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Invariant spinor representations of finite rotation matrices

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111

~Received 26 March 2001; published 14 August 2001!

Our recent results@N. L. Manakovet al., Phys. Rev. A57, 3233~1998!; 61, 022103~2000!# on the invariant
representations of finite rotation matrices~FRM’s! of integer rankj ~in terms of tensor products of vectors
connected with a space-fixed reference frame! are generalized here for the general case of arbitrary~i.e., integer
or half-integer! rank j. This extension is carried out by using new spinor representations of FRM’s in terms of
specially introduced spinor-annihilation operators. We demonstrate that all widely used, standard representa-
tions of FRM’s follow as special cases of our invariant representation for particular parametrizations of the
rotation parameters. As the simplest application of invariant spinor representations of FRM’s, the factorized
form of Wigner dj (b) matrices with an arbitrary rankj is obtained as a product of two triangular matrices
composed of various powers of cos(b/2).

DOI: 10.1103/PhysRevA.64.0221XX PACS number~s!: 03.65.Ca, 03.65.Fd

I. INTRODUCTION

Finite rotation matrices~FRM’s!, Rkm
j (V), are basic ob-

jects of the quantum theory of angular momentum~see, e.g.,
Ref. @1#!. We define the FRMRm8m

j (V) in accordance with
the standard relation@1#

T̃jm5 (
m852 j

j

Tjm8Rm8m
j

~V!, ~1!

where Tjm and T̃jm are the components of an irreducible
tensorTj of rank j, given in the ‘‘old’’ ~space-fixed! frameK

and in the ‘‘new’’ ~rotated! frame K̃, respectively; andV
denotes three rotation parameters~e.g., in the case of Wigner
D functions@2# they are Euler anglesa,b,g).

Recently in Ref.@3# ~which will henceforth be referred to
as I! we introduced the so-called invariant representations of
FRM’s ~i.e., having explicit tensor forms!, which are useful,
in particular, for analyses of angular distributions in pro-
cesses involving polarized particles. Our invariant represen-
tations are written for symmetrized combinations ofRkm

j (V),
i.e., the ‘‘parity-projected’’ FRM’s, which are defined by@4#

Rkm
j lp~V!5S 12

d0,k

2 D @R2km
j ~V!1~21!k1lpRkm

j ~V!#,

k>lp , ~2!

wherelp50 (lp51) for even~odd! parity. Parity-projected
FRM’s are closely related with the ‘‘real’’ representations of
FRM’s @5#. Moreover, parity-projected WignerD functions
~or dj (b) matrices! naturally appear in three-body problems
having definite parity~see, e.g., Refs.@6# and @7#!.

It was shown that parity-projected FRM’s can be ex-
pressed in terms of the linear combination of tensor products
of two spherical harmonics~bipolar harmonics! depending

on two vectors,n andn8, connected with the fixed frameK.
In I several alternative forms for FRM’s were obtained for
special choices of the vectorsn and n8. The most general
result may be presented as@cf. Eq. ~7! in Ref. @4##

Rkm
j lp~V!5 (

s50

k2lp

Aks
lp~u!$Yj 2s~n! ^ Ys1lp

~n8!% jm , ~3!

where Aks
lp(u) are numerical coefficients dependent on the

angleu between the vectorsn and n8 (0,u,p) @4#, and
where the tensor product,

$Yj 2s~n! ^ Ys1lp
~n8!% jm

5 (
q,q8

Cj 2sqs1lpq8
jm Yj 2sq~n!Ys1lpq8~n8!, ~4!

is the so-called ‘‘minimal bipolar harmonic’’~MBH!, where
Caabb

cg is a Clebsh-Gordan coefficient. The vectorn is di-
rected along thez axis of the fixed frameK and the vectorn8
lies in thezx plane.@Thus the angleu is the free parameter,
and the three independent real parameters of the rotationV
in our approach are determined by the angular coordinates of
n andn8 in the ‘‘new’’ ~or rotated! frameK̃.# The term ‘‘in-
variant’’ for the representation of FRM’s in the form~3!
means that the entire dependence of the FRMRm8m

j (V) on
the tensor indexm is concentrated only in the tensor projec-
tion m of the MBH’s on the right-hand side~rhs! of Eq. ~3!.
@The tensor sense of the indexm is obvious from Eq.~1!,
which may be interpreted as the expansion of a tensorT̃jm

~in the rotated frame! in (2 j 11) tensorsRm8m
j (V) enumer-

ated by the~nontensor! index m8.# We use the term ‘‘mini-
mal bipolar harmonics’’ for the parity-projected tensor prod-
ucts in Eq. ~4! with index s50,1, . . . ,j 2lp , since they
form the ~minimal! basis set of (2j 11) irreducible tensors
in a space of tensors with an integer rankj. @There are (j
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11) polar tensors forlp50 andj axial tensors~pseudoten-
sors! for lp51.# This fact is obvious, since an arbitrary ten-
sor can be presented as a combination of FRM’s@see Eq.
~1!#, and each of these FRM’s has expansion~3! in terms of
the set of MBH. The complete basis set of MBH was intro-
duced for the reduction of bipolar harmonics of rankj in-
volving internal tensors of higher ranks thanj @8#. These
results provide great simplifications for the analysis of angu-
lar distributions in reactions involving polarized particles and
in g—2e processes~see, e.g., Refs.@8# and @9#!. They are
also useful in the analysis of other physical problems~see,
e.g., Refs.@1# and @10#!.

