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Abstract

Extreme precipitation events are the major causes of severe floods in China. In this study, four
time series of daily, 2-day, 5-day, and 10-day annual maximum precipitation from 1951 to 2000 at 651
weather stations in China were analyzed. The generalized extreme value (GEV) distribution was used,
to model the annual extreme precipitation events at each station. The GEV distribution was also modi-
fied to explore the linear temporal trends in the extreme events. The results showed that more than 12%
of the stations have significant (p-value < 0:10) linear trends. Decreasing trends are mainly observed in
northern China, and increasing trends are observed in the Yangtze River basin and northwestern China.
The return periods of extreme precipitation have changed for stations with significant temporal trends.
The 50-year event observed in parts of the Yangtze River basin, and northwestern China during 1951–
60, has become a more frequent 25-year event in the 1990s. The spatial distribution of the return levels
of the 651 stations are closely related to the climatic mean precipitation, and are influenced by the East
Asian summer monsoon system (return levels are measures of extremity—for example, a 10 year return
level is the value that can be expected to be exceeded on average once in every 10 years). The return pe-
riod of extreme precipitation, that caused the 1998 severe floods in the Yangtze River basin, was also
evaluated from a probabilistic perspective.

1. Introduction

Variations in frequency, and intensity of ex-
treme weather events, greatly affect the human

societies and their environments (Kunkel et al.
1999). During the past 50 years, there have
been frequent extreme precipitation events
causing severe floods and damaging the econ-
omy and environment in China. For example,
more than 30,000 lives were lost in the cata-
strophic flooding in 1954 in the Yangtze River
basin (NCDC 1998). The 1998 floods in the
Yangtze River and northeastern China drove
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14 million people from their homes, affected a
total of 240 million people, destroyed 5 million
houses, damaged 12 million houses, and de-
stroyed 25 million hectares of farmland (NCDC
1998). More than 3,000 people lost their lives
in the 1998 floods, and the estimated total eco-
nomic losses were over $36 billion (NCC 1998;
Zong and Chen 2000).

The fast growing population, and industrial-
ization in major river basins in China in the re-
cent decades appear to have elevated the dam-
age potentials of extreme precipitation, as well
as other natural disasters (Zong and Chen
2000). It is thus of great importance to analyze
the variation of extreme precipitation in China.
In general, there are two approaches used to
assess the extreme precipitation. The first
approach uses a percentile, or quantile method,
to assess extreme precipitation (e.g., Easterling
et al. 2000; Karl and Knight 1998; Zhai et al.
1999, 2005). In this approach, daily precipita-
tion records are sorted according to the inten-
sity (e.g., 50 mm/day) and classified to contain
a certain percentage of precipitation events for
a year (or a season). The second approach uses
statistical distributions to define extremes with
given return periods on an annual basis (e.g.,
Fowler and Kilsby 2003; Hennesey et al. 1997).
In this approach, statistical distributions are
used to model the annual maxima series. This
method produces various return periods of the
annual maxima that are easily understood and
can be used for flood mitigation and control
(Fowler and Kilsby 2003; Guttman et al. 1994;
Hennesey et al. 1997). The first approach has
been frequently used to analyze the changes of
extreme precipitation in China (e.g., Gong et al.
2004; Zhai et al. 1999, 2005). There are no stud-
ies, however, that have examined the statistical
distribution of extreme precipitation in China.

The statistical distributions have long been
applied to time series of climate extremes. Esti-
mation of return levels is usually based on
three extreme value distributions—Gumbel,
Frechet, and negative Weibull—suggested by
Fisher and Tippet (1928) for stochastic behav-
ior of large samples. In this study, we use the
generalized extreme value (GEV) distribution,
which has all the flexibility of the above three
extreme value distributions (Jenkinson 1955).
The GEV distribution has been successfully
used to model the extreme precipitation events

for many countries and regions (Fowler and
Kilsby 2003; Gilleland and Katz 2006; Katz
et al. 2002; Nadarajah 2005; Nadarajah and
Choi 2003; Nguyen et al. 2002). Other statisti-
cal distributions, such as Wakeby and Kappa
distributions have also been used to model the
summer extreme rainfall in Korea (Park et al.
2001; Park and Jung 2002). However, as ar-
gued by Nadarajah and Choi (2003), there is
no theoretical justification to model annual
maximum daily rainfall, by either the Wakeby
or Kappa distribution, although, in practice,
they may provide a reasonable fit.

