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The carbon budget of California

Christopher Potter *

NASA Ames Research Center, Mail Stop 242-4, Moffett Field, CA 94035, USA

1. Introduction

California is home to more than 10% of the population of the

United States and is responsible for 13% of the U.S. gross

domestic product (U.S. Census Bureau, 2000). The state’s large

population makes it a globally significant contributor to

greenhouse gas (GHG) emissions. If California were a country,

it would rank among the twenty highest national GHG

emitters worldwide (Bemis, 2006), with annual fossil fuel

emissions of CO2 roughly equivalent to the national total of

Canada and exceeding those (individually) of the nations of

Australia, France, Italy, or Spain (UNFCCC, 2009).

The carbon budget of a region can be defined as the sum of

annual fluxes of carbon dioxide (CO2) and methane (CH4) gases

into and out of the regional surface coverage area. Fluxes for

both of these trace gases are important to quantify, in part

because they originate from a diverse set of processes, both

natural and anthropogenic. The main sources of CO2 emis-

sions in California are energy consumption in commercial,

residential, industrial, and transportation sectors, production

of cement and lime, and waste treatment (both solid and

water). The main sources of CH4 emission in California are

from landfills and agricultural (principally livestock-based)

systems.
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The carbon budget of a region can be defined as the sum of annual fluxes of carbon dioxide

(CO2) and methane (CH4) greenhouse gases (GHGs) into and out of the regional surface

coverage area. According to the state government’s recent inventory, California’s carbon

budget is presently dominated by 115 MMTCE per year in fossil fuel emissions of CO2 (>85%

of total annual GHG emissions) to meet energy and transportation requirements. Other

notable (non-ecosystem) sources of carbon GHG emissions in 2004 were from cement- and

lime-making industries (7%), livestock-based agriculture (5%), and waste treatment activi-

ties (2%). The NASA-CASA (Carnegie Ames Stanford Approach) simulation model based on

satellite observations of monthly vegetation cover (including those from the Moderate

Resolution Imaging Spectroradiometer, MODIS) was used to estimate net ecosystem fluxes

and vegetation biomass production over the period 1990–2004. California’s annual NPP for

all ecosystems in the early 2000s (estimated by CASA at 120 MMTCE per year) was roughly

equivalent to its annual fossil fuel emission rates for carbon. However, since natural

ecosystems can accumulate only a small fraction of this annual NPP total in long-term

storage pools, the net ecosystem sink flux for atmospheric carbon across the state was

estimated at a maximum rate of about 24 MMTCE per year under favorable precipitation

conditions. Under less favorable precipitation conditions, such as those experienced during

the early 1990s, ecosystems statewide were estimated to have lost nearly 15 MMTCE per year

to the atmosphere. Considering the large amounts of carbon estimated by CASA to be stored

in forests, shrublands, and rangelands across the state, the importance of protection of the

natural NPP capacity of California ecosystems cannot be overemphasized.
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California offers important examples and opportunities for

refining the national carbon budget for the U.S., because it is a

state with many different processes that contribute signifi-

cantly to carbon fluxes, both natural and anthropogenic.

California’s carbon emission sources include a mix of fossil

fuel emission and ecosystem fluxes that broadly represents

the entire country, as does its mix of developed (urban) land,

forests, shrubland, rangeland, cropland, and desert.

The objective of this study was to characterize the carbon

budget of California for the time period 1990–2004 using a

combination of inventory data and ecosystem modeling. In

the process, three related questions were addressed:

1.1. How much carbon is emitted annually to the
atmosphere in the state of California?

Statewide budget analysis in this study included major CO2

and CH4 emission sources (and sinks, in certain cases)

associated with natural ecosystems (e.g., forests, shrublands,

rangelands, wetlands), agricultural systems, industry, and

fossil fuel combustion in all urban and transportation

systems. Geographic analysis included the role of fossil fuel

combustion versus CO2 emissions from plant photosynthesis

and soil microbial respiration across the state.

1.2. How much do carbon emissions vary from year-to-
year in the state of California?

Analysis of emissions included the role of interannual

variability in precipitation in determining net ecosystem

emissions of CO2 across the state.

1.3. How much carbon is stored in ecosystems in the state
of California?

Estimates of the current size of carbon storage pools included

standing wood in forests and shrublands, plus herbaceous

vegetation carbon and surface soil pools of carbon in range-

lands, wetlands, and agricultural systems.