Our derivations of invariant results for FRM’s in I were
based on the vector differentiation technique@8#, and hence
they are valid only for irreducible tensors with integer ranks
j. In this paper we generalize these results and present invari-
ant representations for FRM’s which are valid for an arbi-
trary ~either integer or half integer! rank j. This generaliza-
tion is performed in Sec. III based on specially introduced
‘‘spinor-annihilation’’ (d̂) operators ~Sec. II!, which are
spinor analogs of the vector¹ operators. The use of thesed̂
operators leads to the main result of this paper, i.e., the ‘‘dif-
ferential’’ spinor representation of the FRM@in Eq. ~21!# and
explicit forms of FRM’s in Eqs.~23! and ~26!, which are
valid for both integer and half integer ranksj. In Sec. IV we
demonstrate the reduction of our spinor representation for
the FRM to the known invariant form for the case of integer
j. Based on the invariant spinor representation, is possible to
obtain in a convenient way many fundamental results of an-
gular momentum algebra. In particular, this representation
permits the analysis of some interesting algebraic properties
of standard WignerD functions:

Dkm
j ~a,b,g!5 exp~2 ika!dkm

j ~b!exp~2 img!. ~5!

Namely, in Ref.@4# it was found that, for integer rankj, the
parity-projecteddj (b) matrix dj lp(b) can be presented as a
product of two triangular matrices composed of Gegenbauer
polynomialsCn

a(cosb) having positive and negative upper
indicesa, respectively. Based on the invariant spinor form of
the FRM, in Sec. V we obtain the factorized form of the
standard~not ‘‘parity-projected’’! dj (b) matrix with an arbi-
trary j as a product of two triangular matrices composed of
various powers of cos(b/2). Finally, all known standard pa-
rametrizations of FRM’s may be obtained as special cases of
our invariant results for particular parametrizations of the
rotation parametersV. As an example, in Sec. VI we dem-
onstrate the reduction of the ‘‘differential’’ spinor represen-
tation of the FRM in Eq.~21! to explicit expressions for the
FRM in Euler’s parametrization@2# as well as in the (n,v)
parametrization involving the direction of the rotation axisn
and the rotation anglev @11,12#.

II. TENSOR PRODUCTS OF IDENTICAL SPINORS AND
SPINOR-ANNIHILATION OPERATORS

Below we shall obtain an invariant representation of
Rkm

j (V) with arbitrary rankj ~either integer or half integer!.

It is obvious that to generalize the results valid for spherical
tensors with integer ranks to the case of half integerj one
needs to use the spinor formalism. Let us first introduce
some spinor algebra notations. We use below the Greek letter
x for a spinor as such, while its components we denote as
xm , m561/2. We use in this paper the following definition
for the scalar product of irreducible tensorsAj and Bj in
terms of the standard irreducible tensor product$Aj ^ Bj%km
@1#:

~Aj•Bj !5A2 j 11$Aj ^ Bj%00.

Thus the scalar product of spinorsx andf is

~x•f!5x1/2f21/22x21/2f1/2.

In particular, (x•x)50. An arbitrary spinorx can be ex-
panded in two base spinors,b (11/2) andb (21/2), as follows:

x5b (11/2)x21/22b (21/2)x1/2, x61/25~x•b (61/2)!,
~6!

where the orthonormalization properties of the base spinors
b (61/2) are

~b (a)
•b (a8)!5~21!1/22ada,2a8, bm

(a)5~21!1/22adm,2a.

~7!

Note that for simpler presentation of the results below, our
definition for the components of spinorsb (61/2) differs from
the standard definition@1# of components of spin-1/2 func-
tions x (1/2)m with m561/2.

We use the notation$x%aa for the irreducible tensor of
rank a and componenta which is the tensor product of 2a
spinorsx,

$x%aa5ˆ•••$x ^ x%1•••^ x‰aa . ~8!

This definition is similar to that introduced for the case of
identical rank-1 tensors~vectors! in Ref. @8# ~see also Refs.
@13# and@14#! where a number of general properties of such
tensor products are discussed. In particular, the tensor prod-
uct ~8! does not depend on the coupling scheme of spinorsx
in accordance with the identity

$Ra^ $x ^ Tb%b11/2%a1b11/25ˆ$Ra^ x%a11/2^ Tb‰a1b11/2,

~9!

which can be proved using the tensor recoupling rules@1#.
Inserting Eq.~6! into Eq. ~8!, we obtain

$x%aa5 (
n50

2a S 2a
n D ~x21/2!

n~2x1/2!
2a2n

ˆ$b (11/2)%n/2

^ $b (21/2)%a2n/2‰aa , ~10!

where (b
a) is the binomial coefficient. The tensor product of

b (61/2) spinors is easily calculated using Eq.~7! and the re-
lation Caabb

a1ba1b51:

MANAKOV, MEREMIANIN, AND STARACE PHYSICAL REVIEW A 64 032105

032105-2



$b (61/2)%aa5~61!2ada,7a . ~11!