In this study, we provide the first application
of the GEV distribution to model annual ex-
treme precipitation events in China. Data used
were from a newly developed high quality data-
set, that provides a much denser network, and
covers longer periods (Feng et al. 2004). The
GEV distribution is also modified to explore
the temporal non-stationarity in extreme pre-
cipitation events. Several return levels, and
the corresponding confidence intervals, are de-
rived by the maximum likelihood and delta
methods. The results from this study can be
used for design purposes and for flood pre-
paredness and control. The paper is organized
as follows. The data used in this study is de-
scribed in Section 2. Modeling techniques and
their results are presented in Sections 3 and 4,
respectively. A case study on the 1998 extreme
precipitation that caused the severe flood in the
Yangtze River basin is presented in Section 5.
Section 6 contains the conclusions.

2. Data

Daily precipitation in mainland China for the
period 1951–2000 was obtained from a recent
developed comprehensive daily meteorological
dataset (Feng et al. 2004). The dataset contains
726 stations that have long-term precipitation
observations. The data had been subjected to a
series of quality control, which includes homo-
geneity testing and adjustments to assure their
reliability (Feng et al. 2004). To screen out the
stations with a large amount of missing values,
the following criteria were applied to each sta-
tion: 1) If a year has missing precipitation for
more than 10 days, that year is considered as
having inadequate observations and was re-
moved; 2) Stations that contain less than 30
years of inadequate data were excluded; and,
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3) Stations that were identified inhomogeneous
were excluded. These screenings ensure that
the data used are sufficient for the extreme pre-
cipitation modeling. There are 651 stations
whose data met this set of criteria. The spatial
distribution of those 651 stations is shown in
Fig. 1.

Extreme precipitation is usually defined as
the maximum daily precipitation within each
year, so one would have as many extreme
values as the total number of years. This has
been the traditional method, known as the
block-maxima method, for defining extreme
values (Gumbel 1958). Extreme precipitation
events in China frequently extend over two
days due to the influence of typhoons. Since
the measurement of daily precipitation at each
station is based on the calendar day, the ex-
treme precipitation may not be well captured
by using only annual maximum daily precipita-
tion. In addition, recent severe floods in China
are usually caused by multi-day extreme pre-
cipitation events (NCC 1998). Therefore, in ad-
dition to the annual maxima of daily precipita-
tion (denoted as AM1), annual maxima were
extracted from 2-, 5- and 10-day moving sums
of precipitation at each station to construct the
time series of annual maxima of 2-, 5- and 10-
day precipitation (denoted as AM2, AM5 and
AM10, respectively). Similar aggregations have
been used in other studies (e.g., Ferro and
Porto 1999; Fowler and Kilsby 2003).

Figures 2 and 3 show the variations of an-
nual extreme precipitations for the period
1951–2000 for two typical stations (Haikou
59758, 110�21 0E, 20�02 0N and Fengjie 57348,
109�30 0E, 31�03 0N) in China. The variations of
extreme precipitation at the two stations repre-
sent the tropical and humid climate conditions,
respectively. The AM1 from Haikou are usually
over 200 mm, mainly due to typhoon landfall.
Figure 3 shows that the extreme precipitation
in Fengjie has been increasing for the past 5
decades. One of the aims of this study is to
model these types of non-stationarity in the ex-
treme precipitation events.

3. Methodology

The cumulative distribution function of the
GEV distribution is given by:

FðxÞ ¼ exp � 1 þ x
x � m

s

� ��1/x
( )

;

1 þ xðx � mÞ/s > 0 ð1Þ

where m, s and x are the location, scale, and
shape parameters, respectively. A particular
case of Eq. (1) for x ! 0 is the Gumbel distribu-
tion:

FðxÞ ¼ exp �exp � x � m

s

� �� �
;

�y < x < y: ð2Þ

The cases with x > 0 and x < 0 are known as
the Frechet, and the negative Weibull distribu-
tions, respectively. The parameter x is usually
greater than zero for precipitation data, al-
though sometimes the Gumbel distribution is
adequate.