Understanding where the largest ecosystem sources and

sinks for carbon in vegetation land cover is a task well suited

to a combination of satellite remote sensing and spatial

simulation modeling. However, a combined observational-

modeling approach must be applied at a spatial resolution on

the ground that can capture important variations in plant

growth rates, biomass yields, disturbance events, fertilizer

demands, irrigation practices, soil carbon inputs, and multi-

scale climate variations (Adler et al., 2007). We have

summarized in this paper our approach to model all of these

factors within a simulation framework that uses satellite

remote sensing to scale-out carbon gas fluxes to large regions

(Potter et al., 2007).

The launch of NASA’s Terra satellite platform in 1999 with

the Moderate Resolution Imaging Spectroradiometer (MODIS)

instrument on-board initiated a new era in remote sensing of

the Earth system with promising implications for carbon cycle

research. Direct input of satellite vegetation index ‘‘green-

ness’’ data from the MODIS sensor into ecosystem simulation

models is now used to estimate spatial variability in monthly

net primary production (NPP), biomass accumulation in wood

and herbaceous cover, and litter fall inputs to soil carbon

pools. Global NPP of vegetation can be predicted using the

relationship between leaf reflectance properties and the

absorption of photosynthetically active radiation (PAR),

assuming that net conversion efficiencies of PAR to plant

carbon can be approximated for different ecosystems or are

nearly constant across all ecosystems (Running and Nemani,

1998; Goetz and Prince, 1998).

Our ecosystem modeling framework has been designed to

estimate historical as well as current monthly patterns in

plant carbon fixation, living biomass increments, nutrient

allocation, litter fall and decomposition, long-term decay of

wood and crop residue pools, soil CO2 respiration, and soil

nutrient mineralization. To our knowledge, this is the first

study to take full advantage of MODIS land surface products to

compile annual net ecosystem production (NEP) estimates

specifically for the state of California.

2. Non-ecosystem sources of carbon GHG
emissions

The California Energy Commission (CEC, 2007) has compiled

California’s GHG emission inventory for the years 1990–2004.

The principal method used to estimate industrial and fossil

fuel sources of carbon GHGs has been based on emission

factors (EFs) multiplied by activity data. An EF is a coefficient

that translates reports of activity data (e.g., tons of solid

material added to a landfill) into an estimate of GHG emission

(e.g., million metric tons of carbon equivalent, MMTCE) per

year. IPCC inventory methodology (IPCC, 2006) provides

guidelines for many EF values used by the CEC.

The CEC has estimated that the major source of carbon

dioxide emissions in California is fossil fuel combustion, at

>85% of total annual GHG emissions. The majority of these

fossil fuel GHGs were emitted (at a total of 115 MMTCE) to meet

the requirements of the energy and transportation sectors

(Fig. 1). In 2004, the breakdown of these energy combustion

sources of annual carbon GHG emissions was 8 MMTCE from

residential, 3 MMTCE from commercial, 45 MMTCE from

industrial, and 50 MMTCE from transportation sectors. Other

notable (non-ecosystem) sources of carbon GHG emissions in

2004 were 8 MMTCE from cement- and lime-making indus-

tries, 6 MMTCE from livestock-based agriculture, and 3 MMTCE

from waste treatment activities. When broken down in terms

of CO2 and CH4 contributions to total annual (non-ecosystem)

GHG emissions in California, the CEC (2007) estimates a ratio of

about 14:1 (CO2:CH4).

3. Methods—CASA ecosystem carbon
modeling

The CEC’s (2007) GHG inventory trend (shown in Fig. 1)

includes what we consider to be a static ‘‘place-holder’’ entry

for statewide ecosystem carbon exchange, which has been

labeled in a generalized fashion as ‘‘forest sink’’ fluxes of CO2

in previous CEC reports. Year-to-year variations in climate and

land use combine to make actual ecosystem GHG exchange a

dynamic item in any regional carbon budget (Potter et al.,
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2007), and therefore a prime focus for revision in future

versions of the state’s GHG inventory reports.