Finally, using Eqs.~10! and~11! as well as known analytical
results for Clebsh-Gordan coefficients@1#, we obtain the fol-
lowing explicit expression for$x%aa in terms of spinor com-
ponentsxm :

$x%aa5A ~2a!!

~a2a!! ~a1a!!
~x1/2!

a1a~x21/2!
a2a. ~12!

The key aspect of our further considerations is our use of
‘‘spinor-annihilation operators,’’d̂. We introduce such opera-
tors in an invariant way,

~f• d̂ !xm5fm , ~13!

wheref andx are arbitrary spinors. In terms of spinor com-
ponents, the definition~13! is equivalent to the following:

d̂nxm5~21!1/21ndn,2m , ~14!

or, more generally,

d̂n~xm!k5~21!1/21nk~xm!k21dn,2m ,
~15!

d̂nxmxr5~21!1/21n~xmdn,2r1xrdn,2m!,

whereda,b is the Kronecker symbol. It is seen from these
equations that the spinor operatorsd̂ annihilate the spinorsx.

Using Eqs.~12! and ~15! one may verify two important
relations involving tensor products ofd̂ operators,$d̂% jm :

$d̂% jm$x% jk5~21! j 2k~2 j !!dm,2k , ~16!

$$d̂% j ^ $x% j %aa5(
m,k

Cjm jk
aa $d̂% jm$x% jk

5~21!2 jA2 j 11~2 j !!da,0 . ~17!

In particular,$d̂ ^ x%aa52A2da,0 . We note also the simple
relation

~ d̂• d̂ !$x% jm50, ~18!

which is obvious from the definition of the scalar product in
Eq. ~7! and also because~after the annihilation of two
spinorsx) a tensor having rankj cannot be composed of
2 j 22 spinorsx. Thus the spinor-annihilation operatord̂ in
the space of tensors composed of spinorsx may be consid-
ered as the spinor generalization~valid for any j ) of the
vector gradient operator,¹, operating in the space of tensors
composed of vectorsr . This analogy is supported by the
comparison of the definition~13! with the vector identity,
(a•¹c)ck5ak . Moreover, the identity~18! with d̂→¹ and
x→r is also valid since the tensor product$r% jm obeys the
Laplace equation. One additional property ofd̂ operators that

is similar to that for ordinary differential operators and that is
useful in concrete applications is given in Eq.~A1! in the
Appendix.

III. SPINOR REPRESENTATIONS OF FRM

To obtain the representation of FRM in terms of the
spinor constructions introduced in the previous section, let us
consider the scalar product (Tj•$x% j ), whereTj is an arbi-
trary tensor of rankj ~either integer or half integer!. In view
of the invariance of the scalar product, we have

~ T̃j•$x̃% j !5~Tj•$x% j !, ~19!

where the superscript tilde means that components ofx̃ and
T̃j are defined in the rotated coordinate frameK̃. Acting on

both sides of this equation with the operator$d̃̂% jm ~whered̃̂
is the spinor-annihilation operator in the frameK̃), we obtain

$d̃̂% jm (
q52 j

j

~21! j 2qT̃jq$x̃% j 2q

5$d̃̂% jm (
k52 j

j

~21! j 2kTjk$x% j 2k . ~20!

Since d̃̂ and x̃ are defined in the same frameK̃, we can
explicitly calculate the left-hand side~lhs! of Eq. ~20! using

Eq. ~16! ~assumingd̃̂ does not act onT̃kq). Then after the
comparison of the result with the definition of the FRM in
Eq. ~1! we obtain the ‘‘operator representation’’ of the FRM:

Rkm
j ~V!5

~21! j 1k

~2 j !!
$d̃̂% jm$x% j 2k . ~21!

Note that the tensor product ofd̃̂ operators in this equation
must be calculated in the rotated frameK̃, while the product
of spinorsx is defined in the ‘‘old’’ frameK @and thus the
result in Eq.~16! is not applicable here#. We use the term
‘‘invariant representation of the FRM’’ for the result on the
rhs of Eq.~21! because it depends on the projectionsm andk
only through invariant tensors and does not depend explicitly
on the rotation parameters. Equation~21! is the spinor analog
of the invariant ‘‘differential’’ representation of the FRM in
the tensor form@see Eq.~24! in I#:

Rkm
j ~V!5

~21!k

j !
$¹̃% jm$r% j 2k , j 50,1,2, . . . .

An explicit form of the invariant representation of FRM
in terms of tensor products of base spinorsb (a) of the old
frameK can be derived after the substitution of Eq.~12! into
Eq. ~21!. In view of the invariance of a scalar product, the
componentsx61/2 of the spinorx in the frameK, which
enter from Eq.~12!, may be written as the scalar products
(x̃•b (11/2)) @cf. Eq. ~6!#, calculated in the rotated frameK̃.
Thus we have
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Rkm
j ~V!5

~21! j 1k

A~2 j !! ~ j 2k!! ~ j 1k!!

