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PHYSICAL REVIEW A, VOLUME 64, 032105

Invariant spinor representations of finite rotation matrices

N. L. Manakov and A. V. Meremianin
Department of Physics, Voronezh State University, 394693 Voronezh, Russia

Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, Lincoln, Nebraska 68588-0111
(Received 26 March 2001; published 14 August 2001

Our recent resultEN. L. Manakovet al, Phys. Rev. A7, 3233(1998; 61, 022103(2000] on the invariant
representations of finite rotation matricdsRM’s) of integer rankj (in terms of tensor products of vectors
connected with a space-fixed reference fraare generalized here for the general case of arbitfay integer
or half-integey rankj. This extension is carried out by using new spinor representations of FRM'’s in terms of
specially introduced spinor-annihilation operators. We demonstrate that all widely used, standard representa-
tions of FRM’s follow as special cases of our invariant representation for particular parametrizations of the
rotation parameters. As the simplest application of invariant spinor representations of FRM's, the factorized
form of Wignerdi(8) matrices with an arbitrary rankis obtained as a product of two triangular matrices
composed of various powers of cB82).

DOI: 10.1103/PhysRevA.64.0221XX PACS numisgr 03.65.Ca, 03.65.Fd

. INTRODUCTION on two vectorsn andn’, connected with the fixed frami¢.
_ In | several alternative forms for FRM’s were obtained for
Finite rotation matrice$FRM's), R}(Q2), are basic ob- special choices of the vectorsandn’. The most general
jects of the quantum theory of angular momentis®e, e.g., result may be presented pf. Eq. (7) in Ref.[4]]
Ref.[1]). We define the FRIVR:n,m(Q) in accordance with

k—X\
the standard relatiofi] P

Ras(@)= 2 ALY (M Yy (M)}im, (3)
j
Fo_ ] . -
Tim= ;ﬁ_ Tim/ Ry (), 1) whereAﬁg(H) are numerical coefficients dependent on the
me angle 6 between the vectors andn’ (0<#<) [4], and
where T;,, and T, are the components of an irreducible Where the tensor product,
tensorT; of rankj, given in the “old” (space-fixedframeK ,
T; of rank], g 1" (space-fixed 1Y) @ Yo (1)}
and in the “new” (rotated frame K, respectively; and} P
denotes three rotation parametég., in the case of Wigner im )
D functions[2] they are Euler angles,,v). = E C]‘7Sq5+)\pq'Yj7sq(n)Ys+)\pq’(n ), (4
Recently in Ref[3] (which will henceforth be referred to a4
as I) we introduced the so-called invariant representations Ofs the so-called “minimal bipo'ar harmonic(MBH), where
FRM's (i.e., having explicit tensor formswhich are useful, C&pp is a Clebsh-Gordan coefficient. The vectoris di-
in particular, for analyses of angular distributions in pro- gcted along the axis of the fixed framé& and the vecton’

cesses involving polarized particles. Our invariant represenjes in thezx plane.[Thus the anglé is the free parameter,
tations are written for symmetrized combinationsf(2),  and the three independent real parameters of the rotétion

i.e., the “parity-projected” FRM's, which are defined 8¢] i our approach are determined by the angular coordinates of
_ Sol _ n a_ndn’ in the “new” (or rotated frameK.] The term “in-
Rm(ﬂ)z(l— 7’)[RJkm(Q)+(—1)k”pRll(m(Q)], variant” for the representation of FRM's in the forii8)
means that the entire dependence of the FR‘:Mm(Q) on
@) the tensor indexn is concentrated only in the tensor projec-
P tion m of the MBH'’s on the right-hand sidehs) of Eq. (3).

wherex,=0 (\,=1) for even(odd) parity. Parity-projected [The tensor se_nse of the indexis obwou_s from Eqﬁl),
FRM’s are closely related with the “real” representations of Which may be interpreted as the expansion of a tefiggr
FRM's [5]. Moreover, parity-projected Wigned functions  (in the rotated framein (2j+1) tensorsR], (Q) enumer-
(or d'(B) matrices naturally appear in three-body problems ated by the(nontensor index m’.] We use the term “mini-
having definite parity(see, e.g., Ref§6] and[7]). mal bipolar harmonics” for the parity-projected tensor prod-