The NASA-CASA model algorithms for both plant and soil

carbon cycles in forests, shrublands, croplands and grass-

lands, as documented in Potter (1999), begin with monthly NPP

flux. NPP is defined as net fixation of CO2 by vegetation and is

computed in CASA on the basis of light-use efficiency

(Monteith, 1972). Monthly production of plant biomass is

estimated as a product of time-varying surface solar irradi-

ance, Sr, and the Enhanced Vegetation Index (EVI) from the

MODIS satellite, plus a constant light utilization efficiency

term (emax) that is modified by time-varying stress scalar

terms for temperature (T) and moisture (W) effects (Eq. (1)):

NPP ¼ SrEVIemaxTW (1)

The emax term is initially set uniformly at 0.39 g C MJ�1 PAR, a

value that derives from calibration of predicted annual NPP to

previous field estimates (Potter et al., 1993). This model cali-

bration has been validated globally by comparing predicted

annual NPP to more than 1900 field measurements of NPP

(Zeng et al., 2008; Potter et al., 2007). Interannual NPP fluxes

from the CASA model have been reported (Behrenfeld et al.,

2001) and validated against multi-year estimates of NPP from

field stations and tree rings (Malmström et al., 1997). Our

NASA-CASA model has been validated against field-based

measurements of NEP fluxes and carbon pool sizes at multiple

northern forest sites (Amthor et al., 2001; Hicke et al., 2002) and

against atmospheric inverse model estimates of global NEP

(Potter et al., 2003).

The T stress scalar is computed with reference to derivation

of optimal temperatures (Topt) for plant production. The Topt

setting will vary by latitude and longitude, ranging from near

0 8C in the Arctic to the middle thirties in low latitude deserts.

The W stress scalar is estimated from monthly water deficits,

based on a comparison of moisture supply (precipitation and

stored soil water) to potential evapotranspiration (PET)

demand using the method of Priestly and Taylor (1972).

Evapotranspiration in CASA is connected to water content

in the soil profile layers (Fig. 2), as estimated using the CASA

algorithms described by Potter (1999). The soil model design

includes three-layer (M1–M3) heat and moisture content

computations: surface organic matter, topsoil (0.3 m), and

subsoil to rooting depth of 1 m for croplands and grasslands.

These layers can differ in soil texture, moisture holding

capacity, and carbon–nitrogen dynamics. Water balance in the

soil is modeled as the difference between precipitation or

volumetric percolation inputs, monthly estimates of PET, and

the drainage output for each layer. Inputs from rainfall can

recharge the soil layers to field capacity. Excess water

percolates through to lower layers and may eventually leave

the system as seepage and runoff.

Based on plant production as the primary carbon and

nitrogen cycling source, the NASA-CASA model is designed to

couple daily and seasonal patterns in soil nutrient mineraliza-

tion and soil heterotropic respiration (Rh) of CO2 from soils. Net

ecosystem production (NEP) can be computed as NPP minus Rh

fluxes, excluding the effects of small-scale fires and other

localized disturbances or vegetation regrowth patterns on

carbon fluxes. The soil model uses a set of compartmentalized

difference equations with a structure comparable to the

CENTURY ecosystem model (Parton et al., 1992, 1994). First-

order decay equations simulate exchanges of decomposing

plant residue (metabolic and structural fractions) at the soil

surface. The model also simulates surface soil organic matter

(SOM) fractions that presumably vary in age and chemical

composition. Turnover of active (microbial biomass and labile

substrates), slow (chemically protected), and passive (physical-

ly protected) fractions of the SOM are represented. Along with

moisture availability and litter quality, the predicted soil

temperature in the M1 layer controls SOM decomposition.

The soil carbon pools were initialized to represent storage

and flux conditions in near steady state (i.e., an annual NEP

flux less than 0.5% of annual NPP flux) with respect to mean

land surface climate recorded for the period 1999–2000. This

Fig. 1 – California GHG Inventory Summary 1990–2004 (from data compiled by the CEC, 2007). Estimated annual totals in

MMTCE are provided at the bottom of each bar.
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initialization protocol was found to be necessary to eliminate

any notable discontinuities in predicted NEP fluxes during the

transition to our model simulation years of interest prior to

MODIS EVI availability. Initializing to near steady state does

not, however, address the issue that some ecosystems are not

in equilibrium with respect to net annual carbon fluxes,

especially when they are recovering from past disturbances.