3$d̃̂% jm~ x̃•b (11/2)! j 2k~ x̃•b (21/2)! j 1k, ~22!

where the components of all spinorsd̃̂, x̃, andb (61/2) must
be calculated in the same frameK̃. Note that one must dis-
tinguish betweenb (61/2) and b̃ (61/2), which are the base
spinors of the framesK and K̃, respectively. Obviously, for
the components ofb (61/2) in the K̃ frame Eqs.~7! are not
valid. Below in the text~unless otherwise specified! we will
use the notationb (61/2) for the components of spinors
b (61/2) given in theK̃ frame. The calculation of the rhs of
Eq. ~22! is straightforward but quite lengthy. The key steps
are as follows:~i! One uses an equation similar to that forx
in Eq. ~6! to expandb (61/2) in terms of the base spinors
b̃ (61/2) of K̃; ~ii ! Using the binomial theorem, one expands
the rhs of Eq.~22! in powers ofx̃61/2 @cf. Eq. ~6!#; ~iii ! One

uses Eq.~12! to expand$d̃̂% jm in powers ofd̃̂ n ; ~iv! One uses

Eq. ~15! to calculate the result of the operatorsd̃̂ n acting on
the componentsx̃61/2; ~v! One uses an equation similar to
Eq. ~12! to express powers of the components ofb (61/2) on
the base spinorsb̃ (61/2) in terms of a sum~over Q) of
$b (11/2)%aa @wherea5( j 2k)/2 anda5Q] and $b (21/2)%bb
@where b5( j 1k)/2 and b5m2Q]; ~vi! One notices that
the coefficient of each term inQ is proportional to the
Clebsch-Gordan coefficientCaabb

jm ; ~vii ! Using the definition
of a tensor product@cf. Eq. ~4!# one may express the rhs of
Eq. ~22! finally in terms of the followingjm tensor:

Rkm
j ~V!5Cjkˆ$b

(21/2)%( j 1k)/2^ $b (11/2)%( j 2k)/2‰jm ,
~23!

where

Cjk5~21! j 1kA ~2 j !!

~ j 1k!! ~ j 2k!!
,

and where$b (11/2)%pk ~or $b (21/2)%pk) is the tensor product
~8! of 2p spinorsb (11/2) ~or b (21/2)), whose components
should be calculated in the~rotated! coordinate frameK̃.
Obviously, these components are connected with standard
componentsbm

(a) @see Eq.~7!# in the ‘‘old’’ coordinate frame
K. Moreover, this connection determines implicitly the de-
pendence of the rhs of Eq.~23! on the rotation parametersV.
An alternative derivation of the key result in Eq.~23! is
presented in the Appendix.

A more general representation of the FRM than that given
in Eq. ~23! may be derived if we rewrite the identity~6! as
follows:

b (21/2)52
1

b
~ab (11/2)1x̃ !, ~24!

wherea[2(x•b (21/2)) andb[(x•b (11/2)). ~The scalarsa
and b can be calculated in an arbitrary coordinate frame.!
Since the tensor product$b (21/2)%( j 1k)/2 does not depend on
the coupling scheme of spinorsb (21/2), we find

$b (21/2)%( j 1k)/25S 2
a

bD j 1k

(
n50

j 1k S j 1k
n D 1

an
ˆ$x̃%n/2

^ $b (11/2)%( j 1k2n)/2‰( j 1k)/2 . ~25!

We used in the above derivation the usual binomial formula.
Inserting Eq.~25! into the rhs of Eq.~23!, after some algebra
we obtain the representation of the FRM containing free pa-
rameters — the componentsa andb of the ~arbitrary! spinor
x in the coordinate frameK:

Rkm
j ~V!5S a

bD j 1kA ~2 j !!

~ j 2k!! ~ j 1k!! (n50

j 1k S j 1k
n D 1

an
ˆ$x̃%n/2

^ $b (11/2)% j 2n/2‰jm . ~26!

Note that the tensor product on the rhs of this equation
should be calculated in the rotated frameK̃ @cf. Eq. ~23!#.
The new representations of the FRM with an arbitrary rankj
in Eqs.~23! and~26! together with the formal ‘‘differential’’
representation in Eq.~21! are our main results. All of these
representations have an explicitly invariant tensor form since
their entire dependence on the tensor indexm is concentrated
only in the tensor projection on the rhs of Eqs.~21!, ~23!, and
~26!.

The result in Eq.~26! together with the transformation
rule in Eq. ~1! proves that an arbitrary irreducible tensor of
either integer or half integer rankj can be expanded on the
basis of (2j 11) ‘‘minimal’’ tensor products of the kind
$$w%n/2^ $x% j 2n/2%jm ~with n50,1,2, . . . ,2j ), wherew andx
are ~in general, arbitrary! spinors. In I we have shown that
the set of minimal bipolar harmonics, Eq.~4!, can also serve
as a basis in the space of irreducible tensors of integer ranks.
We do not present here the explicit connection between these
two bases for the case of integerj, although it may be easily
derived considering the transformation of the MBH under
the rotationV with the use of the spinor representation~26!
for the FRM in Eq.~1!.

IV. CONNECTION TO THE CASE OF INTEGER j

In order to obtain the connection between invariant spinor
representations of FRM and the representations in vector
form presented in I, we transform Eq.~23! to the form

Rkm
j ~V!5Cjkˆ$$b

(11/2)
^ b (21/2)%1% j 2k^ $b (21/2)%k‰jm ,

k>0, ~27!

where we have used the fact that the tensor product on the
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rhs of Eq.~27! does not depend on the coupling scheme for
internal tensors. Note that for integerk the tensor product
$b (21/2)%kk may be written as@cf. Eqs.~8,9!#

$b (21/2)%kk5ˆ$b (21/2)
^ b (21/2)%1^ •••^ $b (21/2)

^ b (21/2)%1‰kk .