It was shown that parity-projected FRM's can be ex-ucts in Eqg.(4) with index s=0,1,...j—\,, since they
pressed in terms of the linear combination of tensor productiorm the (minimal) basis set of (2+1) irreducible tensors
of two spherical harmonicgbipolar harmonics depending in a space of tensors with an integer rgnkThere are |

k=\
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+1) polar tensors fokh,=0 andj axial tensorgpseudoten- Itis obviogs t_hat to generalize the results valid _for ;pherical
sors for \,=1.] This fact is obvious, since an arbitrary ten- {€nsors with integer ranks to the case of half integene
sor can be presented as a combination of FRd&e Eq. needs to use the splnor.formallsm. Let us first introduce
(1)], and each of these FRM’s has expansignin terms of ~ SOme spinor algebra notatlo_ns._ We use below the Greek letter
the set of MBH. The complete basis set of MBH was intro-X for @ spinor as such, while its components we denote as
duced for the reduction of bipolar harmonics of ranki-  Xu» #=+1/2. We use in this paper the following definition
volving internal tensors of higher ranks tharf8]. These for the scalar product of irreducible tensoks and B; in
results provide great simplifications for the analysis of angui€rms of the standard irreducible tensor prodi#&t® Bj}ym
lar distributions in reactions involving polarized particles andl1]:
in y—2e processessee, e.g., Refd8] and[9]). They are
also useful in the analysis of other physical problefsee, (Aj-B))=V2j+1{A;®B,}go-
e.g., Refs[1] and[10]).

Our derivations of invariant results for FRM's in | were Thus the scalar product of spinogsand ¢ is
based on the vector differentiation technid@¢ and hence
they are valid only for irreducible tensors with integer ranks (X" @)= X120 12— X 12D 12-
j- In this paper we generalize these results and present invari-
ant representations for FRM’s which are valid for an arbi-In particular, (- x)=0. An arbitrary spinory can be ex-
trary (either integer or half integerankj. This generaliza- Panded in two base spinorg!* 2 and g~ %2, as follows:
tion is performed in Sfac. [Il based on specially introduced _ a(+12)  a(=172) — (. p(=x12)
“spinor-annihilation” (5) operators (Sec. 1), which are X=B X B X2 X=X BT, ®)
spinor analogs of the vectdf operators. The use of these
operators leads to the main result of this paper, i.e., the “difyyhere the orthonormalization properties of the base spinors
ferential” spinor representation of the FRI¥ Eq.(21)]and  g(+12) ¢
explicit forms of FRM’'s in Egs.(23) and (26), which are
valid for both integer and half integer rankdn Sec. IV we (@) pla’)y—(_ 1 12—« (&) _(_q\12—a
demonstrate the reduction of our spinor representation fog’B AE=(=1) Ou—ars A7 =(=1) O~
the FRM to the known invariant form for the case of integer (7)

J'b?iiiiei?] on thr?vmr:/iarr:?w sp;qo;refrsjemag?r;,rls pﬁss'tf’lentﬁlote that for simpler presentation of the results below, our
obta a convenient way many fundamental resufts of anyqginition for the components of spino@$*Y? differs from

gular_ momentum ?"gebra- In_part|cu_lar, this representatlpl:[lhe standard definitiofl] of components of spin-1/2 func-
permits the analysis of some interesting algebraic properti

of standard WigneD functions: “ffons X(uzm With m==1/2.
9 ' We use the notatiokiy}., for the irreducible tensor of

Df;m(a,,B,Y)= exp(—ika)df(m(ﬂ)exp(—imy). (5) ;?)ri]rl](oarsaxnd componen& which is the tensor product ofa2

Namely, in Ref[4] it was found that, for integer ranjk the
parity-projectedd! () matrix di*r(B) can be presented as a Xae={ - x®xt1 - Oxtaa- (8)
g;??#g;}?;;vé%zgggy I;‘;\Tnaér';g;t?\?éngﬁgegezgﬁvegir;)k::e1r'his definition is similar to that introduced for the case of
indicesa, respectively. Based on the invariant spinor form of
the FRM, in Sec. V we obtain the factorized form of the
standardnot “parity-projected” d!(8) matrix with an arbi-
trary | as a product of two triangular matrices composed o
various powers of cog(2). Finally, all known standard pa-
rametrizations of FRM’s may be obtained as special cases of

our invariant results for pa);ticular parametrizgtions of the (Ra®iX®Thlor1ztarbi12= HRa® X}ar 12 Tokarb 2,
rotation parameter§). As an example, in Sec. VI we dem- 9)
onstrate the reduction of the “differential” spinor represen-
tation of the FRM in Eq(21) to explicit expressions for the
FRM in Euler’s parametrizatiofi2] as well as in the if,w)

identical rank-1 tensorévectorg in Ref. [8] (see also Refs.
[13] and[14]) where a number of general properties of such
tensor products are discussed. In particular, the tensor prod-
1;.Jct (8) does not depend on the coupling scheme of spigors

in accordance with the identity

which can be proved using the tensor recoupling riilgs
Inserting Eq.(6) into Eq. (8), we obtain

parametrization involving the direction of the rotation amis 22 150
and the rotation angle [11,12. {X}aa:nzo ( . )(X1/2)n(—X1/2)2a_n{{ﬂ(+1/2)}n/z
Il. TENSOR PRODUCTS OF IDENTICAL SPINORS AND {BYN . otaas (10)