Suppose x1; . . . ; xn denote the annual maxima
of AM1 (or AM2 or AM5 or AM10) for n years at
a given station. The method of maximum likeli-
hood is used to fit Eq. (1) to these data. Assum-
ing independence of the data, the likelihood is
the product of the densities of Eq. (1) for the ob-
servations x1; . . . ; xn. Mathematically,

Lðm; s; xÞ ¼ 1

sn

Yn

i¼1

1 þ x
xi � m

s

� ��ð1/xþ1Þ

� exp �
Xn

i¼1

1 þ x
xi � m

s

� ��1/x
( )

: ð3Þ

Fig. 1. Geographical distribution of the
651 meteorological stations in China.
The squares indicate the stations that
have been used for Figs. 2–3.
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Estimates of m, s, and x—say m̂m, ŝs, and x̂x—are
taken to be those values which maximize the
likelihood L. This maximization was performed
using a quasi-Newton iterative algorithm
(Ihaka and Gentleman 1994). The standard er-
rors of the estimates were computed by invert-
ing the Fisher information matrix (Prescott
and Walden 1980).

The basic model fitted was the GEV [or Eq.
(1)] with m, s, and x constant (to be referred to
as M1). As mentioned above, sometimes the
Gumbel distribution gives as good a fit as the
GEV for precipitation data, so we also fitted
Eq. (2) with m and s constant (to be referred to
as M0). M0 is a submodel of M1, and a stan-
dard way to determine the better fitting model

is the likelihood ratio test (Wald 1943). If L1 is
the maximum likelihood of M1, and L0 is the
maximum likelihood of M0, then under the sim-
pler model the test statistic l ¼ �2 logðL0/L1Þ
would be assumed to be distributed as a chi-
squared random variable, with 1 degree of free-
dom (since the numbers of parameters differ by
1). In hypothesis testing problems this would
be asymptotically true as the number of data
approaches to infinity. Thus, at the 90% sig-
nificance level ðp < 0:10Þ, the simpler two pa-
rameter model (M0) would be preferred if
�2 logðL0/L1Þ < w2

1;0:90 ¼ 2:71. In practice, be-
cause of the lack of complete independence of
the annual maxima, this would probably have
to be interpreted conservatively.

Fig. 2. Time series of AM1, AM2, AM5, and AM10 for station Haikou (59758). The solid, dashed and
dotted lines indicate the median, 10-year return level and the 100-year return level, respectively.
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Extreme precipitation could possibly exhibit
trends, with respect to time for some of the sta-
tions (such as Fengjie, see Fig. 3). To investi-
gate the temporal non-stationarity in extreme
precipitation events, the following variation of
M1 is used to investigate the linear trend in
the extreme precipitation events:

M2: m ¼ a þ b � ðYear � t0 þ 1Þ, s ¼ const,
x ¼ const, a four-parameter model with m al-
lowed to vary linearly with time. In this model,
t0 denotes the year the records started (for ex-
ample, t0 ¼ 1951 for Fengjie). A negative (posi-
tive) b would mean that the extreme precipita-
tion events have a decreasing (increasing)
trend for the past 5 decades.

The standard likelihood ratio test was used
to determine whether the trends described by

M2 were significant or not. If M2 is determined
as the best fitting model for a given station, the
extreme precipitation events at that station
would have a significant trend ðp < 0:10Þ for
the past 50 years.

The goodness of fit of models M0-M2 was ex-
amined by quantile plots. A quantile plot is
where the observed quantile is plotted against
the predicted quantile by the fitted model. For
example, to check the goodness of fit of M1, we
would plot the sorted values (in the ascending
order) of the observed annual extreme precipi-
tation, vs. the expected quantiles yi determined
by FðyiÞ ¼ ði � 0:375Þ/ðn þ 0:25Þ (Royston
1982), where F is given by Eq. (1). Similarly to
check the goodness of fit of M0, we would plot
the sorted values of the observed annual ex-

Fig. 3. Same as Fig. 2, but for Fengjie (57348).
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treme precipitation, versus the expected quan-
tiles determined by the F, from Eq. (2).