Obviously, components of the tensor product of two spinors
having the rank 1 are spherical components of a vector,v
[$b (11/2)

^ b (21/2)%1. The components of this vector in the
frame K may be easily calculated taking into account the
identities in Eq.~7!,

v052C 1
2 2 1

2
1
2

1
2

10
52

1

A2
, v6150.

Thus, we obtain thatv52e0 /A2, wheree0 is the unit vector
directed along the axis Z of the frameK. Similarly, in theK
frame we have following relations:

$b (21/2)
^ b (21/2)%115C 1

2
1
2

1
2

1
2

11
51,

while the components$b (21/2)
^ b (21/2)%1n with n50 andn

521 are zero. Therefore we obtain another vector identity,
$b (21/2)

^ b (21/2)%152e21, where e21 and e11 are the
spherical unit tensors in the frameK. Thus, for integer values
of j, Eq.~27! can be reduced to the known result for the FRM
in terms of basis vectors of the ‘‘old’’ frameK @cf. Eq.~17! in
I#:

Rkm
j ~V!5Ajkˆ$e21%k^ $e0% j 2k‰jm , k>0, ~28!

where the coefficientsAjk are related to theCjk in Eq. ~23!:

Ajk5~21! j~A2!k2 jCjk5~21!kA 2k2 j~2 j !!

~ j 2k!! ~ j 1k!!
.

Obviously, in a similar analysis for the case of half integerj
we will have one ‘‘uncompensated’’ spinorb (n) in the tensor
product~27!.

V. FACTORIZED FORM OF WIGNER MATRICES

Invariant spinor representations of FRM’s may prove to
be useful in various applications involving angular momen-
tum algebra, especially those in which the tensor structure of
the FRM provides more insight into the underlying physics
of a process than does its explicit algebraic expression~e.g.,
as in the analysis of spin polarization effects!. In addition,
they also permit one to derive new representations of FRM’s.
As an example, we obtain below a new factorized form of
Wigner functions for arbitrary values ofj; this is similar to
the results obtained in Ref.@4# ~see also Ref.@7#! for parity-
projected matrices having integerj. We note first that Eq.
~26! can be considered as a product of two triangular matri-
ces. The explicit form of these matrices for the case of Eul-
er’s parametrization of the FRM, i.e., for WignerD functions
Eq. ~5!, can be obtained by considering the special case in
which the spinorx̃ in Eq. ~26! is the base spinorb̃ (11/2) of

the rotated frame K̃. For this case, coefficientsa and b

~which are ‘‘coordinates’’ of the spinorx[b̃ (11/2) in the K
frame! are connected with the Euler anglesa, b, g as fol-
lows:

a52~ b̃ (11/2)
•b (21/2)!5D (1/2)(1/2)

1/2 ~abg!

5e2 i (a1g)/2 cos~b/2!,
~29!

b5~ b̃ (11/2)
•b (11/2)!5D2(1/2)(1/2)

1/2 ~abg!

5ei (a2g)/2 sin~b/2!.

These identities follow immediately from Eqs.~1! and ~6!.
The calculation in theK̃ frame of the tensor product on the
rhs of Eq.~26! can be performed explicitly by standard an-
gular momentum algebra@1#:

ˆ$b̃ (11/2)%n/2^ $b (11/2)% j 2n/2‰jm

5Cn/2,2n/2,j 2n/2,(m1n/2)
jm A ~2 j 2n!!

~ j 1m!! ~ j 2m2n!!

3~b (11/2)
•b̃ (11/2)! j 1m~b (11/2)

•b̃ (21/2)! j 2m2n.

~30!

Here we have used Eqs.~11! and ~12! for the calculation of

$b̃ (11/2)%n/2 and$b (11/2)% j 2n/2 , respectively.
Replacing the Clebsh-Gordan coefficient on the rhs of Eq.

~30! by its analytic expression@1# and then inserting Eq.~30!
@with the account of Eq.~29!# into Eq.~26!, we obtain~upon
omitting the trivial dependence of theD functions on the
anglesa and g) the following expression for thedkm

j (b)
matrix:

dkm
j ~b!5A~ j 2m!! ~ j 1k!!

~ j 1m!! ~ j 2k!! S sin
b

2 D m2k

(
n50

j m

~21!n

3
~2 j 2n!!

n! ~ j 1k2n!! ~ j 2m2n!! S cos
b

2 D 2 j 1k2m22n

,

~31!

where j m5min(j2m, j 1k). Eq. ~31! can be considered a
matrix identity.