SPINOR-ANNIHILATION OPERATORS
where §) is the binomial coefficient. The tensor product of
Below we shall obtain an invariant representation of 3*? spinors is easily calculated using E@) and the re-

Rl,(Q) with arbitrary rankj (either integer or half integer  lation C2}53*P=1:

032105-2
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{B(i 1/2)}aa: (+ 1)235a;a, (12 is similar to that for ordinary differential operators and that is
useful in concrete applications is given in H@1l) in the
Finally, using Eqs(10) and(11) as well as known analytical Appendix.
results for Clebsh-Gordan coefficierifi, we obtain the fol-

lowing explicit expression fof x},, in terms of spinor com- Ill. SPINOR REPRESENTATIONS OF FRM

ponentsy, : , . )
To obtain the representation of FRM in terms of the

(2a)! spinor constructions introduced in the previous section, let us
(x12* “(x-1»%“ (120  consider the scalar producT-{x};), whereT; is an arbi-

trary tensor of rank (either integer or half integgrin view

?f the invariance of the scalar product, we have

W= N a=aiar ar
The key aspect of our further considerations is our use o

“spinor-annihilation operators,. We introduce such opera- T =T -{x), (19
tors in an invariant way, ! ! J ]

where the superscript tilde means that componenig afid

(¢ OXu=bu, 13 T are defined in the rotated coordinate fraKleACtlng on
where¢ andy are arbitrary spinors. In terms of spinor com- both sides of this equation with the opera{é&,m (where
ponents, the definitiol3) is equivalent to the following: is the spinor-annihilation operator in the framég, we obtain

SVX#:(_1)1/2+V5%_#' (14) ~ j

{5}jmq:2_j (_ 1)j_qrrjq{}}j -q

or, more generally,

’SV(X,IL)k:(_1)1/2+Vk(X,u)k715V,*/L’ :{’g}lmk;] (_1)j7kTJ‘k{X}j7k' (20)
(15

g —(_1\12+v . = ~ . . ~
SuXuXp=(—1) (XuBv,—pt Xp0u,— ) Since 6 and y are defined in the same franke, we can

explicitly calculate the left-hand sidghs) of Eq. (20) usin
where §, ; is the Kronecker symbol. It is seen from these PHCIEY ~ déhs) a- (20 g

equations that the spinor operatarannihilate the spinorg.
Using Eqgs.(12) and (15) one may verify two important
relations involving tensor products 8foperators;{?‘>‘}jm:

Eq. (16) (assumingd does not act oﬁ'kq). Then after the
comparison of the result with the definition of the FRM in
Eg. (1) we obtain the “operator representation” of the FRM:

~ ) ) (— )J+k ~
{Sim{x} = (=1 742! 8, i, (16) Rim(Q) = 2 —rr {mx k- (21)
{5}J®{X} Yaa= E ij,k{a}jm{x}jk Note that the tensor product %foperators in this equation

must be calculated in the rotated framdewhile the product

(=D)AL +1(21) 6. . of spinorsy is defined in the “old” frameK [and thus the

(ZD7N2I+ 121 oa 7 result in Eq.(16) is not applicable hefle We use the term
“invariant representation of the FRM” for the result on the
rhs of Eq.(21) because it depends on the projectiomandk
only through invariant tensors and does not depend explicitly
A A on the rotation parameters. Equati@i) is the spinor analog
(0-0){x}im=0, (18 of the invariant “differential” representation of the FRM in
the tensor fornfsee Eq.(24) in I]:

In particular,{ 6® x}ae= — V28,0. We note also the simple
relation

which is obvious from the definition of the scalar product in

Eq. (7) and also becauséafter the annihilation of two _ (—1)k -

spinorsy) a tensor having rank cannot be compo§ed of Rl(Q)= j—|{V}jm{r}j_k, j=01,2,... .

