Production of χ_{c1} and χ_{c2} in $p\bar{p}$ Collisions at $\sqrt{s}=1.8$ TeV

T. Affolder
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Collider Detector at Fermilab Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

Part of the [Physics Commons](http://digitalcommons.unl.edu/physicsbloom)
Production of χ_{c1} and χ_{c2} in $p\bar{p}$ Collisions at $\sqrt{s} = 1.8$ TeV

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
2Argonne National Laboratory, Argonne, Illinois 60439
3Istituto Nazionale di Fisica Nucleare, University of Bologna, I-40127 Bologna, Italy
4Brandeis University, Waltham, Massachusetts 02254
5University of California at Davis, California 95616
6University of California at Los Angeles, Los Angeles, California 90024
7Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain
8Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
9Joint Institute for Nuclear Research, RU-141980 Dubna, Russia
10Duke University, Durham, North Carolina 27708
11Fermi National Accelerator Laboratory, Batavia, Illinois 60510
12University of Florida, Gainesville, Florida 32611
13Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy
14University of Geneva, CH-1211 Geneva 4, Switzerland
15Glasgow University, Glasgow G12 8QQ, United Kingdom
16Harvard University, Cambridge, Massachusetts 02138
17Hiroshima University, Higashi-Hiroshima 724, Japan
18University of Illinois, Urbana, Illinois 61801
19The Johns Hopkins University, Baltimore, Maryland 21218
20Institut für Experimentelle Kernphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
21Center for High Energy Physics, Kyungpook National University, Taegu 702-701, Korea, Seoul National University, Seoul 151-742, Korea, and SungKyunKwan University, Seoul 440-746, Korea
22High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305, Japan
23Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720
24Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
25Institute of Particle Physics, McGill University, Montreal H3A 2T8, Canada, and University of Toronto, Toronto M5S 1A7, Canada
26University of Michigan, Ann Arbor, Michigan 48109
27Michigan State University, East Lansing, Michigan 48824
28University of New Mexico, Albuquerque, New Mexico 87131
29The Ohio State University, Columbus, Ohio 43210
30Osaka City University, Osaka 588, Japan
31University of Oxford, Oxford OX1 3RH, United Kingdom
32Università di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy
33University of Pennsylvania, Philadelphia, Pennsylvania 19104
34Istituto Nazionale di Fisica Nucleare, University and Scuola Normale Superiore di Pisa, I-56100 Pisa, Italy
35University of Pittsburgh, Pittsburgh, Pennsylvania 15260
36Purdue University, West Lafayette, Indiana 47907
37University of Rochester, Rochester, New York 14627
38Rockefeller University, New York, New York 10021
39Rutgers University, Piscataway, New Jersey 08855
40Texas A&M University, College Station, Texas 77843
41Texas Tech University, Lubbock, Texas 79409
42Istituto Nazionale di Fisica Nucleare, University of Trieste, Udine, Italy
43University of Tsukuba, Tsukuba, Ibaraki 305, Japan
44Tufts University, Medford, Massachusetts 02155
We have measured the ratio of prompt production rates of the charmonium states χ_{c1} and χ_{c2} in 110 pb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV. The photon from their decay into $J/\psi \gamma$ is reconstructed through conversion into e^+e^- pairs. The energy resolution this technique provides makes the resolution of the two states possible. We find the ratio of production cross sections $R_{\chi_{c1}/\chi_{c2}} = 0.96 \pm 0.27$(stat) ± 0.11(syst) for events with $p_T(J/\psi) > 4.0$ GeV/c, $|\eta(J/\psi)| < 0.6$, and $p_T(\gamma) > 1.0$ GeV/c.

DOI: 10.1103/PhysRevLett.86.3963

PACS numbers: 13.85.Ni, 14.40.Gx

The production of charmonium in $p\bar{p}$ collisions occurs promptly, or through the decay of hadrons containing the b quark. Prompt charmonium production can be easily separated from B hadron decay backgrounds using the lifetime distributions. The cross section of prompt J/ψ's can be described by calculations based on the nonrelativistic QCD factorization formalism [1,2] that includes both color singlet and color octet contributions [3,4]. However, these QCD calculations of charmonium production predict a large transverse polarization of the J/ψ and $\psi(2S)$ which is not seen in the data [5]. This discrepancy between the experimental observations and theoretical understanding of prompt charmonium production highlights the importance of exploring such processes as completely as possible.

