Effects of Water Stress on Soybean Productivity in Central India

Ajay K. Srivastava
Indira Gandhi Agricultural University, Raipur, India

Diwakar Naidu
Indira Gandhi Agricultural University, Raipur, India

A. S. R. A. S. Sastri
Indira Gandhi Agricultural University, Raipur, India

J. S. Urkurkar
Indira Gandhi Agricultural University, Raipur, India

B. Das Gupta
Indira Gandhi Agricultural University, Raipur, India

Follow this and additional works at: http://digitalcommons.unl.edu/droughtnetnews

Part of the Climate Commons

http://digitalcommons.unl.edu/droughtnetnews/79

This Article is brought to you for free and open access by the Drought -- National Drought Mitigation Center at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Drought Network News (1994-2001) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Effects of Water Stress on Soybean Productivity in Central India

Indira Gandhi Agricultural University
Raipur, India

In the Chhattisgarh plains in the agroclimatic region of central India (Figure 1), farms may be characterized by one of the following: unbunded lathyritic soils, bunded rice fields (rainfed), bunded rice fields (irrigated), unbunded black soils, or rice bunds. Under these five farming situations, different crop sequences have been in vogue. New crops and crop sequences are recommended by the Agricultural University from time to time based on experimental results.

In the unbunded black soils, farmers usually plant small millets and pigeon pea. However, based on experimental results, the University has recommended soybean followed by chickpea crop sequence under rainfed conditions during monsoon and post-monsoon (winter) seasons, respectively. Thus, the crop suffered from water stress conditions during 1995 from September on, which is the peak reproductive stage of soybeans in this area. The climatic water balance based on Thornthwaite and Mather’s (1955) bookkeeping procedure, using the weekly totals of rainfall and potential evapotranspiration (PET) losses, was computed, and the weekly pattern of water balance parameters in these two years is shown in Figure 2. The soybean crop was sown on 3 July (27th Standard Meteorological Week) in 1994 and 22 June (25th Standard Meteorological Week) in 1995.

A perusal of the weekly water balance diagram of 1995 indicates water deficit conditions during the 26th Standard Meteorological Week (SMW)—one week after sowing—while there was no initial water stress during 1994. Also, it can be seen from Figure 2 that water deficit conditions prevailed during the months of September and October in 1995, while in 1994 slight water deficit conditions prevailed during late October.

To examine the effect of water deficit conditions on crop growth, an analysis of water stress at different crop growth stages has been carried out using the Moisture Availability Index (AE/PE) during the crop-growing season (Figure 3). To examine the intensity of water stress at different crop growth stages, the minimum required Moisture Availability Index (MAI) values have been determined as 75% during seedling stage, 100% during vegetative and reproductive stage, and 50% during maturity stage (slightly modified from the data reported by Patel, et. al. [1986]).

It can be seen from Figure 3 that there was water stress during the mid-seedling and end of the reproductive stages of the soybean crop in 1995, but there was very little water stress during the end of the reproductive stage in 1994. As a result of this, the productivity of soybeans has decreased from 2.3 t/ha to 1.75 t/ha (a decrease of 0.55 t/ha). However, an examination of total biomass of soybeans indicated that the total biomass during 1994 was 5.51 t/ha, compared to 6.19 t/ha during 1995. This is the result of waterlogging conditions during 1994 in seedling and vegetative stages, which resulted in decreased biomass. However, the grain yield (productivity) was higher
because there was no water stress during the reproductive stage of soybeans in 1994. This implies that although the biomass may decrease because of waterlogging conditions during initial stages of crop growth, the productivity increases if evapotranspiration is at potential rate during the reproductive stage for soybeans under Raipur conditions. A small stress (about 15% less than minimum MAI) can reduce productivity by at least 20% in soybeans. In view of this, soybeans are recommended only in heavy soils with good water retention capacity in the Chhattisgarh region of central India.

Figure 3. Water stress analysis for soybeans during 1994 and 1995.

References