For a simpler presentation, it is convenient to introduce a
slightly different matrix,d̄j , instead of the standarddj ma-
trix:

dp2 j ,q2 j
j ~b!5~21!pS sin

b

2 D q2pAp! ~2 j 2q!!

q! ~2 j 2p!!
d̄pq

j ~b!,

where p,q50,1,2, . . . ,2j . Thus one may write the matrix
identity in Eq.~31! in terms of thed̄j matrix as a factorized
product:
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d̄j5C•A,

or, in explicit form,

d̄pq
j ~b!5 (

n50

2 j

Cpn~b!Anq~b!, ~32!

where the matrix elements of theA andC matrices are

A[Anq~b!5S 2 j 2n
q D S cos

b

2 D 2 j 2n2q

,

~33!

C[Cpn~b!5S p
nD S 2 cos

b

2 D p2n

.

It is seen from the above equations that the matrixA is an
upper-left matrix, whileC is a lower left one; diagonal ele-
ments of both these matrices are equal to 1. It is an important
fact that the matrix elements of the (2j 11)-dimensional ma-
tricesA[A(k) andC[C(k), wherek52 j 11, do not depend
on the rankj, because it enters Eq.~33! only in the combi-
nation (2j 2n), which determines the dimension of the ma-
trices. As a consequence, theA(k11) ~or C(k11)) matrix can
be calculated by simply adding one additional highest~or
lowest! row to A(k) ~or C(k)). As an example, forj 51 we
have

A(3)5S cos2
b

2
2 cos

b

2
1

¯¯ ¯¯

cos
b

2
1 A 0

1 0 A 0

D ,

C(3)5S 1 0 A 0

2 cos
b

2
1 A 0

¯¯ ¯¯ A

cos2
b

2
22 cos

b

2
1

D ,

where the marked 232 internal matrices in these equations
are results forj 51/2.

The matrix identity~32! can be explicitly inverted, as was
done for the parity-projecteddj lp(b) matrices@4#. To dem-
onstrate this, it is sufficient to consider the rotation of the
tensor product defined by the lhs of Eq.~30! from theK to
the K̃ coordinate frames. In accordance with Eq.~1! we have

$$b̃ (1/2)%n/2^ $b (1/2)% j 2n/2%jm

5 (
k52 j

j

ˆ$b̃ (1/2)%n/2^ $b (1/2)% ( j 2n)/2‰jk
(K)Dkm

j ~abg!,

~34!

where the superscript~K! on the rhs of this equation means
that the corresponding tensor product should be calculated in
the K frame. It is evident that Eq.~34! can be written in
matrix form~omitting once again the trivial dependence ona
andg):

A5B•d̄j ,

or explicitly,

Aqn~b!5 (
p50

2 j

Bnp~b!d̄pq
j ~b!, ~35!

where the matrixB is

B[Bnp5S n
pD S cos

b

2 D n2p

. ~36!

Comparing Eqs.~35! and ~36! with Eq. ~32!, we obtain an
explicit form for the matrix inverse ofC:

C21[~C21!np5Bnp . ~37!

VI. REDUCTION OF THE INVARIANT REPRESENTATION
OF THE FRM TO STANDARD RESULTS

In what follows we shall demonstrate how known stan-
dard parametrizations of FRM’s may be deduced as special
cases of our invariant results. As may be seen from the gen-
eral identity for the FRM, Eq.~21!, in order to reduce this
result for the case of a concrete parametrization of the rota-
tion parametersV one needs to use the spinor transformation
rule in terms of parameters that describe the chosen param-
etrization.

For the Wigner parametrization ofV, the spinor transfor-
mation rule in terms of Euler angles may be written as fol-
lows @1#:

x1/25ei (a/2)S ei (g/2)cos
b

2
x̃1/22e2 i (g/2)sin

b

2
x̃21/2D

~38!

x21/25e2 i ~a/2!S ei (g/2)sin
b

2
x̃1/21e2 i (g/2)cos

b

2
x̃21/2D ,

where the notationsx61/2 (x̃61/2) denote the components of
the spinor in the ‘‘old’’ ~‘‘new’’ ! coordinate frame. Upon
inserting Eqs.~38! into Eq. ~21!, taking into account Eq.
~12!, we obtain~after some simple algebra! the following
result:
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Rm8m
j

5e2 i (m8a1mg)
~21!2 j

A~ j 2m!! ~ j 2m8!! ~ j 1m!! ~ j 1m8!!

3~ d̃̂1/2!
j 1m~ d̃̂21/2!

j 2m(
n,n8

~21!nS j 2m8
n D S j 1m8

n8 D
3~ x̃1/2!

n1n8~ x̃21/2!
2 j 2n2n8S cos

b

2 D n2n81 j 1m8

3S sin
b

2 D n82n1 j 2m8
.

The calculation of the action of the spinor annihilation op-
erators in this equation@cf. Eqs.~13! and ~14!# gives

Rm8m
j

5e2 i (m8a1mg)S cos
b

2 D m1m8S sin
b

2 D m2m8

3A ~ j 1m!! ~ j 2m!!

~ j 1m8!! ~ j 2m8!!
(

n
~21! j 2m1nS j 2m8

n D
3S j 1m8

j 2m2nD S cos
b

2 D 2nS sin
b

2 D 2 j 22m22n

.

Here the sum overn defines the Jacobi polynomial
Pk

(a,b)(cosb) @15#. Thus we have obtained the standard defi-
nition of Wigner’s functions in terms of Jacobi polynomials
@1#:

Rm8m
j

~abg![Dm8m
j

~abg!