2j—2 spinorsy. Thus the spinor-annihilation operatérin

the space of tensors composed of spinpmsiay be consid- An explicit form of the invariant representation of FRM

ered as the spinor generalizatiovalid for any j) of the  in terms of tensor products of base spin@$) of the old
vector gradient operatoy,, operating in the space of tensors frameK can be derived after the substitution of E&)) into
composed of vectors. This analogy is supported by the Eq. (21). In view of the invariance of a scalar product, the
Comparison of the definitiorg13) with the vector identity, componentsy 1, of the SpinorX in the frameK, which
(a-VJce=a,. Moreover, the identity18) with 5~V and  enter from Eq.(12), may be written as the scalar products
x—T is also valid since the tensor prodyct;, obeys the (.pg(+12)) [cf. Eq. (6)], calculated in the rotated franté.
Laplace equation. One additional propertysodperators that  Thus we have

032105-3
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_ (—1)itk wherea=—(x- B0 ¥) andb=(x-B(*¥?). (The scalarsa
Rim(Q) = N and b can be calculated in an arbitrary coordinate frame.
EPHa=Ra+k)! Since the tensor produ¢B(~ Y2} e does not depend on
:’ _ ) _ ) . . 71/ ) .
X (B}~ B D) K- B K (22 the coupling scheme of spino , we find
% - al "W 4k 1
where the components of all spinads y, and 8~2 must {BCY = — 5 > ( N >—n{{X}n/2
be calculated in the same frarie Note that one must dis- n=0 a
tinguish betweend*¥? and B*¥2), which are the base LBV (i vk + 2 (25)

spinors of the frame& andK, respectively. Obviously, for

the components oB(*¥?) in the K frame Eqgs.(7) are not We used in the above derivation the usual binomial formula.
valid. Below in the textunless otherwise specifiedie will Inserting Eq.(25) into the rhs of Eq(23), after some algebra
use the notationd*? for the components of spinors we obtain the representation of the FRM containing free pa-
B2 given in theK frame. The calculation of the rhs of rameters — the componerdsandb of the (arbitrary spinor

Eq. (22) is straightforward but quite lengthy. The key stepsx in the coordinate fram&:

are as follows{i) One uses an equation similar to that for

in Eq. (6) to expandB(*? in terms of the base spinors g\itk 2] ko

- ~ . ! jt+ky 1 o
B2 of K; (ii) Using the binomial theorem, one expands RLm(Q)=(B) WE ( )—n{{X}n/z
the rhs of Eq(22) in powers ofy .1, [cf. Eq.(6)]; (iii) One ' e a

= = 1/2
uses Eq(12) to expand d}n, in powers ofs,,; (iv) One uses e {p"" )}J—nlz}jm-

n
(26)

Eqg. (15) to calculate the result of the operat;?§ acting on
the componentg.1,; (V) One uses an equation similar to
Eq. (12) to express powers of the componentsgdf ¥2 on
the base spinorg(*¥? in terms of a sum(over Q) of
{p+12),, [wherea=(j—k)/2 anda=Q] and {8~ Y2},
[whereb=(j+k)/2 and B=m—Q]; (vi) One notices that

Note that the tensor product on the rhs of this equation

should be calculated in the rotated framie[cf. Eq. (23)].
The new representations of the FRM with an arbitrary rank
in Egs.(23) and(26) together with the formal “differential”
representation in Eq21) are our main results. All of these
\ <l i representations have an explicitly invariant tensor form since
the coefficient of each term I is proportional to the air entire dependence on the tensor indeis concentrated
Clebsch-Gordan coefficie®@}y;,5; (Vi) Using the definition only in the tensor projection on the rhs of E¢®Y), (23), and
of a tensor produdicf. Eq. (4)] one may express the rhs of (26).
Eg. (22 finally in terms of the followingjm tensor: The result in Eq.(26) together with the transformation
_ rule in Eq.(1) proves that an arbitrary irreducible tensor of
Rlmn(Q) = Ciif{ B Y} 10208 ¥} _iy2tim either integer or half integer rarjkcan be expanded on the
2 basis of (3+1) “minimal” tensor products of the kind
Hetn2®ix}j—n2tjm (Withn=0,1,2 ... ,2j), wherep andy
where are (in general, arbitraryspinors. In | we have shown that
the set of minimal bipolar harmonics, E@), can also serve
_ 2j)! as a basis in the space of irreducible tensors of integer ranks.
Cik=(— 1)”"\/ﬁ , We do not present here the explicit connection between these
(J+R(j-k! two bases for the case of integerlthough it may be easily
derived considering the transformation of the MBH under
and wherg[ B2}, (or {B ("2)},,) is the tensor product  the rotation() with the use of the spinor representatic®)
(8) of 2p spinors BT (or B(~12), whose components for the FRM in Eq.(1).

should be calculated in thé&otated coordinate frameK .
Obviously, these components are connected with standard
componentssﬁ,f”) [see Eq(7)] in the “old” coordinate frame
K. Moreover, this connection determines implicitly the de- In order to obtain the connection between invariant spinor
pendence of the rhs of ER3) on the rotation parametefs. representations of FRM and the representations in vector
An alternative derivation of the key result in E(R3) is  form presented in |, we transform E@3) to the form
presented in the Appendix.