Whereas previous versions of the CASA model (Potter et al.,

1993, 1999) used a normalized difference vegetation index

(NDVI) to estimate FPAR, the current model version (Potter

et al., 2009) instead has been calibrated to use MODIS EVI

datasets as direct inputs to Eq. (1) above. Operational MODIS

algorithms generate the EVI (Huete et al., 2002) as global image

coverages from 2000 to present. EVI represents an optimized

vegetation index, whereby the isolines in red and near infra-

red spectral bands are designed to approximate vegetation

biophysical isolines derived from canopy radiative transfer

theory and/or measured biophysical–optical relationships. EVI

was developed to optimize the greenness signal, or area-

averaged canopy photosynthetic capacity, with improved

sensitivity in high biomass regions. The EVI has been found

useful in estimating absorbed PAR related to chlorophyll

contents in vegetated canopies (Zhang et al., 2005), and has

been shown to be highly correlated with processes that

depend on absorbed light, such as gross primary productivity

(GPP) (Xiao et al., 2004; Rahman et al., 2005).

In long-term (1982–2004) simulations, continuity between

AVHRR and MODIS sensor data for inputs to NASA-CASA is an

issue that must be addressed by recalibration of annual NPP

results post 2000. Nonetheless, NASA-CASA model predictions

with monthly MODIS EVI inputs have been adjusted using the

same set of field measurements of NPP (Olson et al., 1997;

Potter et al., 2003; Zeng et al., 2008; Potter et al., 2007). To best

match of predictions with previously measured NPP estimates

at the global scale (R2 = 0.91), the model emax term for MODIS

EVI inputs was reset to 0.55 g C MJ�1 PAR.

For CASA model initialization, gridded monthly data from

DAYMET (Thornton et al., 1997) were used as model inputs for

surface air surface temperature (TEMP) and precipitation totals

(PREC) for the years 1982–2000. Gridded model drivers for mean

monthly solar radiation flux were derived from interpolated

weather station records (New et al., 2000) distributed across all

the continental masses. Monthly mean TEMP and PREC grids for

model simulations over the years 2001–2004 came from NCEP

reanalysis products (Kistler et al., 2001).

Soil texture attributes for the modeling were derived from

the STATSGO digital soil association map developed by the

National Cooperative Soil Survey (USDA, 1993). The continen-

tal U.S. STATSGO product consists of a broad based inventory

of soils and non-soil areas that occur in a repeatable pattern on

the landscape and that can be cartographically shown at the

scale mapped.

4. Statewide carbon budget assessment

4.1. Ecosystem carbon fluxes estimates

According to CASA model predictions (and as first reported as

part of the entire U.S. carbon budget in Potter et al. (2007) and

Fig. 2 – Schematic representation of components in the NASA-CASA model. The soil profile component (a) is divided by with

depth into a surface ponded layer (M0) above all other layers for wetlands only, a surface organic layer (M1), a surface organic-

mineral layer (M2), and a subsurface mineral layer (M3), showing typical levels of soil water content (shaded) in three general

vegetation types. The production and decomposition component (b) shows separate pools for carbon cycling among pools of

leaf litter, root litter, woody detritus, microbes, and soil organic matter, with dependence on litter quality (q).
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Potter et al. (2005)), California’s NPP for all ecosystems in the

early 2000s was 120 MMTCE per year. This yearly flux of CO2

into vegetation statewide was roughly equivalent to Califor-

nia’s annual fossil fuel emission total for carbon. However,

since natural ecosystems can accumulate only a small fraction

of this annual NPP total in long-term storage pools such as

standing wood and soil, the net sink flux for atmospheric

carbon across ecosystems of the state (shown as NEP flux in

Fig. 3) was estimated at a maximum rate of between 14 and 24

MMTCE per year under favorable annual precipitation condi-

tions. The annual NEP storage amount is the same as the

difference between carbon captured in NPP flux and that

carbon going back into the atmosphere each year as CO2 is due

to respiration of litter decomposition and soil carbon losses (Rh

fluxes) each year. Under less favorable precipitation condi-

tions, such as those experienced during the early 1990s,

ecosystems statewide were estimated to have lost about 15

MMTCE per year to the atmosphere as NEP flux.

A closer examination of annual precipitation variations in

relation to ecosystem carbon sinks and sources revealed that

during periods such as 1989–1992 when precipitation was 20–

40% below the 50-year mean (1956–2005; DWR, 2009), CASA-

predicted NPP in ecosystems of the state declined to the

annual lowest levels and statewide NEP was the highest (as an

annual emission source of CO2) in the record since 1990.

During relatively wet years such as 1993, 1995–1996, and 2000–

2001 when annual precipitation was 5–60% above the 50-year

mean, CASA-predicted NEP was the lowest (becoming a

notable annual CO2 sink) in the record since 1990.