In this paper, we contribute to the study of the charmonium system by measuring the relative cross sections of the χ_{c1} and χ_{c2} promptly produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV using the Collider Detector at Fermilab (CDF). Knowledge of this ratio is needed for any model that calculates J/ψ production through radiative χ_c decay, and can be an important standard for comparing production models. We study the process $p\bar{p} \rightarrow \chi_{cJ}X$, $\chi_{cJ} \rightarrow J/\psi \gamma$, $J/\psi \rightarrow \mu^+\mu^-$, where χ_{cJ} is taken to represent χ_{c1} or χ_{c2}. The final state photons are reconstructed through conversion into e^+e^- pairs, which provide excellent energy resolution for the photons from χ_{cJ} decay. The resulting $J/\psi \gamma$ mass resolution allows us to distinguish the χ_{c1} and χ_{c2}, and thereby perform the measurement using 110 pb$^{-1}$ of data taken during the 1992–1995 operation of the Tevatron. The low efficiency of the photon conversion process precludes a refinement of previous measurement of the total χ_{cJ} cross section [4].

The CDF detector has been described in detail elsewhere [6]. Charged particles emerging from the $p\bar{p}$ interaction point are detected in a silicon vertex detector (SVX), a time projection chamber (VTX), and a central tracking chamber (CTC). These tracking detectors are located in a 1.4 Tesla solenoidal field. Our coordinate system defines the z axis to be the proton beam direction, with ϕ and r being the azimuthal angle and transverse distance, respectively. The CTC, an 84 layer drift chamber, covers the pseudorapidity interval $|\eta| < 1$ (where $\eta \equiv -\ln(\tan(\theta/2))$ and θ is the angle with respect to the proton beam direction) and provides information in both the $r-z$ and $r-\phi$ views. The efficiency for track reconstruction in the CTC cuts off for tracks with $p_T < 0.2$ GeV/c, rises over the range $0.2 \text{ GeV/c} \leq p_T \leq 0.4 \text{ GeV/c}$, and reaches \approx93% for tracks with $p_T > 0.4 \text{ GeV/c}$, where p_T is the track transverse momentum. The SVX extends over approximately 60% of the interaction region. This detector provides track impact parameter measurements for the muons from J/ψ decay in the $r-\phi$ view with a resolution of $(13 + 40/p_T)$ μm, where p_T is in GeV/c. The combined momentum resolution of the tracking chambers is $\delta p_T/p_T = [(0.0009p_T)^2 + (0.0066)^2]^{1/2}$, where p_T is in GeV/c. The beam pipe, SVX, VTX, and inner support cylinder of the CTC contribute to an average thickness of 6.02 ± 0.33% radiation lengths of material [7], as measured perpendicular to the beam line.

Muons from the decay $J/\psi \rightarrow \mu^+\mu^-$ are identified by drift chambers located outside the electromagnetic and hadron calorimeters. The central muon chambers used in this analysis cover the region $|\eta| < 0.6$, and are used in a three level trigger system to require a pair of muons in the event. The first trigger level identifies muon candidates by requiring a coincidence between two radially aligned muon chambers. Two such coincidences are required for this trigger. The second dimuon trigger level combines the muon candidates with information from the fast track processor in the CTC. For the first 19.4 pb$^{-1}$ of data collected, a single match between a muon chamber coincidence and a CTC track with $p_T > 2.8$ GeV/c was required. For the remainder of the data, this trigger required two such matches with track $p_T > 2.0$ GeV/c. The final level of the trigger was performed in software, and required events to contain oppositely charged muon candidate pairs with an invariant mass within approximately 300 MeV/c2 of the world average J/ψ mass of 3096.9 MeV/c2 [8].

The $J/\psi \rightarrow \mu^+\mu^-$ candidates are selected by requiring events that satisfy all trigger requirements after offline reconstruction, and have $p_T(J/\psi) > 4.0$ GeV/c. A simultaneous mass and vertex constrained fit is performed on the muon tracks, where the dimuon mass is constrained to the J/ψ mass. We find $\sim 151,000$ events have a good fit to the J/ψ mass. A subset of $\sim 88,000$ events have both decay muons measured within the SVX, which provides vertex resolution sufficient for determining the fraction of events due to B hadron decay.

The search for photon conversion candidates begins with a scan of all additional tracks found in each J/ψ.
event. Pairs of oppositely charged tracks are chosen with $\cos(\theta_{+\rightarrow}) > 0.995$, where $\theta_{+\rightarrow}$ is the opening angle between the tracks at the point of intersection. These pairs have their track parameters recalculated by using a least squares fit, with constraints consistent with the photon conversion hypothesis. Specifically, the two tracks are constrained to be parallel at their point of intersection, and the momentum of the pair is constrained to pass through the dimuon vertex. The radial distance from the dimuon vertex to the intersection point is required to be 1.0 cm or more in order to reduce the background due to particles originating from the primary vertex. Also, we require $p_T(\gamma) > 1.0$ GeV/c and $p_T(e^\pm) > 0.4$ GeV/c. A final fit on all four particle trajectories is then performed that simultaneously constrains the muon momenta to form the world average J/ψ mass [8] and the γ momentum to point to the dimuon vertex.