Once the best model for the data has been de-
termined, the interest is to derive the return
levels of extreme precipitation. The T year re-
turn level, say xT , is the value occurring on
average once in every T years. For example,
the 2-year return level is the median of the dis-
tribution of AM1 (or AM2, AM5 or AM10). If
M1 is assumed, then on inverting FðxTÞ ¼
1 � 1/T we get:

xT ¼ m� s

x
1 � �log 1 � 1

T

� �� ��x
" #

: ð4Þ

If on the other hand M0 is assumed, the corre-
sponding expression is:

xT ¼ m� s log �log 1 � 1

T

� �� �
: ð5Þ

By substituting m̂m, ŝs and x̂x into Eqs. (4)–(5), we
obtain the maximum likelihood estimates of
the return levels. Confidence intervals for the
return level estimates are obtained by means
of the delta method (Rao 1973).

4. Results

M0-M2 were fitted to AM1, AM2, AM5 and
AM10 series at each of the 651 stations. The

method of maximum likelihood was used
throughout. For simplicity, we let Li denote
the maximized likelihood of Mi for i ¼ 0; 1; 2.

For station Haikou, the fitted models, and
the estimated parameters are shown in Table
1. For AM1, M0 gave �2 log L0 ¼ 551:66,
and M1 gave �2 log L1 ¼ 551:56. Because
�2 logðL1/L0Þ < w2

1;0:90 ¼ 2:71, it follows by the
standard likelihood ratio test that M0 should
be preferred to M1, that is, the two-parameter
Gumbel distribution provides as good a fit as
the three-parameter GEV distribution. When
M2 was fitted to AM1 data, we obtained
�2 log L2 ¼ 551:50 (see Table 1). Because
�2 logðL2/L0Þ < w2

2;0:90 ¼ 4:61, the AM1 at Hai-
kou has no significant temporal trends. We con-
clude that among the models considered, the
best fit for AM1 at Haikou is provided by M0.
The above procedures were repeated to model
the AM2, AM5 and AM10 series of Haikou,
and the parameter estimates are shown in Ta-
ble 1. Again, there are no significant trends,
and the best fitting model is either M0 or M1.
These findings are supported by Fig. 4, where
we have shown the quantile plots of the fits for
the four time series. Figure 4 shows that the fit
provided by M0 and M1 are good, especially in
the upper tail area, which is the area of most
interest. Further checks were performed by

Table 1. The models fitted and estimated parameters for station Haikou (59758). ‘‘*’’ indicates the
best fitting model. N/A indicates the parameters are not estimated for those models.

Extremes models m s x �2 log Li a b

M0* 128.35 50.66 N/A 551.66 N/A N/A

AM1 M1 127.31 49.95 0.039 551.56 N/A N/A

M2 N/A 49.65 0.043 551.50 127.19 5.00

M0* 160.60 64.23 N/A 576.90 N/A N/A

AM2 M1 156.39 60.65 0.13 575.82 N/A N/A

M2 N/A 60.61 0.13 575.80 156.40 33.56

M0* 196.10 70.85 N/A 588.62 N/A N/A

AM5 M1 190.17 65.69 0.17 585.84 N/A N/A

M2 N/A 65.17 0.17 585.71 189.94 9.82

M0 249.26 80.77 N/A 603.53 N/A N/A

AM10 M1* 239.80 70.04 0.27 597.56 N/A N/A

M2 N/A 66.38 0.35 596.43 235.76 27.41
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plotting the residuals, the differences between
the observed and predicted quantiles, and by
means of the one sample Kolmogorov-Smirnov
test (Conover 1971) (figures not shown here).
All of these results suggested that M0, and M1
provided good fits for all of the four time series
at Haikou. Figure 5 shows the return levels,
along with 95% confidence intervals for the re-
turn periods T ¼ 2; . . . ; 100 years [computed
using (4)–(5) and the delta method] for Haikou.
Figures of this kind can be used to infer mea-
sures for flood protection.

