mal drug delivery and estimate toxicity risks.
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