Carbon flux estimates for ecosystems of California were

broken down further in this study according to Major Land

Resource Areas (MLRAs; Source: U.S. Geological Survey and the

Natural Resources Conservation Service, USDA). MLRAs are

characterized by overlapping patterns of soils, climate, water

resources and land uses. The 16 MLRA regions of California are

shown in Fig. 4.

The breakdown of the geographic patterns of NPP fluxes

across the state from 2001 to 2004 revealed that vegetation of

the Siskiyou-Trinity and Sierra Nevada MLRAs captured the

most carbon annually as NPP at between 16 and 18 MMTCE

total in each region. These areas were followed by the Central

California Coast Range and the Sacramento and San Joaquin

Valley MLRAs, which produced between 12 and 14 MMTCE

total in each region in 2004.

Geographic patterns of yearly NEP fluxes across the state

(Fig. 3) revealed that the area with the highest total sink fluxes

of carbon annually from the atmosphere was the Sonoran

Basin (at between 10 and 13 MMTC from 2001 to 2004), followed

by Southern Nevada Basin and the Sacramento and San

Joaquin Valley MLRAs (at between 2 and 3 MMTCE total in each

region). These regions were not predicted to have unusually

large annual NEP fluxes on a per unit area basis (in the range of

30–60 g C m�2 year�1), but rather were predicted by MODIS

inputs to the CASA model to be consistently productive at a

relatively low level across the entire region. Moreover, the

Sonoran Basin MLRA is two to three times larger in land area

than most other MLRA regions of the state.

These predicted NEP patterns in the southern parts of the

state were in contrast to that estimated for MLRAs such as the

Siskiyou-Trinity and Sierra Nevada, where annual NEP fluxes

were estimated as more variable across the region, due to

higher year-to-year climate variations. Areas of highest source

fluxes of carbon annually to the atmosphere from 2001 to 2004,

at between 2 and 3 MMTCE total, were in the Sierra Nevada

MLRA, with consistently high losses of carbon to the

atmosphere, especially in the northern portion of the range.

It is worth summarizing several novel observations from

the CASA estimates of NEP shown in Fig. 3. First, desert regions

can be extensive low-level carbon sinks for the state, since

decomposition of dead plant material should be very slow in

such dry ecosystems. Second, croplands of the Central Valley

have high NPP but practically no NEP storage capacity, because

nearly all the crop biomass carbon is harvested and/or

removed from the fields each year. Third, forested areas of

the state have often been C sources to the atmosphere under

warming climate conditions that are not favorable to maintain

historical levels of NPP carbon inputs to the forest ecosystems.

4.2. Ecosystem methane emissions

Wetlands, floodplains, and irrigated fields can be important

sources of methane to the atmosphere. Seasonal temperature,

Fig. 3 – CASA model prediction of net ecosystem production

for the year 2004.
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water table dynamics, and carbon content of soils are the

principal controlling factors for ecosystem methane emis-

sions (Whiting and Chanton, 2001). Potter et al. (2006)

combined satellite data sets for the coterminous U.S. with

CASA ecosystem modeling to produce the first detailed

national mapping of methane fluxes from natural wetlands

on a monthly and annual basis.

The CASA models predicted mean emission flux of

methane from wetlands of the California totaled to 0.43

MMTCE equivalent (based on an estimated global warming

potential factor of 23 for methane; EIA, 2004). The MLRAs of the

state estimated to make the highest percentage contributions

to annual methane emission fluxes from wetlands (Fig. 5) were

the Malheur High Plateau (32.5%), the Klamath and Shasta

Valleys (24%), the Sacramento and San Joaquin Valleys (22.8%),

the California Delta (5.9%), and the Central Coastal Valleys

(5.3%). It is important to note that the CASA model was not

designed to operate in human-engineered hydrologic zones

such as reservoirs and canals where the growth of native

wetland vegetation has been largely excluded.

4.3. Ecosystem carbon pool estimates

The CASA model predicts carbon storage in the major pools of

four different ‘strata’ in any terrestrial ecosystem in California

(Potter et al., 2008). These strata are live leaf, standing wood of

trees and shrubs, dead woody litter, and surface mineral soil

carbon. The live leaf pool is carbon stored in live (green) leaf

tissues at the end of an annual vegetation growing season. The

standing wood pool is carbon stored in live wood tissues,

adjusted for forest stand age. Dead woody litter carbon stored

in down wood litter pools at the soil surface. The surface soil

pool is carbon stored in mineral soil layers to a depth of

approximately 30 cm. CASA surface soil amounts do not

include soil carbon pools measured in layers deeper than

30 cm, or soil carbon that has a mean residence time greater

than approximately 25 years in the mineral soil fraction.