5e2 i (m8a1mg)A ~ j 1m!! ~ j 2m!!

~ j 1m8!! ~ j 2m8!!

3S cos
b

2 D m1m8S sin
b

2 D m2m8

3Pj 2m
(m2m8,m1m8)~cosb!. ~39!

Besides the Euler angles, another widely used parametri-
zation of the rotationV for which FRM’s have a simple
analytical form is the (n, v) parametrization, where the unit
vectorn defines the rotation axis andv is the rotation angle
@11,12# ~see also Ref.@16#!. In this parametrization the trans-
formation rule for a spinorx has the form@1#

x5x̃ cos
v

2
2 iA3$n^ x̃%1/2 sin

v

2
. ~40!

Here we use the notationx for the spinor whose components
x61/2 are defined in the ‘‘old’’ frameK @cf. Eq. ~38!#. From
Eq. ~21!, it follows that

Rm8m
j

5
1

~2 j !! (
aa

~21! j 1m8Cjm j2m8
aa

ˆ$d̃̂% j ^ $x% j‰aa .

~41!

In order to calculate the tensor product on the rhs of this
equation, we note that it is proportional to the spherical har-
monic Ȳaa(n),

$$d̃̂% j ^ $x% j %aa5AaȲaa~n!, ~42!

where Ȳaa(n) is a ‘‘renormalized’’ spherical harmonic,
Ȳaa(n)[A4p/(2a11)Yaa(n). The identity ~42! may be

understood by considering that after the action of thed̃̂ op-
erators on the spinorsx̃, taking into account Eq.~40!, the
tensor of ranka on the lhs of Eq.~42! may be composed only
of unit vectorsn, whose angular representation is the spheri-
cal harmonicYaa(n). The numerical coefficientAa in Eq.
~42! may be calculated in an appropriate coordinate frame,
the simplest of which is the frame having itsZ axis directed
along the vectorn. In this coordinate frame the components
of x follow from Eq. ~40!:

x61/25x̃61/2e
6 i (v/2).

Then, calculating the tensor product on the lhs of Eq.~42!,
we find for the coefficientAa the following chain of equa-
tions:

Aa5(
n

Cjn j 2n
a0 $d̃̂% jn$x% j 2n

5(
n

Cjn j 2n
a0

~2 j !!

~ j 2n!! ~ j 1n!!
~ d̃̂1/2!

j 1n~ d̃̂21/2!
j 2n

3~ x̃1/2!
j 2n~ x̃2

1

2
! j 1ne2 ivn

5~2 j !!(
n

~21! j 1nCjn j 2n
a0 e2 ivn

5~2 i !a~21!2 j~2 j !!
A2a11

A2 j 11
xa

j ~v!, ~43!

where the results on the second and third lines follow from
Eqs. ~12! and ~14!, respectively, and wherexa

j (v) is the
generalized character of the rotation group O~3! ~cf. Sec.
4.15 of Ref.@1#!. Inserting Eq.~43! into Eq. ~42! and then
that result into Eq.~41!, we obtain

Rm8m
j

~n,v![Um8m
j

~n,v!

5 (
a50

2 j

~2 i !a
2a11

2 j 11
xa

j ~v!Cjm8aa
jm Ȳaa~n!.

~44!

The result in Eq.~44! coincides with the standard definition
of the FRM Um8m

j (n,v) for the case of the (n, v) param-
etrization@1,11#.

We note also the parametrization ofV in terms of Cayley-
Klein parameters, which are two complex numbersa andb
normalized by the conditionuau21ubu251 @1,17#. The con-
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nection ofa andb with Euler angles is given by the Wigner
functionsD (1/2)(1/2)

1/2 (a,b,g) andD2(1/2)(1/2)
1/2 (a,b,g), respec-

tively. It is seen from Eq.~29! that in the case when the ‘‘free

spinor’’ x coincides with the base spinorb̃ (11/2) of the

‘‘new’’ frame K̃, its components in the ‘‘old’’ frameK, a and
b, are nothing else than Cayley-Klein parameters. Moreover,
it is possible to write the tensor product in Eq.~30! in terms
of a and b, thus obtaining the explicit representation of
FRM’s in terms of Cayley-Klein parameters@1,17#. How-
ever, we do not present the derivation of this result here,
because it is not used widely in physical problems.

