10-1-2001

Double Diffraction Dissociation at the Fermilab Tevatron Collider

T. Affolder
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

Collider Detector at Fermilab Collaboration

Follow this and additional works at: http://digitalcommons.unl.edu/physicsbloom

http://digitalcommons.unl.edu/physicsbloom/83

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Double Diffraction Dissociation at the Fermilab Tevatron Collider

We present results from a measurement of double diffraction dissociation in \(\bar{p} p \) collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap \(\Delta \eta > 3 \) (overlapping \(\eta = 0 \)) is found to be \(4.43 \pm 0.02(\text{stat}) \pm 1.18(\text{syst}) \text{ mb} \) \([3.42 \pm 0.01(\text{stat}) \pm 1.09(\text{syst}) \text{ mb}] \) at \(\sqrt{s} = 1800[630] \text{ GeV} \). Our results are compared with previous measurements and with predictions based on Regge theory and factorization.

DOI: 10.1103/PhysRevLett.87.141802

PACS numbers: 13.85.Ni

Double diffraction (DD) dissociation is the process in which two colliding hadrons dissociate into clusters of particles producing events with a central pseudorapidity gap (region of pseudorapidity, \(\eta \) [1], devoid of particles), as shown in Fig. 1. This process is similar to single diffraction (SD) dissociation, in which one of the incident hadrons dissociates while the other escapes as a leading (highest momentum) particle. Events with pseudorapidity gaps are presumed to be due to the exchange across the gap of a Pomeron [2], which in QCD is a color singlet state with vacuum quantum numbers.

Previous measurements of DD have been performed only over limited \(\eta \) regions for \(\bar{p} p \) collisions at \(\sqrt{s} = 200 \) and 900 GeV [3], for exclusive and semi-inclusive dissociation channels at lower energies [4,5], e.g., \(pp \to (p \pi^+ \pi^-)(p \pi^+ \pi^-) \) or \(pp \to (p \pi^+ \pi^-) + X \), and for \(\gamma p \) interactions at the DESY \(e p \) collider HERA [6]. The present measurement, which is based on a study of events from \(\bar{p} p \) collisions at \(\sqrt{s} = 1800 \) and 630 GeV collected by the Collider Detector at Fermilab (CDF), covers a wide \(\eta \) range, allowing comparisons with theoretical predictions on both \(\eta \) dependence and normalization.

To facilitate our discussion, we begin by defining the relevant variables [7]. We use \(s \) and \(t \) for the square of the center of mass energy and 4-momentum transfer between the two incident hadrons, and \(\xi \) for the fractional momentum loss of the leading hadron in SD. For \(\bar{p} p \) dissociation into masses \(M_1 \) and \(M_2 \), we define the nominal pseudorapidity gap as \(\Delta \eta = \ln(s_{01}/M_1^2) \), where \(s_{01} = 1 \text{ GeV}^2 \); on average, \(\Delta \eta \) is approximately equal to the true rapidity gap in an event. A variable defined as \(s' = M_1^2 M_2^2/s_{01} \) can be thought of as the generalization of \(s' = M^2 \) for SD, since in both cases \(\ln(s'/s_{01}) \) represents the \(\eta \) region accessible to the dissociation products. For \(\bar{p} p \) SD with \(M_2 = m_p = 1 \text{ GeV} \), \(s' = M_1^2 \) and \(\xi = e^{-\Delta \eta} = s'/s \).

Diffraction has traditionally been treated theoretically in the framework of Regge phenomenology [2]. At large \(\Delta \eta \), where Pomeron exchange is dominant [7], the SD cross section is given by the triple-Pomeron amplitude,

\[
\frac{d^2 \sigma_{\text{SD}}}{dt d\Delta \eta} = \left[\frac{\beta^2(t)}{16\pi} e^{2\alpha(t)-1}\Delta \eta \right] \left[\kappa \beta^2(0) \left(\frac{s'}{s_{01}} \right)^{\epsilon} \right],
\]