The above procedures of model selection were
repeated for Fengjie. The standard likelihood
ratio test, showed that M2 with b positive pro-
vided the best fits for all of the four time series,
suggesting that the extreme precipitation at
Fengjie is experiencing a significant upward

trend. The 10 and 100 years return levels for
Haikou and Fengjie are shown in Figs. 2 and
3. It is clear that at each station, there are
only 4–6 observed annual extreme events of
precipitation (AM1 to AM10), that exceeded
the 10 year return level. None of the observed
annual extreme events have exceeded the 100
year return level in both stations.

The above procedures of model selection were
repeated for all of the other stations. M0 and
M1 provided the best fits for most of the loca-
tions (see Table 2). About 12.1–15.5% of the
stations exhibited linear trends during the ana-
lyzed periods. AM10 has the most stations with
linear trends (Table 2), possibly because short
duration extreme precipitations (AM1, AM2
and AM5) were greatly impacted by local fac-
tors (e.g., Prudhomme and Reed 1998), whereas

Fig. 4. Quantile plots for AM1, AM2, AM5, and AM10 for station Haikou (59758).
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long duration extreme precipitations (AM10),
were impacted by large scale atmospheric cir-
culation anomalies (e.g., Wang et al. 2003;
Zhan et al. 2004). The best fitting models for
all of the 651 stations are shown in Fig. 6. The
stations with decreasing trends are mainly ob-
served in northern China, a result suggesting
that the extreme precipitation events, during
the 1990s, have become less extreme than the
events during the 1950s. The decreasing trends
in annual extremes in northern China are con-
sistent with the decreasing rainy days, and fre-

quent droughts in recent years (Gong et al.
2004; Hu and Feng 2001; Zhai et al. 2005). In-
creasing trends are mainly observed in the
Yangtze River basin and northwest China, a
result consistent with the frequent flooding in
those regions in the 1990s (Gong and Ho 2002;
Jiang et al. 2005). In addition, the temporal
changes in extreme precipitation over eastern
China are consistent with the southward shift
of the summer rain belt over eastern China
(Hu and Feng 2001; Zhai et al. 2005), and the
multidecadal changes of the East Asian sum-

Fig. 5. Return levels (solid lines) and their 95% confidence intervals (dashed lines) for return periods
T ¼ 2; 5; . . . ; 100 years for AM1, AM2, AM5, and AM10 at station Haikou (59758).

Table 2. Numbers and percentages (in parentheses) of stations with the best fitting models (M0-M2)
in China. M2 is the model showing significant long-term trends in the past 5 decades.

Models AM1 AM2 AM5 AM10

M0 or M1 566 (86.9%) 572 (87.9%) 565 (86.8%) 550 (84.5%)

M2 85 (13.1%) 79 (12.1%) 86 (13.2%) 101 (15.5%)
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mer monsoon system (Feng and Hu 2004; Gong
and Ho 2002; Li and Zeng 2002, 2005).

If a station exhibits a significant temporal
trend, the return periods of extreme events
will follow that trend too (see Fig. 3). Table 3
shows the changes in average return period for
a 50-year extreme precipitation event in 1991–
2000, compared to the period 1951–60. This
was done by estimating the 50-year return level
in the 1950s, and its return period in the 1990s.
Table 3 shows that the return periods of a 50-
year extreme precipitation event in the 1950s
have increased in northern China, but de-
creased in the Yangtze River basin and north-
west China. The 50-year event during 1951–
1960 has become a less than 38-year event in

the Yangtze River basin and northwest China.
In some stations in both regions, the 50-year
event has become a less than 25-year event. In
other words, the extreme events that rarely oc-
curred in the 1950s occurred at a higher rate in
the 1990s. In most parts of northern China, the
50-year event during 1951–60 has changed to
a more than 80-year event during 1991–2000.
Similar changes were noted by Fowler and
Kilsby (2003), in studies of extreme precipita-
tion in the United Kingdom, when their data
were partitioned into decades (1961–70, 1971–
80, 1981–90 and 1990–2000). Instead of trun-
cating the data into shorter subsets as in
Flowler and Kilsby, we have modified the GEV
distribution to explore the trends in return

