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We present a measurement of the cross section and the first measurement of the heavy flavor content of
associated direct photon1 muon events produced in hadronic collisions. These measurements come from a

sample of 1.8 TeVpp̄ collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics
~QCD! predicts that these events are primarily due to the Compton scattering processcg→cg, with the
final-state charm quark producing a muon. The cross section for events with a photon transverse momentum
between 12 and 40 GeV/c is measured to be 46.866.367.5 pb, which is two standard deviations below the
most recent theoretical calculation. A significant fraction of the events in the sample contain a final-state
bottom quark. The ratio of charm to bottom production is measured to be 2.461.2, in good agreement with
QCD models.

DOI: 10.1103/PhysRevD.65.012003 PACS number~s!: 13.85.Qk, 12.38.Qk

Measurements of the inclusive spectrum of direct photons
in hadron-hadron collisions have provided important tests of
quantum chromodynamics~QCD!. Similar tests have been
made with inclusive measurements of heavy flavor produc-
tion (b and c quarks!. The data and current perturbative
QCD models do not agree well for both inclusive processes,
giving insights into the possible limitations of such models
@1,2#. Two previous measurements of theassociatedproduc-
tion of direct photons and charm quarks have provided
checks of the charm quark content of the proton@3,4#
through the Compton scattering processcg→cg. We present
here an analysis with an order-of-magnitude more events,
collected by the Collider Detector at Fermilab~CDF!, that
provides a quantitative test of perturbative QCD. In addition,
this new measurement is sensitive to the production of bot-
tom quarks in association with the photon.

The associated production of direct photons and heavy
quarks in hadron collisions is expected to be a unique system
for the study of the charm quark, with a 9:1 ratio of charm to
bottom quarks in parton level QCD calculations@5,6#. Typi-
cally in hadron collisions, heavy quarks are produced in the

gluon-gluon initiated processesgg→QQ̄ and gg→gg

→gQQ̄, where one of the final-state gluons splits into the
heavy-quark pair. In either case if the gluon energy is suffi-
ciently larger than the bottom quark mass, the production of
bottom pairs is approximately equal to that of charm pairs. In
semileptonic decays of heavy quarks, the harder fragmenta-
tion function of the bottom quark leads to its dominance in
these samples~for example, a 1:4 ratio of charm to bottom in
Ref. @7#!. The direct-photon Compton process, however, is
proportional to the quark electric charge squared, which in-
creases the ratio of charm to bottom by a factor of 4. In
addition, the intrinsic bottom quark content in the proton is
60% smaller than the charm quark content in our kinematic
region. The combination of the quark charge coupling and
the different proton content means the charm quark is ex-
pected to play the larger role in direct-photon events. In this
paper we present the first measurement of the charm and
bottom composition of direct-photon events in hadronic in-
teractions.

The data for this analysis are from an integrated luminos-

ity of 86 pb21 of pp̄ collisions collected with the CDF in
the 1994–1995 Tevatron collider run~run 1b!. The CDF de-
tector and its coordinate system have been described in detail
elsewhere@8,9#. The events in the photon data sample dis-
cussed in this paper triggered the experiment by satisfying
the requirement of a photon and a muon candidate at the
hardware trigger level, whereas in the previous measure-
ments only the photon candidate was required by the trigger.
This allowed a lower transverse momentumPT@5P sin(u)#
threshold, in this case 10 GeV. A photon candidate is selected
by requiring a cluster of energy in the central electromag-
netic calorimeteruhgu,0.9, with no charged tracks pointing
to the cluster. The clusters are required to have a photonPT

between 12 and 40 GeV and to be isolated, with less than 1
GeV of additional transverse energy in a cone ofDR
5ADf21Dh250.4 around the cluster. Additional photon
cuts were used which were identical to those used in the run
1a CDF inclusive photon analysis@10#. Muon candidates
were selected by requiring a match between a charged track
with PT.4 GeV/c in the central tracking chamber and a
track in the appropriate muon system. Foruhmu,0.6, muon
candidates are required to be identified in both the central
muon upgrade and in the central muon upgrade system,
which is behind an additional 1-m thickness of steel. For
0.6,uhmu,1.0 the muon candidate track was required to be
reconstructed in the central muon extension system. All three
muon systems are discussed in detail in Ref.@4,11#. After the
track matching requirement there are 3850 events with a
direct-photon candidate and a muon candidate.