where \(\alpha(t) \) is the Pomeron trajectory, \(\epsilon = \alpha(0) - 1 \), \(\beta(t) \) the coupling of the Pomeron to the (anti)proton, and \(\kappa = g(t)/\beta(0) \) the ratio of the triple-Pomeron to the Pomeron-proton couplings; we use \(\alpha(t) = \alpha(0) + \alpha' t = 1.104 + 0.25 t \) [8], \(\beta(0) = 4.1 \text{ mb}^{1/2} \) [8], and \(g(t) = 0.69 \text{ mb}^{1/2} \Rightarrow \kappa = 0.17 \) [9]. The second factor of Eq. (1) has the form of the Pomeron-proton total cross section at the subenergy \(s' \), while the first factor can be thought of as a rapidity gap probability [10]. Measurements on SD have shown that Eq. (1), which is based on factorization, correctly predicts the \(\Delta \eta \) dependence for \(\Delta \eta > 3 \), but fails to predict the energy dependence of the overall normalization, which at \(\sqrt{s} = 1800 \text{ GeV} \) is found to be suppressed by an order of magnitude [11,12]. It is generally believed that this breakdown of Regge factorization is imposed by unitarity constraints [13]. Phenomenologically, it has been shown that normalizing the integral of the gap probability [first factor in Eq. (1)] over all phase space to unity yields the correct energy dependence [9,12].

Using factorization, the DD differential cross section may be expressed in terms of the SD and elastic scattering cross sections as [7]

\[
\frac{d^3 \sigma_{\text{DD}}}{dt dM_1^2 dM_2^2} = \frac{d^2 \sigma_{\text{SD}}}{dt dM_1^2} \frac{d^2 \sigma_{\text{SD}}}{dt dM_2^2} \left/ \frac{d \sigma_{\text{el}}}{dt} \right|_{s_{01}} = \frac{[\kappa \beta_1(0) \beta_2(0)]^2}{16\pi} \frac{1}{s' e^{b_{\text{tot}}}},
\]

where \(b_{\text{DD}} = 2\alpha' \ln(s_{01}/M_1^2 M_2^2) \). Changing variables from \(M_1 \) and \(M_2 \) to \(\Delta \eta \) and \(\eta_c = \ln M_1^2/M_2^2 \), where \(\eta_c \) is the center of the rapidity gap, yields (setting \(\beta_1 = \beta_2 \Rightarrow \beta \))

\[
\frac{d^3 \sigma_{\text{DD}}}{dt d\Delta \eta d\eta_c} = \frac{[\kappa \beta^2(0)]^2}{16\pi} e^{2(\alpha(t)-1}\Delta \eta \left] \left[\kappa \beta^2(0) \left(\frac{s'}{s_{01}} \right)^{\epsilon} \right] \right] \cdot
\]

This expression is strikingly similar to Eq. (1), except that, since the gap is now not adjacent to a leading (anti)proton, \(\eta_c \) is treated as an independent variable. The question
that arises naturally is whether Eq. (3) correctly predicts the differential DD cross section apart from an overall normalization factor, as is the case with Eq. (1) for SD. The answer to this question, and the suppression in overall normalization relative to that observed in SD, provides a crucial check on models proposed to account for the factorization breakdown observed in SD.

The components of CDF [14] relevant to this study are the central tracking chamber (CTC), the calorimeters, and two scintillation beam-beam counter (BBC) arrays. The CTC tracking efficiency varies from ~60% for \(p_T = 300 \) MeV to over 95% for \(p_T > 400 \) MeV within \(|\eta| < 1.2 \), and falls monotonically beyond \(|\eta| = 1.2 \) approaching zero at \(|\eta| \sim 1.8 \). The calorimeters have projective tower geometry and cover the regions \(|\eta| < 1.1 \) (central), \(1.1 < |\eta| < 2.4 \) (plug), and \(2.2 < |\eta| < 4.2 \) (forward). The \(\Delta \eta \times \Delta \phi \) tower dimensions are \(0.1 \times 15^\circ \) for the central and \(0.1 \times 5^\circ \) for the plug and forward calorimeters. The BBC arrays cover the region \(3.2 < |\eta| < 5.9 \).