A more general representation of the FRM than that given j _ +1/2 —1/2 —1/2
in Eq. (23)gmay be dgrived if we rewrite the identi) ag Rlkm(Q) = Cid{{ 8 20 B Y2} @ {8 Phidim,
follows:

I[V. CONNECTION TO THE CASE OF INTEGER |

k=0, (27)

1 ~
(-12)_ _ =4 p(+12)
B b(a,B X, (24) where we have used the fact that the tensor product on the
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rhs of Eq.(27) does not depend on the coupling scheme fofthe rotated frame K. For this case, coefficienta and b
internal tensors. Note that for integkrthe tensor product (which are “coordinates” of the spinog=23("12 in the K

(—1/2) i
8 }ke May be written agcf. Egs.(8,9)] frame are connected with the Euler angles 3, y as fol-

{B(—1/2)}kK:{{IB(—1/2)® ,8(_1/2)}1® . ®{B(_1/2) lows:
(-1/2) - B
ST a=—(BUY2. gC12)=DIE, o (aBy)
Obviously, components of the tensor product of two spinors —e 1@+ N2caq g[2)
having the rank 1 are spherical components of a veetor, ' (29
={p*¥2g g(~1Y21, The components of this vector in the B /
frame K may be easily calculated taking into account the b= (B Y. g YA =DV ) 1pf @BY)
identities in Eq.(7), e .
a.(7) =e' (= M2gin g/2).
10 1 . ey . .
Vo= — C%_ 111=- E v+1=0. These identities follow immediately from Eqggl) and (6).

The calculation in thé& frame of the tensor product on the
Thus, we obtain that=—e,/\/2, wheree, is the unit vector ~ ths of Eq.(26) can be performed explicitly by standard an-
directed along the axis Z of the franke Similarly, in thek ~ gular momentum algebra J:
frame we have following relations:

{BY2n Lot Y20 orakim

(B p12), =CT 111 =1,
2222 i \/ (2j—n)!
while the component§g(~Y2g (=12} with v=0 andv T Yn2mn2j=n2mEn/2) (G4 m)l(j—m—n)!
=—1 are zero. Therefore we obtain another vector identity, _ ‘ _ .
{BC e p"V2N =—e | wheree_; and e,; are the X (2. g+ 12 m( g(+112). p(=1/2))j=m=n,
spherical unit tensors in the franke Thus, for integer values (30)
of j, Eq.(27) can be reduced to the known result for the FRM
in terms of basis vectors of the “old” frami€ [cf. EQ.(17) in
1: [ a.(17) Here we have used Eqg&ll) and(12) for the calculation of
| B2}, and {1V, respectively.
Rim(Q)=Aj{{e_1}k@{e}j-i}jm: k=0, (28 Replacing the Clebsh-Gordan coefficient on the rhs of Eq.

o _ (30) by its analytic expressiofil] and then inserting Eq30)
where the coefficientd,, are related to th€;, in Eq. (23): [with the account of E¢(29)] into Eq.(26), we obtain(upon
omitting the trivial dependence of th@ functions on the

: : [ 271(2))! | d i i j
(i o\k=i 1Nk anglesa and y) the following expression for the; (B3)
A= (= D2 Ci= CUIN i r matrix: )

Obviously, in a similar analysis for the case of half integer . — |
we will have one “uncompensated” sping") in the tensor _ JU—mi( k!
ol A= N Grmig k!

B m—k jm
product(27). smE) n§=:0 (=1

(2]—n)‘ ( )2j+k—m—2n
V. FACTORIZED FORM OF WIGNER MATRICES v : cos—
n'(j+k—=n)!(j—m—n)! 2
Invariant spinor representations of FRM’s may prove to
be useful in various applications involving angular momen-
tum algebra, especially those in which the tensor structure of
the FRM provides more insight into the underlying physicswhere j ,=min(j—m, j+Kk). Eq. (31) can be considered a
of a process than does its explicit algebraic expresgayn, matrix identity.
as in the analysis of spin polarization efféctt addition, For a simpler present_ation, it is convenient to introduce a
they also permit one to derive new representations of FRM'sslightly different matrix,d’, instead of the standam ma-
As an example, we obtain below a new factorized form oftrix:
Wigner functions for arbitrary values ¢f this is similar to
the results obtained in Re#4] (see also Ref.7]) for parity- BY\IP [ol(2]—q)f —
projected matrices having integgrWe note first that Eq. d . _-(ﬂ)=(—1)p<sin—) N g (B),
(26) can be considered as a product of two triangular matri- = 2 q'(2j—p)! P4
ces. The explicit form of these matrices for the case of Eul-
er's parametrization of the FRM, i.e., for Wignerfunctions  where p,q=0,1,2 ...,2j. Thus one may write the matrix

