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Magnetism of Rapidly Quenched Sm Zr Co Nanocrystalline Materials
W. Y. Zhang , S. Valloppilly , X. Z. Li , Y. Liu , S. Michalski , T. A. George , R. Skomski ,

J. E. Shield , and D. J. Sellmyer

Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588 USA
Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588 USA

Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588 USA

The effect of Zr addition on nanostructure and magnetic properties in nanocrystalline Sm Zr Co has been
investigated. (Sm, Zr)Co with the CaCu structure was synthesized by melt spinning. The lattice parameters a and b decrease with
x, whereas c increases. Thus, the unit cell volume of (Sm, Zr)Co shrinks because the smaller Zr atoms occupy the sites of the larger
Sm atoms. Zr addition decreases the grain size and induces the formation of planar defects. The coercivity decreases with x, due to
weakening of magnetocrystalline anisotropy energy and effective intergrain exchange coupling. A very high coercivity of 39 kOe and
energy product of 13.9 MGOe are obtained for . The remanence of (Sm, Zr)Co increases with x. For , the energy
product slightly decreases with x. The results show that 40% of the Sm can be replaced by the less expensive Zr, with an energy-product
reduction of only 10%. In addition, the planar defects are responsible for the change of coercivity mechanism from the nucleation-type
of reverse domain for the to the pinning-type of domain wall for the .

Index Terms—Coercivity, magnetic property, nanomaterials, rare-earth transition-metals compounds.

I. INTRODUCTION

S mCo with the CaCu structure has attracted tremendous
attention due to its high magnetocrystalline anisotropy and

Curie temperature [1], [2]. Sm is a key rare-earth (R) element
that is relatively expensive. Reducing the Sm content in SmCo
may help to reduce material cost and extend the range of ap-
plications. It was reported that rare-earth elements can be par-
tially replaced by non-rare-earth elements such as Zr, Ti, and
Hf to improve magnetic properties of permanent-magnet mate-
rials [3]–[7]. For example, the remanence of rapidly-quenched
R Fe B was enhanced by replacing R with 2 at% Zr. The
Curie temperature of PrCo increases 29 K after 10 at% Ti
was added. Based on the Sm-Co binary phase diagram [8], a
high cooling rate is required to prevent the decomposition of
SmCo to Sm Co and Sm Co at 812 C, which have low
magnetocrystalline anisotropies and are detrimental to magnetic
properties. In this work, Sm-lean single-phase Sm Zr Co

was fabricated bymelt spinning. The relationships
between the structure and magnetic properties were studied.

II. EXPERIMENTAL METHOD

Ingots of Sm Zr Co were arc melted from
high-purity elements in an argon atmosphere. The ribbons were
made by ejecting molten ingots in a quartz tube onto the surface
of a rotating copper wheel with a speed of 40 m/s. The typical
size of ribbons is 2 mm wide and 50 m thick. The phase com-
ponents were determined by a Rigaku D/Max-B X-ray diffrac-
tion (XRD) system. The magnetic properties were measured by
a superconducting quantum interference device (SQUID) mag-
netometer at fields up to 7 T. The applied field was parallel to
the long direction of the ribbon.
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Fig. 1. XRD patterns of Sm Zr Co .

III. RESULTS AND DISCUSSION

Fig. 1 shows XRD patterns of Sm Zr Co . The diffrac-
tion peaks of all the samples were indexed as single-phase (Sm,
Zr)Co with the CaCu structure. The relative intensity of the
(200) peak becomes weaker with the increase of x. However, the
relative intensity of (111) peak becomes stronger. For ,
the intensity of the diffraction peak of (111) is strongest, which
is the characteristic of isotropic SmCo [9]. This indicates that
Zr addition restrains the (200) preferred orientation and changes
the ribbons from anisotropic to isotropic. The (200) and (300)
peaks shift to higher angles with x as indicated by the red arrows
on Fig. 1. At the same time, the (002) peak shifts to a lower angle
with x (green arrow). These reflect the changes of the lattice pa-
rameters with x. The results are presented in Fig. 2. increases
with x but decreases with x which causes the cell volume to
shrink. This is because the smaller Zr atoms substitute the bigger
Sm atoms in the lattice.
Fig. 3 shows the TEM images of Sm Zr Co

and corresponding statistical distribution of grain size. Com-
pared to the , the has a smaller mean grain size
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Fig. 2. Zr content dependence of the lattice parameters (a, c) and cell volume
(V) for Sm Zr Co .