Fig. 6. Spatial distribution of the best fitting models. The crosses indicate that the best fitting model
is either M0 or M1, and the circles indicate that the best fitting model is M2. Open (closed) circles
indicate that the b in M2 is negative (positive), and suggest that the extreme precipitations, in
those stations, have been significantly ðp < 0:10Þ decreasing (increasing) in the past 5 decades.
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levels. Our method may also be used to predict
the future behavior of extreme precipitation
(Nadarajah and Choi 2003; Nadarajah 2005).
Because the society has become more vulnera-
ble to extreme precipitation due to population
increase and economic growth (Kunkel et al.
1999), the changing nature of return levels of
extreme precipitation, should be taken into ac-
count for design practices and flood protection.

The best fitting model was used to estimate
the return levels for selected return periods (5,
10, 20, 50, 100, 200 and 500), for all of the four
time series at each station. For stations with
significant trends, the return levels were taken
to be the averages during the analyzed periods.
Figure 7 shows the spatial distribution of the
10-year return levels of the annual extreme
event of precipitation for all the 651 stations.

The 10-year return levels of AM1, are less
than 20 mm over the Tarim basin in the arid
northwest China. The annual number of rainy
days in this desert region is usually fewer than
10 days (Domros and Peng 1988). The high re-
turn levels are observed in wet and semi-wet
parts of eastern China, a region usually with
more than 4 rain storms of >50 mm per day
and more than 1 strong rain storms of
>100 mm per day per year (Domros and Peng
1998). The highest return levels are located in
the southern most part of China, which is a re-
gion with frequent typhoon landfalls (Chen and
Shi 2000). Because extreme precipitations in
eastern China are mainly caused by the sea-
sonal evolutions of the summer monsoon (e.g.,
Wang et al. 2003), the spatial distributions of
the 10-year return level show the apparent

Table 3. Return period (years) of extreme precipitation events in 1990–2000, corresponding to a
50-year event in 1951–60.

Regions Station Lon(E) Lat(N)

Return
periods
of AM1
(years)

Return
periods
of AM2
(years)

Return
periods
of AM5
(years)

Return
periods
of AM10
(years)

53764 111�06 0 37�30 0 108 146 288 170

53868 111�30 0 36�04 0 129 65 89 79

Northern
China

54351 124�05 0 41�55 0 99 82 82 99

54365 125�21 0 41�16 0 76 158 171 93

54493 124�47 0 40�43 0 95 81 100 99

54916 116�51 0 35�34 0 72 63 82 91

57348 109�30 0 31�03 0 24 19 32 27

57426 107�48 0 30�41 0 34 29 25 24

Yangtze
River basin

58215 116�47 0 32�33 0 29 27 37 37

58445 119�25 0 30�21 0 27 31 14 30

58477 122�06 0 30�02 0 28 33 35 35

58531 118�17 0 29�43 0 14 15 38 38

51087 89�31 0 46�59 0 22 17 6 4

51628 80�14 0 41�10 0 28 35 38 38

Northwest
China

51855 85�33 0 38�09 0 36 36 36 35

52418 99�41 0 40�09 0 32 34 34 32

52424 95�46 0 40�32 0 34 34 34 33

52674 101�58 0 38�14 0 25 25 26 16
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footprint of the East Asian summer monsoon
system. For example, the 100 mm isohyets line
of AM1, the 120 mm isohyets line of AM2, the
160 mm isohyets line of AM5, and the 200 mm
isohyets line of AM10 are nearly identical with
the north and west boundary of the East Asian
summer monsoon (Wang and Linho 2002, see
their Fig. 9). This suggests that the return peri-
ods of extreme precipitation in eastern China
can be used as a proxy for the return periods of
the East Asian summer monsoon intensity.