Photon backgrounds fromp0 andh meson decays remain
in the sample, labeled ‘‘fakeg1m candidates’’ in Fig. 1.
They are subtracted on a statistical basis using the photon
background subtraction ‘‘profile’’ method described in Ref.
@10#. This method uses the transverse energy profile of the
electromagnetic shower as a discriminant between single di-
rect photons and multiple-photon meson decays. The details
of the subtraction technique are identical as in the previous
analysis@10#, but it has been checked in the current data
sample with a clean sample ofp0’s from reconstructed
chargedr decays@12#. This cross check agrees with expec-
tations, and the systematic uncertainties determined in the
previous analysis are used for this analysis as well. These
uncertainties are discussed in a later section of this paper.
After subtracting the photon backgrounds, 1707683 direct

*Present address: Northwestern University, Evanston, IL 60208.
†Present address: Carnegie Mellon University, Pittsburgh,

PA 15213.
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photons with a muon candidate remain. For comparison, the
previous study@4# was based on 140 events.

Muon backgrounds from charged pion and kaon decays
remain in this sample~‘‘real g1m from decay in flight’’ in
Fig. 1!, as well as a smaller fraction of charged hadrons that
do not interact significantly in the material in front of the
muon detectors~‘‘Real g1m from punch through’’ in Fig.
1!. These are estimated with the same technique as in the
previous analysis@4#. Starting with the parent inclusive pho-
ton 1 jet data sample, the four-vector of each charged par-
ticle with PT.0.4 GeV/c is measured. Each track is passed
into a detector simulation as a charged pion or kaon, with a
p/K ratio of 60%/20%@13#. The results of the simulation
are passed through the muon reconstruction; the tracks pass-
ing all cuts form the sample used for the background esti-
mate. Backgrounds from protons that penetrate the calorim-
eter are negligible. After statistically subtracting the muon

backgrounds, we expect 724689 direct-photon events with a
muon that is not from chargedp6 or K6 decay~‘‘Real g
1realm candidates’’ in Fig. 1!. These events are assumed to
come from associated direct photon1 heavy-quark produc-
tion with the heavy quark decaying into a muon. Figure 1
shows the number of signal and background events in five
bins of photonPT . Note that the purity of the sample im-
proves dramatically as the photonPT increases, which is due
to the improved rejection of neutral meson backgrounds. The
measured purity is consistent with that in inclusive direct-
photon measurements@10#.

The photon-muon cross sectiondsg1m/dPT
g is derived for

these five bins in photonPT by dividing by the luminosity,
86 pb21, the photonPT bin size in GeV/c, and the efficien-
cies for detecting the photon withinuhgu,0.9 and the muon
within uhmu,1.0. These efficiencies include the detector ac-

TABLE I. The measured photon-muon cross section and the predictions fromPYTHIA and next-to-leading
order ~NLO! QCD are tabulated in five bins of photonPT .

PhotonPT bin (GeV/c) dsg1m/dPT
g ~pb/GeV/c! PYTHIA (pb/GeV/c) NLO QCD (pb/GeV/c)

12-14 7.561.9 3.4 10.3
14-17 4.461.0 2.3 6.4
17-20 1.760.7 1.5 3.8
20-26 1.560.4 0.9 1.9
26-40 0.360.2 0.3 0.5

FIG. 2. The probability for producing a muon withPT

.4 GeV in the semileptonic decay of a heavy quark is shown as a
function of the quarkPT . These were generated using thePYTHIA

Monte Carlo program to simulate the Comptong1m process. The
number of muons produced in association with the photon,N(g
1m1X), includes the relevant branching ratios~shown in paren-
theses!. The quark and muon pseudorapidity are required to be
within uhu,1.0. The contribution from direct and sequential decays
of the bottom quark are shown, as well as the direct decay of the
charm quark.