Eq. (5, can be obtained by considering the special case ifyentity in Eq.(31) in terms of thed’ matrix as a factorized
which the spinory in Eq. (26) is the base spinogg*¥? of  product:

(31)
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d=C-A, {BY2% 2@ { B2 _okim

or, in explicit form,

i
:k;j {BY2Y @ { BY2} K Dk @BY),
_ 2l (34)
dhg(B)= 2 Con(B)Ang(B), (32)
" where the superscrigK) on the rhs of this equation means
that the corresponding tensor product should be calculated in

where the matrix elements of the and C matrices are the K frame. It is evident that Eq(34) can be written in
matrix form (omitting once again the trivial dependencemn
2j—n B\2-n-a andy):
AEAnq(B)=( q || cos3 , 3
(33 A=B.d,
p B\P7" .
Cchn(ﬁ):(n)( - COSE) ) or explicitly,
2j
It is seen from the above equations that the ma#iis an Aq”(ﬁ):pz‘o Bnp(B)dpg(B), (35

upper-left matrix, whileC is a lower left one; diagonal ele-
ments of both these matrices are equal to 1. It is an important L
fact that the matrix elements of thej(2 1)-dimensional ma- Where the matr8 is
tricesA=A® andC=C®, wherek=2j + 1, do not depend "
on the rankj, because it enters E¢33) only in the combi- B=B :(” (cosé) (36)
nation (3 —n), which determines the dimension of the ma- "lp 2 '

trices. As a consequence, tA&*"1) (or Ck* 1)) matrix can

be calculated by simply adding one additional highgst = Comparing Eqs(35) and (36) with Eq. (32), we obtain an
lowesh row to A® (or CW). As an example, foj=1 we  explicit form for the matrix inverse of:

have

CilE(Cil)np: Bnp- (37
cog— 2cos- 1
2 2 VI. REDUCTION OF THE INVARIANT REPRESENTATION
OF THE FRM TO STANDARD RESULTS
AR = , In what follows we shall demonstrate how known stan-
) dard parametrizations of FRM’s may be deduced as special
cosy 1 £ 0 cases of our invariant results. As may be seen from the gen-
eral identity for the FRM, Eq(21), in order to reduce this
1 0 10 result for the case of a concrete parametrization of the rota-
tion parameter§) one needs to use the spinor transformation
rule in terms of parameters that describe the chosen param-
1 0 0 etrization.
B For the Wigner parametrization 61, the spinor transfor-
— COS— 1 : 0 mation rule in terms of Euler angles may be written as fol-
2 lows [1]:
c®= ,
B B X12= ei(alz)( ei(ylz)cosg;(l/z_ eiwz)smg;(—l/z)
cog 5 2 cos 1 (39

i (/) B~ i B~
—ai(al2)| Al (Y2)ain i(v/2) _
where the marked 2 2 internal matrices in these equations X-12=€ (e Singxyzr® COSZX_m)'
are results foj =1/2.

The matrix |dent|ty(32) Ca.n' be eXplICItly inVerted, as was where the notationﬁ+l/2 (}*1/2) denote the Components of
done for the parity-projected»(8) matrices[4]. To dem-  the spinor in the “old” (“new” ) coordinate frame. Upon
onstrate this, it is sufficient to consider the rotation of thejnserting Egs.(38) into Eq. (21), taking into account Eq.
tensor product defined by the Ihs of HO) from theKto  (12) we obtain(after some simple algebrahe following

theK coordinate frames. In accordance with E.we have  result:

032105-6



INVARIANT SPINOR REPRESENTATIONS OF FINIE . . . PHYSICAL REVIEW A 64 032105

(—1)% In order to calculate the tensor product on the rhs of this
GG —m G r G m)i equation, we note that it is proportional to the spherical har-

monic Y ,,(Nn),

RLq’m: e—i(m/a+my)

j+m
<o ol 1) A
(3w (- 2 (-1 n {3} 000} laa=AaYau(n), 42
= ntn'c 2ionen’ n-n'+j+m’ where Y,,(n) is a “renormalized” spherical harmonic,
X (xad™ " (X-1r2) cosy Y..(n)=\an/(2a+1)Y,,(n). The identity (42) may be
n—ntj-m’ understood by considering that after the action offﬁmp—
X sinE) erators on the spinorg, taking into account Eq(40), the

tensor of ranka on the Ihs of Eq(42) may be composed only
of unit vectorsn, whose angular representation is the spheri-
cal harmonicY,,(n). The numerical coefficiend, in Eq.
(42) may be calculated in an appropriate coordinate frame,
e e m the simplest of which i; the frame having #saxis directed