5. The 1998 extreme precipitation from
probabilistic perspective

The 1998 severe flooding in Yangtze River
basin has caused widespread damage to soci-
eties, homes and agricultural lands (NCC
1998). Our results discussed above can help to
answer the following question: how rare was

the 1998 extreme precipitation? The answer is
important for rebuilding processes because de-
cision makers should take into account the
risks of other floods of similar magnitude and
their consequences.

There were two significant episodes of ex-
treme precipitation that caused the 1998 flood-
ing in the Yangtze River basin (Wang et al.
2003). These extreme precipitation events were
associated with the East Asian summer mon-
soon, the west Pacific subtropical high (WPSH)
ridge, and the Mei-Yu fronts over East Asia
(Wang et al. 2003; Zhan et al. 2004). In the fol-
lowing, the return periods of the 1998 extreme
precipitation in the middle and lower Yangtze
River basin, where the severe floods occurred
(Zong and Chen 2000), are estimated. Among
the 107 stations in the middle and lower Yang-
tze River basin, more than 22.4% of the sta-

Fig. 7. Spatial distributions of the estimated 10-year return levels (unit: mm) for AM1, AM2, AM5,
and AM10, respectively.
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tions have the return period of the 1998
extreme precipitation longer than 10 years
(Table 4). More than 5 stations have the return
period of the extreme precipitation longer than
50 years. In addition, the AM1 in 2 stations,
AM2 in 3 stations, AM5 in 4 stations and
AM10 in 2 stations have the return periods
longer than 100 years, that is, the extreme pre-
cipitation in those stations was expected to oc-
cur once in more than 100 years. These ob-
served extreme events are the cause of the
floods in the Yangtze River in 1998.

Figure 8a shows the spatial distribution of
the return period of AM10 in 1998. The AM10
in the lower Yangtze River were not so ex-
treme, with their return periods usually less
than 10 years. High return periods, however,
were mainly observed in the south side of the
middle Yangtze River basin. The region that
contributed greatly to the development of flood-
ing in the Yangtze River (Hu et al. 2007). The
spatial distribution of the high return periods
of AM10 is also consistent with the exceptional
high water levels in the middle Yangtze River
(Zong and Chen 2000). The maximum water
levels in 1998 at Shashi, Chenglingji and Hu-
kou hydrological stations, all located at the
middle Yangtze River, exceeded the historical
maximum (Zong and Chen 2000).

To verify the results shown in Fig. 8a and Ta-
ble 4, we show, in Table 5, the ranking of the
1998 extreme precipitation over the past 5 de-
cades. Tables 4 and 5 suggest that the esti-
mated return periods are robust and accurate.
For example, the number of stations with the
1998 extreme ranked 11 or lower is identical
with the number of stations with return period
less than 5 years. The number of stations with
the 1998 extreme precipitation ranked 1st is

also consistent with the number of stations
with the return period longer than 50 years. In
addition, more than 23.4% of the stations in the
middle, and lower Yangtze River basin, with
the 1998 extreme precipitation ranked 1–5 is
identical with the number of stations that

Table 4. Return periods of the 1998 extreme precipitation in the middle and lower Yangtze River
basin. The numbers (percentages) in each column are the numbers (percentages) of stations that
the observed 1998 extreme precipitation could be expected to occur once in the corresponding re-
turn period.

Return periods <5 year 5–10 year 10–20 year 20–50 year >50 year

AM1 67 (62.6%) 11 (10.3%) 9 (8.4%) 13 (12.1%) 7 (6.5%)

AM2 63 (58.9%) 17 (15.9%) 10 (9.3%) 10 (9.3%) 7 (6.5%)

AM3 67 (62.6%) 16 (15.0%) 8 (7.5%) 10 (9.3%) 6 (5.6%)

AM4 60 (56.1%) 20 (18.7%) 11 (10.3%) 11 (10.3%) 5 (4.7%)