FIG. 1. The number of signal and background events in each bin
of photon PT are shown for theg1m sample. In addition to the
signal of a real photon and a muon from a heavy-quark decay, three
components of the background are shown:~1! fake photons plus
real or fake muons,~2! real photons plus a muon coming from the
decay of a charged pion or kaon, and~3! real photons plus a fake
muon coming from the punch through of a charged pion or kaon.
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ceptance within the relevant pseudorapidity range, but are
defined after the photon or muonPT cut. The efficiencies are
measured by a combination of studies using Monte Carlo
simulation and data@4,11#. The photon efficiency varies from
34% to 38% with a small photonPT dependence, while the
muon efficiency varies from 49% to 53% and depends
slightly on the specific muon subsystem. The resulting
photon-muon cross section is shown in Table I along with the
statistical uncertainties.

There are four significant systematic uncertainties on the
direct photon1 muon cross section:~1! 12% from the muon
background subtraction, which mostly comes from the uncer-
tainties in the estimated pion and kaon particle fractions;~2!
7% from the photon background subtraction uncertainty, es-
timated in the inclusive photon measurement;~3! 7% from
the uncertainty in the photon and muon cut efficiencies; and
~4! 4.3% from the uncertainty in the CDF luminosity mea-
surement, which is predominantly due to the uncertainty in
the totalp̄p cross section. These added in quadrature give an
uncertainty that ranges from 16% to 20% as the photonPT
increases from 12 to 40 GeV.

The photon-muon cross section is compared to two differ-
ent QCD calculations of photon-muon production. The first
calculation is that in thePYTHIA @6# Monte Carlo program,
which only has the leading-order~LO! contributions to the
photon1heavy-quark cross section, but has the full parton
shower and fragmentation effects. The CLEO heavy-quark
decay tables are used@14#. The second calculation is a next-
to-leading order~NLO! QCD photon1heavy flavor calcula-

tion @5#, which has additional processes not present at lead-
ing order, of whichgg→cc̄→cc̄g is the largest contributor,
but which operates only at the parton level and thus does not
include heavy-quark fragmentation. For this we use the
Peterson fragmentation model inPYTHIA and the CLEO de-
cay tables. The probability of observing a 4 GeV muon from
this model of the decay is shown in Fig. 2 as a function of
heavy quarkPT for both direct bottom and charm decays and

FIG. 3. The measuredg1m cross section is shown as a function
of the photonPT . The photon pseudorapidity is required to be
within uhu,0.9 and the muon pseudorapidity is required to be
within uhu,1.0. There is an overall 16% normalization uncertainty
~not shown! on the data. The measurement is compared to QCD
predictions from thePYTHIA Monte Carlo program as well as NLO
QCD calculations. Both the total contribution fromg1(b1c) and
the individualg1c contribution are plotted.

FIG. 4. ThePT
relmethod is used to measure the sample compo-

sition of g1heavy quark~left figure!, andp01heavy quark~right
figure!. In both figures, the points are the data after subtracting the
contributions from fake muons. The solid curves are the best fit to
the data, the dashed curves are the expectedPT

rel distribution of a
sample that is 100% charm, and the dotted curves are the expected
PT

rel distribution of a sample that is 100% bottom.
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for sequential decays of the bottom quark. The next-to-
leading order~NLO! QCD calculation uses the massless
quark approximation, which is adequate for photon1charm
since the scale of the process is well above the charm mass,
but cannot be applied to the photon1bottom process. The
photon1bottom part of this calculation is derived from a
leading-order photon1bottom calculation including mass ef-
fects, to which a multiplicative factor~‘‘ K factor,’’ K) is then
applied to account for higher-order effects. We useK51.8,
which is the calculated ratio of NLO/LO in inclusive bottom
production in a kinematic range that is close to that of the
current measurement@15#. The uncertainties in the NLO cal-
culation have not been thoroughly studied, but it is likely that
the K factor is the largest component. If one assigns a 50%
error to K, then the predicted total photon1heavy flavor
NLO cross section has a 12% uncertainty. Variations of
renormalization scale, parton distributions, and fragmenta-
tion functions all give variations of'5%.

The NLO QCD cross section, as well as thePYTHIA

predictions, are compared to the data in Table I and Fig. 3.
The NLO cross sections are much larger than those
calculated withPYTHIA, due to the inclusion of additional
processes mentioned above. The shape of the data shown
in Fig. 3 matches both calculations, while the normalization
is a factor 1.9 larger than thePYTHIA prediction and a factor
1.45 smaller than predicted by NLO QCD. With a data
normalization uncertainty of 16% and a 12% uncertainty in
the NLO QCD calculation, the data lie about two standard
deviations below the NLO QCD prediction. The shape of
the photon1muon cross section, however, is better described
by theory than is the inclusive photonPT spectrum. In
addition, measured inclusive heavy flavor cross sections
have typically been a factor of 2 larger than NLO QCD
predictions @2#; we do not observe this in photon1heavy
flavor production.