On a statewide basis, total carbon stored in all ecosystem

strata was estimated at 4300 MMTCE. Nearly 50% of this

statewide total was stored in standing wood pools. About 37%

of the statewide ecosystem total was stored in soil carbon

pools, followed by 11% in woody litter pools and 2% in live leaf

pools.

Estimated pools for all major ecosystem strata indicate that

the MLRAs with highest carbon storage per unit area were in

the California Coastal Redwood Belt and Siskiyou-Trinity

(Tables 1 and 2). Average baseline carbon pools in standing

biomass (Fig. 6) were in the range of 160–180 t C ha�1 for these

MLRA regions. Average woody litter pools in these areas were

31 t C ha�1, while surface soil pools were in the range of 103–

105 t C ha�1. The total carbon stored in all ecosystem strata of

these two MLRAs combined was estimated at 1900 MMTCE.

Fig. 4 – Major Land Resource Areas (MLRAs) of California. Source: U.S. Geological Survey and the Natural Resources

Conservation Service, USDA.
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Carbon pools estimated for the Sierra Nevada mountains

and the Central Coast Range and Valleys were the next highest

in the state at 1300 MMTCE and 560 MMTCE (respectively) for

total carbon stored in all ecosystem strata (Tables 1 and 2).

Average baseline carbon pools in standing biomass (live leaf

and wood) were in the range of 50–100 t C ha�1 for these MLRA

regions. The Southern Coast, Malheur High Plateau, Carson

Basin and Mountains areas were estimated with average

Fig. 5 – CASA model prediction of annual methane emission fluxes from wetlands of the state.

Table 1 – Estimated annual net ecosystem fluxes of carbon by MLRA in California.

MLRA name Land area
(km2)

NEP 2002 NEP 2003 NEP 2004

MEAN (gC/m2) MMTCE MEAN (gC/m2) MMTCE MEAN (gC/m2) MMTCE

California Coastal Redwood Belt 13,952 �0.23 �0.28 �0.09 �0.11 �0.58 �0.72

Siskiyou-Trinity Area 28,544 �0.21 �0.85 �0.02 �0.10 �0.51 �2.02

Central California Coastal Valleys 10,304 0.34 0.35 0.69 0.70 0.27 0.27

Central California Coast Range 41,536 0.18 0.74 0.54 2.23 0.19 0.79

California Delta 2624 0.40 0.11 0.63 0.17 0.16 0.05

Sacramento and San Joaquin Valleys 46,592 0.49 2.25 0.66 3.00 0.40 1.81

Sierra Nevada Foothills 20,096 0.28 0.55 0.51 1.01 0.17 0.33

Southern California Coastal Plain 14,976 �0.23 �0.28 0.10 0.12 �0.15 �0.17

Southern California Mountains 19,008 �0.23 �0.41 0.07 0.12 �0.18 �0.33

Klamath and Shasta Valleys and Basins 19,968 0.02 0.05 0.06 0.18 �0.12 �0.35

Sierra Nevada Range 67,392 �0.47 �3.22 �0.35 �2.34 �0.38 �2.55

Malheur High Plateau 4608 0.28 1.96 0.32 2.26 0.33 2.30

Carson Basin and Mountains 7488 0.02 0.05 0.08 0.17 0.15 0.31

Southern Nevada Basin and Range 19,200 0.37 2.55 0.45 3.05 0.46 3.14

Sonoran Basin and Range 86,912 0.55 10.09 0.69 12.60 0.71 12.99

Imperial Valley 5504 0.63 0.49 0.51 0.40 0.47 0.37

Statewide Total 408,704 14.15 23.48 16.21

Mean fluxes of carbon as net ecosystem production (NEP) are shown as negative values for net source fluxes to the atmosphere from the

ecosystem, and as positive values for net sink fluxes to the ecosystem from the atmosphere. Note on units: 1 g C m�2 = 0.01 t C ha�1 (for

comparisons to values in Table 2). MMTCE is million metric tons carbon equivalent.
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baseline carbon pools in standing biomass (live leaf and wood)

in the range of 34–36 t C ha�1. Surface soil pools of stored carbon

estimated for these areas (in the range of 46–48 t C ha�1) were

generally higher than aboveground carbon pools.