Rl ,m:e—i(m’a+my)(cosé) (siné) along the vecton. In this coordinate frame the components

The calculation of the action of the spinor annihilation op-
erators in this equatiofcf. Eqgs.(13) and(14)] gives

2 2 of y follow from Eg. (40):
(J+m)|(1—m)' 2( )i m+n(j_m’) X+ 12= X122,
n
(J+m)G - Then, calculating the tensor product on the lhs of &g),
j+m’ Bg\&(  p\2-2m-2n we find for the coefficienA, the following chain of equa-
X(j _m—n)|cos5 (smE) tions:
Here the sum overn defines the Jacobi polynomial Aa=2 Cf‘,?j,n{:é}jn{x}j,n
P(&P)(cosp) [15]. Thus we have obtained the standard defi- n
nition of Wigner’s functions in terms of Jacobi polynomials (2j)! ~ -
1] = - j+ng% j—n
[ ] 2 Jn] n n)'(J+n)|( 1/2) (5—1/2)
j =pl
R m(aBy)=D,(aBy) X(}llz)j—n(}_%)wne—iwn
_oi(matmy) \/ (J+m!(—m)! .
(+m)H1(j—m)! —(21)'2 (=1 iy _qeten
m+m’ m—m’
X cosg) (sing) - s N2atl
=(=D)=D)2))! > lxé(w), (43
i+

X P}T;m"w m)(cosp). (39
where the results on the second and third lines follow from
Besides the Euler angles, another widely used parametrEgs. (12) and (14), respectively, and whergl(w) is the
zation of the rotation) for which FRM’s have a simple generalized character of the rotation groug3(cf. Sec.
analytical form is the §, w) parametrization, where the unit 4.15 of Ref.[1]). Inserting Eq.(43) into Eq. (42) and then
vectorn defines the rotation axis and is the rotation angle that result into Eq(41), we obtain
[11,17] (see also Ref.16]). In this parametrization the trans- . .
formation rule for a spinoy has the forn{1] R, (Nw)=Ul, (no)

2]
~ w - w 2a+1
X=Xcos§—i\/§{n®x}l,2 sinz. (40) —2 (—i )a21 1Xa(w)CJm aaYaa(N).

: : (44
Here we use the notatiop for the spinor whose components

x+172 are defined in the “old” frameK [cf. Eq. (38)]. From  The result in Eq(44) coincides with the standard definition

Eq. (21), it follows that of the FRMU!  (n,w) for the case of ther(, ») param-
etrization[1,11].

R, 1yi+m’ , = _ We note also the pqrametrization&dfin terms of Cayley-

m'm— (2])' 2 (=) Clml m Hl @ X daa Klein parameters, which are two complex numbearand b

(41  normalized by the conditiofa|?+|b|?=1 [1,17]. The con-
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nection ofa andb with Euler angles is given by the Wigner APPENDIX: AUXILIARY IDENTITY FOR & OPERATORS
; 1/2 1/2
functionsD 175 (1/2( @, B, y) andD {1 12 @, B,7), respec- AND ALTERNATIVE DERIVATION OF EQ.  (23)

tively. It is seen from Eq(29) that in the case when the “free L - o )
In applications of thes-operator formalism introduced in

spinor” x colnmdes with the base spings'™*® of the Sec. Il an auxiliary identity for the product of two homoge-
“‘new” frame K, its components in the “old” fram&, aand  neousn-linear forms, one of them involving spinor operators
b, are nothing else than Cayley-Klein parameters. Moreovery andq another involving spinorg, may be useful. Consider
it is possible to write the tensor product in EGD) in terms  inerefore the following such product:

of a and b, thus obtaining the explicit representation of

FRM’s in terms of Cayley-Klein parametefd,17]. How-
(l“'l M”)

ever, we do not present the derivation of this result here, figs Oy
because it is not used widely in physical problems. ~ \#1 pn=x1/2
X Voo, v Xv “Xv )
VIIl. CONCLUSION v cemEL2 T
This paper completes our analysis of invariant represen- =(_1)n< 2 b, ‘5V .. 3V )
tations of finite rotation matricegsee | and4]). In Sec. Il i stz b "
we have obtained the most general invariant representations
of the FRM, as they are valid for both integer and half inte- X Ly X g 'Xﬂn)’
gerj. We have also established the relation of these general Moo= 212
spinor representations to both our previous results for integer (A1)
j (in Sec. IV) and to the standard representations for FRM'’s
(in Sec. V. Besides applications to the general theory ofwhere the Coeff|c|enta _____ e andbyl ’’’’’ ,, may be com-