Relative acceptance and reconstruction efficiencies for J/ψ/γ final states of different invariant mass have been studied with simulated events generated with a $p_T(X_{cJ})$ distribution that was tuned to match the distribution of events seen in the data [4]. Monte Carlo generated $X_{cJ} \rightarrow J/\psi\gamma$ events are used as input to the detector and trigger simulations, to provide a measure of our acceptance for the X_{cJ} states. The larger mass of the X_{c2} gives a higher efficiency at low $p_T(X_{cJ})$ than for the X_{c1}; this difference vanishes for $p_T(X_{cJ}) > 1$. The overall efficiency ratio is found to be $e_{c1}/e_{c2} = 0.85 \pm 0.014$, where the uncertainty is due to the simulated event sample size and uncertainty in the $p_T(X_{cJ})$ distribution used in the simulation.

Systematic effects that might change the reconstruction efficiency ratio e_{c1}/e_{c2} would have to affect one spin state differently from the other. The decay angle distribution is one such possibility, and an estimate of our sensitivity to differences between the two states is made by convoluting a distribution of the form $1 + \alpha_{\mu^-\gamma} \cos^2(\theta_{\mu^-\gamma})$, where $\alpha_{\mu^-\gamma}$ is a constant and $\theta_{\mu^-\gamma}$ is the angle between the photon and μ^- measured in the $J/\psi\gamma$ rest frame, with the efficiency distribution. The results of this calculation indicate that values of $\alpha_{\mu^-\gamma}$ over the range -1 to $+1$ correspond to a variation in the X_{cJ} reconstruction efficiency of $\pm 7\%$. We have taken half of this variation as the systematic uncertainty on the relative efficiency ratio e_{c1}/e_{c2} due to possible decay angle distributions.

Any differences in the production of the two states associated with the polarization or $p_T(X_{cJ})$ distributions would require different production mechanisms for the X_{c1} and X_{c2}, and is therefore considered to be unlikely. The data are too sparse to provide much guidance. Therefore, we have assigned no systematic uncertainty on e_{c1}/e_{c2} due to possible differences in the X_{c1} and X_{c2} production kinematics.

The predominant X_{cJ} background is due to photons resulting from the decay of π^0, η, and K^0_s mesons produced in association with the J/ψ. To model this background, charged tracks that originate from the J/ψ vertex in the data are used to define the momentum of simulated π^0, η, and K^0_s’s produced in the ratio 4:2:1, respectively, as was done in [4]. The simulated decay of these particles provides a photon spectrum that, taken with the J/ψ, yields a $J/\psi\gamma$ mass spectrum whose shape is used to model the background under the X_{cJ} states. Our sensitivity to the $\pi^0:\eta:K^0_s$ ratio is negligible since the background variation is small over the range of $J/\psi\gamma$ mass combinations used in this analysis.

Although the production of $h_c(1P)$ mesons is poorly established [8], we nonetheless consider it a second source of background to the X_{c1}, due to its mass (3526 ± 0.24 MeV/c2) and the partial reconstruction, $h_c \rightarrow J/\psi\pi^0$, $\pi^0 \rightarrow \gamma\gamma$. A Monte Carlo simulation of h_c production and decay, along with reconstruction of only one final state photon, provided a $J/\psi\gamma$ mass spectrum for this background component. We find the overall h_c acceptance with respect to the X_{c1} to be $e_{h_c}/e_{X_{c1}} = 0.523 \pm 0.005$. The cross sections for h_c and X_{c1} are predicted to be comparable [10], and the h_c branching ratio to $J/\psi\pi^0$ is predicted to be 0.5–1.0% [11]. Taken together, these predictions and our efficiency suggest that the number of h_c events in our data should be 0.01–0.02 times the number of X_{c1} events.