Fig. 3. TEM images of the Sm Zr Co ( (a), 0.4 (b)), enlarged
image of the (c), and the statistical distribution of grain size of the

(d) and (e).

and shallower size distribution. It reveals that Zr addition de-
crease the grain size and refine the nanostructure. In addition,
the planar defects indicated by the red arrows in Fig. 3(e), which
may be the stacking fault or antiphase domain wall, were ob-
served in the . This indicates that Zr addition induces
the formation of planar defects.
Fig. 4(a) shows the hysteresis loops of the Sm Zr Co

ribbons. It is evident that magnetic properties of
the samples are strongly dependent on Zr content. The magne-
tocrystalline anisotropy constant K, and the saturation magnetic
polarization of Sm Zr Co can be estimated
using the law of the approach to saturation [10]. The magne-
tocrystalline anisotropy field was calculated as K/M
[10]. The value of the for and 0.6 are 39 and 31
kOe, respectively. The reported value of the for
is 400 kOe [1]. Zr addition significantly reduces . It is re-
ported that 60% of the anisotropy energy K of SmCo is due
to samarium [11], so the decrease of Sm concentration leads to
the reduction of anisotropy field. The deduced magnetic prop-
erties are shown in Fig. 4(b). The substitution of Zr for Sm may
decrease the number of electron transferring from 5d/6s band
of Sm to 3d band of Co. And thus the saturation polarization
increases with x. Zr addition reduces the preferred orientation

Fig. 4. Hysteresis loops of Sm Zr Co (a) and deduced
magnetic properties (b): saturation magnetization , remanence ratio

, coercivity , and energy product .

of c-axis of hard phase, as shown in Fig. 1, thus the remanence
ratio decreases with x. The decrease of coercivity with x is at-
tributed to the reduction of the magnetocrystalline anisotropy
of the hard magnetic phase. The energy product decreases only
to 12.5 MGOe with a 40% Zr substitution. The very high coer-
civity of 39 kOe and maximum energy product of 13.9 MGOe
were achieved for .
Generally, the coercivity mechanism of permanent-magnet

materials can be determined by comparing initial magnetization
curves and applied field dependence of coercivity [12]–[15].
Fig. 5 shows the initial magnetization curves for Sm Zr
Co and applied field dependence of the coer-
civity. For , the magnetization and coercivity increase
rapidly at low field. They approach saturation at the low field of
7 and 15 kOe, respectively, which are much smaller than the sat-
urated coercivity. This indicates that domain walls move easily,
and the coercivity is controlled by the nucleation of reverse do-
mains. A similar phenomenon was observed in annealed 5 m/s
Sm Co ribbons [13]. For , the magnetization and
coercivity increase slowly until the applied field exceeds a crit-
ical value comparable to the saturated coercivity where they in-
crease faster. The saturation of the magnetization and coercivity
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Fig. 5. Initial magnetization curves for Sm Zr Co and
applied field dependence of coercivity.

is completed at the fields much higher than the saturated coer-
civity. A shoulder appears in the initial magnetization and -H
curves. This implies that domain walls cannot move freely, and
coercivity is governed by the pinning of domain walls. The
planar defects shown in Fig. 3(e) behave as pinning centers and
are responsible for the change of the coercivity mechanism.

IV. CONCLUSION

Sm-lean Sm Zr Co alloys were fabri-
cated by the melt-spinning technique, and lattice parameters of
(Sm, Zr)Co are dependent on Zr content. The unit cell volume
shrinks with the increase of Zr content. Zr addition was found
to refine the nanostructure and induce the formation of planar
defects. The saturation magnetization of (Sm, Zr)Co increases
with the addition of limited amount of Zr, whichmay result from
the reduction of the number of electron transferring from 5d/6s
band of Sm to 3d band of Co. The remanence ratio and coer-
civity decrease with x. The energy product slightly decreases
with the increase in Zr content . Therefore, a proper
Zr addition leads to improvement of the performance vs price
ratio of (Sm, Zr)Co , which could be useful to extend the range
of the applications. In addition, Zr addition changes the coer-
civity mechanism of the sample from the nucleation of reverse

domains to the pinning of domain walls due to the existence of
planar defects.
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