Soils of the heavily cultivated Sacramento, San Joaquin,

and Imperial Valleys were estimated to be among the

lowest in the state in terms of carbon storage. Surface

soil baseline pools were in the range of 7–18 t C ha�1

(Table 2). There was, nonetheless, a trend of increasing

soil carbon storage estimated moving from south

to north, from the San Joaquin to the Sacramento Valley

areas.

Table 2 – Estimated ecosystem pools of aboveground standing carbon by MLRA in California.

MLRA name Live leaf carbon Standing wood carbon

Mean (t C ha�1) MMTCE Mean (t C ha�1) MMTCE

California Coastal Redwood Belt 2.46 3.06 108.27 134.42

Siskiyou-Trinity Area 2.60 10.35 104.76 408.97

Central California Coastal Valleys 0.85 0.87 47.91 47.84

Central California Coast Range 0.92 3.79 48.01 185.59

California Delta 1.18 0.32 32.62 2.92

Sacramento and San Joaquin Valleys 1.04 4.74 37.71 92.18

Sierra Nevada Foothills 1.04 2.07 54.53 107.50

Southern California Coastal Plain 0.75 0.88 54.50 63.13

Southern California Mountains 0.74 1.34 52.13 94.43

Klamath and Shasta Valleys and Basins 1.03 3.13 57.49 145.32

Sierra Nevada Range 1.42 9.59 69.78 468.05

Malheur High Plateau 0.66 4.60 31.83 159.30

Carson Basin and Mountains 0.49 1.02 32.47 67.12

Southern Nevada Basin and Range 0.34 2.35 23.99 163.37

Sonoran Basin and Range 0.33 6.09 19.79 357.64

Imperial Valley 0.57 0.44 25.51 17.96

Statewide total 54.66 2515.76

Fig. 6 – CASA model prediction of carbon pools in standing wood biomass.
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4.4. Model comparisons to inventory-based estimates

In the following section, we briefly reviewed several invento-

ry-based reports that provide baseline carbon pools for

ecosystems of California. Since most inventory methods are

based on measurements at the scale of a few meters, these

plot-level estimates of single ecosystem types are not strictly

comparable to the estimates from the CASA model. Unlike plot

inventories, the CASA model takes into account minimum

areas covering several square kilometers at a time. This means

that the satellite data used as input to the CASA model

includes the effects of some non-forest and many mixed-age

forest areas in each estimate, i.e., not estimates for single

ecosystem types represented in plot inventories. Neverthe-

less, the inventory-based methods can provide upper bound-

ary estimates for the CASA model, particularly because

inventories are commonly reported for forests managed for

high potential production of biomass.

Two forest sites in northern California were recently

surveyed by Winrock International (2004a) in a report to the

California Energy Commission on biomass carbon storage

potential. The two sites were Sierra mixed conifers at Blodgett

Forest Research Station (BFRS) and the coastal redwoods at

Jackson Demonstration State Forest (JDSF). At the BFRF, mature

conifer stands were estimated with baseline pools in standing

live biomass of about 225 t C ha�1, whereas wood litter pools

were estimated at 20 t C ha�1. Younger conifer stands (20 years

old) were measured with baseline pools in standing live

biomass of about 50 t C ha�1, whereas wood litter pools were

estimated at 5 t C ha�1. At the JDSF, mature conifer stands were

estimated with baseline pools in standing live biomass of about

275 t C ha�1, whereas wood litter pools were estimated at

13 t C ha�1. Younger conifer stands (20 years old) were

measured with baseline pools in standing live biomass of about

60 t C ha�1, whereas litter pools were estimated at 5 t C ha�1.

Based on our model results, mixed-age forest estimates from

the CASA model fall easily within the range of these inventory-

based carbon pools for both BFRS and JDSF. The averaged CASA

estimate for BFRS was standing live biomass of 160 t C ha�1 and

wood litter pools of 26 t C ha�1. The averaged CASA estimate for

JDSF was standing live biomass of 210 t C ha�1 and wood litter

pools of 36 t C ha�1. Because of the wide range of baseline

carbon pools reported in the Winrock International (2004a)

results, more detailed comparisons between model and

inventory methods were not possible.

In another relevant report by Winrock International (2004b)

to the California Energy Commission, the total carbon stock in

agricultural lands for 1997 was estimated to be 20 MMTCE. This

appears to be an underestimated baseline, compared to the

CASA total carbon stock estimated at 119 MMTCE for the

Sacramento and San Joaquin Valleys (Table 1). The Winrock

report does state that potential errors in their estimates could

be notable (e.g., >30%), mainly caused by uncertainty in the

reported carbon densities of croplands.