angular momentungdemonstrated in Sec.)Vinvariant rep- - : .
resentations of FRM'’s are useful in physical problems bePIOSteld of Sp'n?rstith?r: tha_m ﬁmdz E?ua]:tlont(rf\l) IS cqm-l
cause they provide a powerful tool for the analysis of genera'i;]g ?r/ d?nqaurl)\//a d(iaf?ergntia? Sg;r)rzelr::(;réelns]ltyﬂ?(re reesﬁﬁsi?'] IrI]EVqO V-
properties of a physical phenomenon based only on symm Al) may be verified by direct calculation as it illustrates the

try considerations, taking into account the invaridetg., followi hain of i for th 5-
vector or spinor characteristics inherent to the concrete oflowing chain of equations for the case= 2.

problem. These applications are based on an invatiant
independent of a concrete coordinate fraraealysis of the a 35 2 b
fundamental mathematical objects of atomic theory, irreduc- | , 2.1 Hikt27#am k2]l =) v10Xv1 X
ible tensor operator$;,,. The idea of an invariant param-
etrization of tensor operators was realized in |, where invari-
ant representations of FRM’s were introduced. Then, using

the transformation rulg¢l), T;,, (or more exactIyij, ie.,

— 1
- 2 2 aulﬂzbvlvz(_l) +M1+M2(5;/,1,—V15;L2,—V2

M1.M2 V1,V2

+ 810y

the operatofT;, in an arbitrary reference frant€) may be T2tk

presented in terms of ifgn’ components in a suitable frame R

K and of invariant FRM’s, without an explicit parametriza- =2 X a 0,000, V15V2XM1)(M2

tion of the rotationQ) [see, e.g., Eq¥53) and (54) in | for M1#2 712

the case of intege]. Moreover, the parameters whi¢hm-

plicitly) describe the rotatiof) (e.g., two noncollinear vec- ( > b,,l,,z vy 2)( > aﬂluzxﬂlxuz
Vi,v2 M1

tors or components of the spingr in a fixed coordinate
frame may be connected with some physical quantities in-
herent to the problem being analyzed. A number of examplewhereé,, —, is the Kronecker symbol. The first equality in
have been presented in I. We emphasize only that such ifhe above chain of equations follows from the definitions of
variant methods are especially fruitful for the separation of5’s in Egs.(14) and(15). In the third line term, the> and y
kinematical (i.e., dependent on the geometry, polarizationcomponents are introduced agdinly with reversed indi-
states, and momentum directions of the target and proje@e9 using once again Eq.14) and the evident symmetry
tiles) from dynamical factors in cross sections of atomic col-relation

lisions with photons and/or electrons.

3VXM:(_1)1/2+V5V,*,M: _3,(LXV' (AZ)
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forms composed ob’s and X’S one can replacé3<—>—)(. ’5 (—12Nj+kfTa . — "fs (—12)yi+k=1( _ 2i)fg(~1/2)
[The necessity of the minus sign for odds evident from (0-5 )X =(0-8 ) (=2p{p
Eqg. (A2).] {x}_1,

To demonstrate the utility of EA1) in concrete calcu- Wi-asim
lations involving complicated constructions of spinor- :(3'18(—1/2))]4«—22]-(2] ~1)
annihilation operators, we present an alternative derivation
of the basic representatiq23) for FRM’s. With the use of x{{ B(*1/2)}1®{;(}j7 Hjm

Eq. (A1), the rhs of Eq(22) may be written as follows:

{§}jm(}- BTy gt

(2!
. L o =(—DJHﬁ{{ﬂ(ﬂ/z)}(ﬁkyz
:(_1)2](5.Ig(+1/2))l—k(5,B(—I/Z))J+k{X}jm_ J :

(A3) X} i—kyim -

Here the calculation of the term on the rhs of E43) is _

much simpler than the straightforward but lengthy approacttalculating similarly the action of & g(f¥2)i=% on
Fjescrlbed in Sec. Il for calc-ulatlng the Ihs. ~Indeed, takmg{;(}(jik)/2 [which gives 1) ~X(j _k)!{ﬁ(+1/2)}(j7k)/2] and
into account Eq(13) and the independence Of}im Of the inserting the results in Eq22), we obtain Eq.(23) once
coupling scheme of rank-1/2 tensoys one obtains again.
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