The decay of hadrons containing b quarks provides another background to prompt X_{cJ} production. We use the decay length measured in the SVX to discriminate between X_c events produced promptly and through B decay processes. Since any $J/\psi\gamma$ combination that originates from B decay provides only a partial reconstruction of the B hadron, the proper decay length is not directly measurable. We therefore use the effective decay length $\lambda_{eff} = L_{xy} M(J/\psi)/p_T(J/\psi) [M(J/\psi) + p_T(J/\psi)]$, where $M(J/\psi)$ and $p_T(J/\psi)$ are the mass and transverse momentum, respectively, of the J/ψ, L_{xy} is the measured displacement of the dimuon vertex in the direction of its transverse momentum, and $F_{corr}[p_T(J/\psi)]$ is a correction factor between the B and J/ψ momentum, which is obtained by Monte Carlo simulation of B hadron decay [9].

The $J/\psi\gamma$ mass spectrum is shown in Fig. 1. The X_{c1} and X_{c2} are clearly resolved, although no evidence for the X_{c6} is seen in this distribution. The effective decay length distribution for events measured in the SVX is shown in Fig. 2. The mass and decay length distributions are fit simultaneously using the maximum likelihood method to obtain the number of X_{cJ} events due to prompt production. The likelihood function used is given by

$$\mathcal{L} = \prod_{i=1}^{N} \left[(f_1 F_{X_1} + f_2 F_{X_2} + (1 - f_1 - f_2) F_{bk}) \right],$$

where f_1, f_2 are the fractions of the events in the X_{c1}, X_{c2} signals, F_{X_1}, F_{X_2} are the products of the mass and effective decay length distributions for the signals, F_{bk} is the product of mass and effective decay length distributions for the background, and N is the total number of events.
The ratio of prompt cross sections for the χ_{c1} and χ_{c2} is given by

$$\frac{\sigma_{\chi_{c2}}}{\sigma_{\chi_{c1}}} = \frac{N_{\chi_{c2}}(1-f_{b2})\epsilon_{\chi_{c2}}B(\chi_{c2} \rightarrow J/\psi\gamma)}{N_{\chi_{c1}}(1-f_{b1})\epsilon_{\chi_{c1}}B(\chi_{c1} \rightarrow J/\psi\gamma)}, \quad (2)$$

where $\sigma_{\chi_{c2}}$ is the production cross section, $\epsilon_{\chi_{c1}}$ is the reconstruction acceptance and efficiency, and $B(\chi_{c1} \rightarrow J/\psi\gamma)$ is the branching ratio into the $J/\psi\gamma$ final state for each of the $\chi_{c,j}$ states.

The ratio of decay branching ratios is $\frac{B(\chi_{c1} \rightarrow J/\psi\gamma)}{B(\chi_{c2} \rightarrow J/\psi\gamma)} = \frac{27.3 \pm 1.6\%}{13.5 \pm 1.1\%} = (2.02 \pm 0.20)$, assuming the two values are uncorrelated [8]. Consequently, we are left with a relative systematic uncertainty on the ratio of cross sections of $\pm 10\%$ due to the branching ratio uncertainties.

The systematic uncertainties for the relative rate of production are summarized in Table I. The individual un-
TABLE I. Systematic uncertainties for the relative rate of χ_{cJ} production.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible h_c background</td>
<td>$+0.4%$, $-0%$</td>
</tr>
<tr>
<td>Efficiency ratio uncertainty</td>
<td>$\pm 1.4%$</td>
</tr>
<tr>
<td>Decay angular distribution</td>
<td>$\pm 3.5%$</td>
</tr>
<tr>
<td>Branching ratios</td>
<td>$\pm 10%$</td>
</tr>
<tr>
<td>Total</td>
<td>$\pm 11%$</td>
</tr>
</tbody>
</table>

Certainties are combined in quadrature to give the total systematic uncertainty on the cross section ratio. Our final result on the relative rate of prompt production is then

$$\frac{\sigma_{\chi_{c2}}}{\sigma_{\chi_{c1}}} = 0.96 \pm 0.27(\text{stat}) \pm 0.11(\text{syst}).$$

(3)

Previous measurements of the χ_{c2}/χ_{c1} ratio have been at fixed target experiments [12], operating at lower energies than those obtained at the Tevatron. Despite significant theoretical efforts to understand charmonium production in that environment [13,14], the comparison between this result and those is not straightforward. The present measurement provides a similar constraint on theoretical understanding of charmonium production at the Tevatron. This result appears to prefer an approximately equal production of the two χ_{cJ} states, although it is consistent with the expectation that the cross sections are proportional to $(2J + 1)$ at high $p_t(\chi_{cJ})$ [14]. A recent NRQCD prediction for the cross section ratio is 1.1 ± 0.2 [15], in good agreement with this measurement.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the Ministry of Education, Science and Culture of Japan, the National Sciences and Engineering Research Council of Canada, the National Science Council of the Republic of China, and the A. P. Sloan Foundation.

*Present address: Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.