Fig. 8. The spatial distribution of (a) the
return periods, and (b) the ranks of
AM10 in 1998 in the middle and lower
Yangtze River basin. The region con-
fined by the dotted line, is the discharge
area of the middle and lower Yangtze
River basin.
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showed the return period longer than 10 years
(Tables 4 and 5). The spatial distribution of
the ranks of the AM10 in 1998 is consistent
with the spatial distribution of the return peri-
ods. As shown in Fig. 8b, the stations with high
return periods, of the 1998 extreme, have high
ranks, and stations with low return periods
have low ranks. When all the stations, in the
middle and lower Yangtze River basin added
together, the AM1, AM2 and AM5 in 1998
ranked 1st, and AM10 ranked 2nd. In addition,
the 1998 extreme precipitation ranked 2nd

(with the 1954 extreme precipitation ranked
1st), when all the stations in the entire Yangtze
River basin added together. These results sug-
gest that the 1998 extreme precipitation was
rare, and can be considered as a 20–50 year
event.

6. Conclusions

Using a recent quality controlled, compre-
hensive daily precipitation dataset, we have
conducted an extreme value analysis of annual
maxima of daily, 2-, 5- and 10-day precipitation
events for 651 stations in China for the past 50
years. The GEV distribution was used to model
the extreme precipitation events at each sta-
tion. The GEV distribution was also modified
to explore the temporal non-stationary trend,
in the extreme precipitation events. The ex-
treme precipitation, at more than 12% of the
stations, showed significant linear trends
ðp < 0:10Þ over the past 50 years. Significantly
decreasing trends mainly occurred in northern
China, while significantly increasing trends
mainly appeared in the Yangtze River basin
and northwest China. The changes in extreme
precipitation in eastern China, are associated
with the changes in the East Asian summer
monsoon. The return levels have changed for

stations with significant trends. The 50-year
event, in parts of the Yangtze River, and north-
west China during 1951–60, has become a less
than 25-year event, during the 1990s. The re-
turn periods, in parts of northern China, have
become longer.

The return levels corresponding to various
return periods, and their confidence intervals,
have been estimated based on the GEV distri-
bution. The isohyets maps of the 10-year return
level have been presented. The spatial distribu-
tion, of the 10-year return level, is closely re-
lated to climatic mean precipitation in China.
The low return levels appear in the arid north-
west China, whereas the high return levels are
observed at the wet and humid parts of eastern
China. The highest return levels, are located in
the southern—most parts of China. The spatial
distribution of return levels, of extreme precipi-
tation in eastern China, are related to the sea-
sonal evolutions of the East Asian summer
monsoon, and the Typhoon landfall.

The 1998 severe flooding, in the Yangtze Rive
basin, has been analyzed as a case study from a
probabilistic perspective. The return periods of
the observed 1998 extreme precipitation have
been estimated. The results showed that the
1998 extreme precipitation, at more than
22.4% of the stations in the middle and lower
Yangtze River basin were rare, and could occur
only once in more than 10 years. In addition,
the 1998 extreme precipitation ranked 1st to
5th in more than 23.4% of the stations. Overall,
the 1998 extreme precipitation, in the middle
and lower Yangtze River basin, could be consid-
ered as a 20–50 year event.

It is important to recognize that the esti-
mated return levels, are based on observations
of about 50 years. We thus caution the readers
that the confidence in return levels correspond-

Table 5. Ranking of the 1998 extreme precipitation in the middle and lower Yangtze River basin.
The numbers (percentages) in each column are the numbers (percentages) of stations with the cor-
responding rank.

Extreme Precipitations Ranks 11 or lower Ranks 6–10 Ranks 3–5 Rank 2 Rank 1

AM1 67 (62.6%) 10 (9.3%) 15 (14.0%) 8 (7.5%) 7 (6.5%)

AM2 63 (58.9%) 16 (15.0%) 13 (12.1%) 7 (6.5%) 8 (7.5%)

AM3 65 (60.7%) 16 (15.0%) 11 (10.3%) 8 (7.5%) 7 (6.5%)

AM4 59 (55.1%) 23 (21.5%) 11 (10.3%) 5 (4.7%) 9 (8.4%)
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ing to long return periods (greater than 100) is
low. Further investigation will be necessary,
when longer data records become available.
The return levels can be used, however, in a
qualitative and comparative sense.
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