VII. CONCLUSION

This paper completes our analysis of invariant represen-
tations of finite rotation matrices~see I and@4#!. In Sec. III
we have obtained the most general invariant representations
of the FRM, as they are valid for both integer and half inte-
ger j. We have also established the relation of these general
spinor representations to both our previous results for integer
j ~in Sec. IV! and to the standard representations for FRM’s
~in Sec. VI!. Besides applications to the general theory of
angular momentum~demonstrated in Sec. V!, invariant rep-
resentations of FRM’s are useful in physical problems be-
cause they provide a powerful tool for the analysis of general
properties of a physical phenomenon based only on symme-
try considerations, taking into account the invariant~e.g.,
vector or spinor! characteristics inherent to the concrete
problem. These applications are based on an invariant~i.e.,
independent of a concrete coordinate frame! analysis of the
fundamental mathematical objects of atomic theory, irreduc-
ible tensor operatorsTjm . The idea of an invariant param-
etrization of tensor operators was realized in I, where invari-
ant representations of FRM’s were introduced. Then, using
the transformation rule~1!, Tjm ~or more exactly,T̃jm , i.e.,
the operatorTjm in an arbitrary reference frameK̃) may be
presented in terms of itsjm8 components in a suitable frame
K and of invariant FRM’s, without an explicit parametriza-
tion of the rotationV @see, e.g., Eqs.~53! and ~54! in I for
the case of integerj ]. Moreover, the parameters which~im-
plicitly ! describe the rotationV ~e.g., two noncollinear vec-
tors or components of the spinorx in a fixed coordinate
frame! may be connected with some physical quantities in-
herent to the problem being analyzed. A number of examples
have been presented in I. We emphasize only that such in-
variant methods are especially fruitful for the separation of
kinematical ~i.e., dependent on the geometry, polarization
states, and momentum directions of the target and projec-
tiles! from dynamical factors in cross sections of atomic col-
lisions with photons and/or electrons.
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APPENDIX: AUXILIARY IDENTITY FOR d̂ OPERATORS
AND ALTERNATIVE DERIVATION OF EQ. „23…

In applications of thed̂-operator formalism introduced in
Sec. II an auxiliary identity for the product of two homoge-
neousn-linear forms, one of them involving spinor operators
d̂ and another involving spinorsx, may be useful. Consider
therefore the following such product:

S (
m1 , . . . ,mn561/2

am1 , . . . ,mn
d̂m1

••• d̂mnD
3S (

n1 , . . . ,nn561/2
bn1 , . . . ,nn

xn1
•••xnnD

5~21!nS (
n1 , . . . ,nn561/2

bn1 , . . . ,nn
d̂n1

••• d̂nnD
3S (

m1 , . . . ,mn561/2
am1 , . . . ,mn

xm1
•••xmnD ,

~A1!

where the coefficientsam1 , . . . ,mn
andbn1 , . . . ,nn

may be com-

posed of spinors other thanx and d̂. Equation~A1! is com-
pletely equivalent to the similar identity for the case involv-
ing ordinary differential operators@18#. The result in Eq.
~A1! may be verified by direct calculation as it illustrates the
following chain of equations for the casen52:

S (
m1 ,m2561/2

am1m2
d̂m1

d̂m2D S (
n1 ,n2561/2

bn1n2
xn1

xn2D
5 (

m1 ,m2
(

n1 ,n2

am1m2
bn1n2

~21!11m11m2~dm1 ,2n1
dm2 ,2n2

1dm1 ,2n2
dm2 ,2n1

!

5 (
m1 ,m2

(
n1 ,n2

am1m2
bn1n2

d̂n1
d̂n2

xm1
xm2

5S (
n1 ,n2

bn1n2
d̂n1

d̂n2D S (
m1 ,m2

am1m2
xm1

xm2D ,

wheredm,2n is the Kronecker symbol. The first equality in
the above chain of equations follows from the definitions of
d̂ ’s in Eqs.~14! and~15!. In the third line term, thed̂ andx
components are introduced again~only with reversed indi-
ces! using once again Eq.~14! and the evident symmetry
relation

d̂nxm5~21!1/21ndn,2m52 d̂mxn . ~A2!

The case of a product of twon-linear forms may be analyzed
similarly ~e.g., for three-linear forms, six terms with products
of three Kronecker symbols will appear in the second line,
etc!. Therefore, in the products of twon-linear homogeneous
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forms composed ofd̂ ’s and x ’s one can replaced̂↔2x.
@The necessity of the minus sign for oddn is evident from
Eq. ~A2!.#

To demonstrate the utility of Eq.~A1! in concrete calcu-
lations involving complicated constructions of spinor-
annihilation operators, we present an alternative derivation
of the basic representation~23! for FRM’s. With the use of
Eq. ~A1!, the rhs of Eq.~22! may be written as follows:

$d̃̂% jm~ x̃•b (11/2)! j 2k~ x̃•b (21/2)! j 1k

5~21!2 j~ d̃̂•b (11/2)! j 2k~ d̃̂•b (21/2)! j 1k$x̃% jm .

~A3!

Here the calculation of the term on the rhs of Eq.~A3! is
much simpler than the straightforward but lengthy approach
described in Sec. III for calculating the lhs. Indeed, taking
into account Eq.~13! and the independence of$x̃%km of the
coupling scheme of rank-1/2 tensorsx̃, one obtains

~ d̃̂•b (21/2)! j 1k$x̃% jm5~ d̃̂•b (21/2)! j 1k21~22 j !ˆb (21/2)

^ $x̃% j 21/2‰jm

5~ d̃̂•b (21/2)! j 1k222 j ~2 j 21!

3ˆ$b (21/2)%1^ $x̃% j 21‰jm

5•••

5~21! j 1k
~2 j !!

~ j 2k!!
ˆ$b (21/2)% ( j 1k)/2

^ $x̃% ( j 2k)/2‰jm .

Calculating similarly the action of (d̃̂•b (11/2)) j 2k on

$x̃%( j 2k)/2 @which gives (21) j 2k( j 2k)! $b (11/2)%( j 2k)/2] and
inserting the results in Eq.~22!, we obtain Eq.~23! once
again.
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