5. Discussion

To minimize the risks associated with human-induced

climate change, global GHG emissions must be significantly

reduced over the 21st century (IPCC, 2007). One way to

facilitate emission reductions is through the use of regional

and national carbon budgets. These budgets compare the

emission sources from industrial, residential, and transporta-

tion activities to those from agriculture, forestry, and other

ecosystem fluxes and storage pools in the same units of GHG

amounts over consistent geographic areas. As such, carbon

budget calculations can support assessments of tradeoffs in

emission reduction planning.

California offers an important example for developing a

U.S. national carbon budget, in part because of its diversity of

land cover types, use of natural resources, and urban

lifestyles. California’s carbon budget includes a mix of fossil

fuel emissions, alternative energy sources, and ecosystem

sinks that is broadly analogous to that of the entire country, as

is its representation of developed land, forestland, rangeland,

cropland, shrubland, grassland, and desert. For instance,

annual NPP fluxes of CO2 in California exceed the annual fossil

fuel CO2 emission budgets of the nations (individually) of

Australia, Canada, France, Italy, or Spain (UNFCCC, 2009).

Carbon stored in living biomass of forests, shrublands, and

rangelands across the state exceed the totals of aboveground

biomass carbon in the nations (individually) of Italy, Norway,

or the Untied Kingdom (Potter, 1999).

Comparisons of the most recent GHG emissions data for

the state indicates that fossil fuel contributions totaled 115

MMTCE in 2004, while statewide NPP from ecosystems was

predicted at a comparable total of 120 MMTCE. During years

when precipitation is received at above long-term average

amounts, we estimate that California ecosystems may offset

between 14 and 24 MMTCE through the sequestration of a

fraction of the annual NPP uptake of atmospheric CO2 in wood

and soil carbon pools (Fig. 7). Considering the large amounts of

CO2 that can be (re)captured and stored in living biomass of

forests, shrublands, and rangelands across the state (presently

estimated at a total standing stock of 2570 MMTCE), the

importance of protection and conservation of the natural NPP

capacity of California ecosystems cannot be overemphasized.

Assuming that climate change has already begun to impact

ecosystems in the western United States (Field et al., 1999), the

carbon sink capacity of forests and rangelands must be closely

monitored in the coming years. Warming trends off the Pacific

coast can generate longer summer dry periods as well as earlier

snow melt. As more winter precipitation falls as rain, forests

have been reported to grow more sparsely and trees have been

dying at rates that have more than doubled inold-growth forests

across the western United States (van Mantgem et al., 2009).

Theserising forest mortality ratesspannedarangeofelevations,

species, and tree sizes. Such persistent changes in tree mortality

ratescanalterforeststructureandrapidlyreducecarbonstorage

rates. Fellows and Goulden (2008) reported that unmanaged

forests, especially in the Sierra Nevada Mountains, have lost

carbon over the last 70 years largely as a result of the selective

mortality of large trees. This mortality was likely caused by

episodic insect outbreaks, which may have been exacerbated by

stand thickening associated with fire suppression.

Despite efforts to control forest burning, according to

Westerling et al. (2006), the frequency of large wildfires has

increased in the western United States over the past 25 years, a

trend strongly associated with increased spring and summer
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temperatures and an earlier spring snowmelt. Global climate

model predictions were used by Westerling and Bryant (2008)

to predict future fire activity in California, with increasing

temperatures promoting greater large fire frequency in wetter,

forested areas, based mainly on fuel flammability effects.

In closing, it is worth noting that state legislation

(Assembly Bill 32) requires California to reduce GHG emissions

to 1990 levels by 2020 and by another 80% below the 1990 levels

by 2050. California’s growing population and the demand for

all forms of energy will make meeting these targets a major

challenge. To maintain an accurate and complete accounting

of the state’s total GHG emission inventory, the information

presented in this paper suggests that changes in net

ecosystem fluxes of CO2 are just a critical to monitor as are

fossil fuel sources of GHG emissions. The technology exists to

monitor forest, rangeland, and cropland carbon cycles from

Earth-observing satellites, but this capability must be main-

tained at current quality standards for decades to come if GHG

reduction targets are to be fairly evaluated.

Potter et al. (2008).
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