The current data sample is large enough to study the ratio
of charm quark to bottom quark production in association
with the photon. A ‘‘jet’’ of charged particles is measured by
using the muon candidate as a seed, and then clustering
charged tracks in a cone of radius 0.7 inh2f space around
the muon. We use the transverse momentum of the muon
with respect to the jet axis,PT

rel , as the variable to separate
the charm and bottom fractions of the sample. The larger
bottom quark mass leads to an enhancedPT

rel . A maximum
likelihood fit is performed to the distribution ofPT

rel from the
photon1 muon candidate sample to four template spectra:
~1! photon1charm, ~2! photon1bottom, ~3! photon1fake
muon, and~4! p01X whereX is a muon candidate from any
source~charm, bottom, or fake muon!. The first two tem-
plates are generated using thePYTHIA Monte Carlo program
@6#. The model is checked by returning to the parent photon
1jet sample and comparing thePT

rel distribution of the high-
estPT track in the jet to the same fromPYTHIA. The model-
ing is quite good using defaultPYTHIA parameters. The third
template, photon1fake muon, comes from the same data
1simulation combination used to estimate the fake muons
for the cross section. Its normalization in the fit is con-
strained with a Gaussian weight using the systematic uncer-

tainty of 12% coming from the cross section measurement.
The fourth template,p01X, comes directly from the data as
it is the component subtracted during the direct-photon back-
ground subtraction. The systematics on the maximum likeli-
hood fit using these four templates come from uncertainties
in the shape of each template. The systematic uncertainty on
the photon1charm quark and photon1bottom quark tem-
plates are estimated by varying the inputPYTHIA parameters.
The allowed range of the parameters was determined by
comparing thePT

rel distribution in the parent photon1jet data
sample withPYTHIA. This leads to an uncertainty of 0.2 in
the charm/bottom ratio. The systematic uncertainty on the
two data-driven templates, photon1fake muon andp01X,
is dominated by the photon subtraction method uncertainty
and is 0.15 in the charm/bottom ratio. The statistical uncer-
tainties from the maximum likelihood fit are much larger
than the systematic uncertainties, being 1.1 in the charm/
bottom ratio. The result of the fit to the charm/bottom ratio of
the sample is 2.461.2 ~statistics1system!, to be compared
with the predictions of 2.9 byPYTHIA and 3.2 by NLO QCD.
There is good agreement between data and theory in this
ratio. The unique nature of this charm-enriched sample is
confirmed, as the measured charm/bottom ratio of 2.4 is
much larger than the value of 0.2 in the inclusive heavy
flavor samples in Ref.@7#. The photon1muonPT

rel distribu-
tion after all events with either a fake photon or muon are
subtracted is shown in Fig. 4~a!, compared to the templates
for photon1charm and photon1bottom. The templates are
normalized to the data. The photon1muon data are clearly a
combination of charm and bottom, with a distribution more
like the softer charm distribution. For comparison the same
distribution using thep0 1 muon events from the same
sample is shown in Fig. 4~b!. Although QCD predictions for
this process do not exist, qualitatively one would expect a
larger bottom content since this process would not have the
matrix-element enhancement due to the square of the electric
charge of the quark, as does the photon1muon ‘‘Compton’’
process. The data confirm this hypothesis, albeit with limited
statistics.

In summary, we present a measurement of direct-photon
plus associated muon production in hadronic interactions
with an order-of-magnitude more events than the previous
measurement. The measurement is an interesting
combination of direct-photon and heavy flavor physics, each
of which has had difficulties in comparisons with NLO QCD
calculations. The data agree in shape with the theoretical
predictions, but fall below the theory in normalization
by two standard deviations. The ratio of charm/bottom in
the sample has been measured for the first time, and confirms
the QCD expectation that the sample is very enriched in
charm quarks compared to inclusive lepton samples in
hadron collisions.
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