Our data sample consists of \(1.0 \times 10^6[1.6 \times 10^6] \) minimum-bias events at \(\sqrt{s} = 1800[630] \) GeV collected with a BBC coincidence trigger (between the \(p \) and \(\bar{p} \) sides of CDF) at average instantaneous luminosities of \(2.5 \times 10^{30}[9.6 \times 10^{29}] \) cm\(^{-2}\) sec\(^{-1}\). The fraction of overlap events due to multiple interactions in this sample is estimated to be 20.7\%(6.5\%). To reject overlap events, we accept only events with no more than one reconstructed vertex within \(\pm 60 \) cm of the center of the detector.

The method we use to search for a DD signal is based on the approximately flat dependence of the event rate on \(\Delta \eta \) expected for DD events, as seen by setting \(\alpha(t) = 1.104 + 0.25t \) in Eq. (3), compared to the exponential dependence expected for nondiffractive (ND) events where rapidity gaps are due to random multiplicity fluctuations. Thus, in a plot of event rate versus \(\Delta \eta \), the DD signal will appear as the flattening at large \(\Delta \eta \) of an exponentially falling distribution. For practical considerations, our analysis is based on experimental gaps defined as \(\Delta \eta_\text{exp}^0 = \eta_{\text{max}} - \eta_{\text{min}} \), where \((\eta_{\text{min}}, \eta_{\text{max}}) \) is the \(\eta \) of the “particle” closest to \(\eta = 0 \) in the (anti)proton direction (see Fig. 1). A particle is a reconstructed track in the CTC, a calorimeter tower with energy above a given threshold, or a BBC hit. The (uncorrected) tower energy thresholds used, chosen to lie comfortably above noise level, are \(E_T = 0.2 \) GeV for the central and plug and \(E_T = 1 \) GeV for the forward calorimeters. At the calorimeter interfaces near \(|\eta| \sim 0, 1.1, \) and \(\sim 2.4 \), where the noise level is higher, \(|\eta| \)-dependent thresholds are used. The DD signal is extracted by fitting the measured \(\Delta \eta_\text{exp}^0 \) distribution with expectations based on a Monte Carlo (MC) simulation incorporating SD, DD, and ND contributions. The same thresholds are used in the MC simulations after dividing the generated particle energy by an \(\eta \)-dependent energy calibration coefficient representing the ratio of true to measured (uncorrected) calorimeter energy [15]. For charged-particle tracks, the MC generation is followed by a detector simulation.

Figure 2 shows Lego histograms of events versus \(\eta_{\text{max}} \) and \(-\eta_{\text{min}} \) for data and for Monte Carlo generated ND, SD, and DD events at \(\sqrt{s} = 1800 \) GeV. A uniform \(\eta \) distribution was assumed for particles within a calorimeter tower. The observed structure in the distributions along \(\eta_{\text{max(min)}} \) is caused by the variation of the tower energy threshold with \(|\eta| \). The bins at \(|\eta_{\text{max(min)}}| = 3.3 \) contain all events within the BBC range of \(3.2 < |\eta_{\text{max(min)}}| < 5.9 \).

The diffractive MC generator is a modified version of that used in Ref. [16], incorporating the differential cross sections of Eqs. (1) and (3). Nondiffractive interactions are simulated using PYTHIA [17]. The data distribution in Fig. 2 has a larger fraction of events at large \(|\eta_{\text{max(min)}}| \) than either the ND or the SD Monte Carlo generated distributions. From the previously measured SD cross section [11] and the MC determined fraction of SD events triggering both BBC arrays, the fraction of SD events in our 1800[630] GeV data sample is estimated to be 2.7\%(2.4\%). A combination of 97.3\% ND and 2.7\% SD generated events cannot account for the data at large \(|\eta_{\text{max(min)}}| \) in Fig. 2. The simulated DD distribution is approximately flat in \(|\eta_{\text{max(min)}}| \) and describes the data well when combined with the ND and SD distributions.

Figure 3 presents the number of events as a function of \(\Delta \eta_\text{exp}^0 \) for the 1800 GeV data (points) and for a fit to the data using a mixture of MC generated DD and “non-DD” (ND plus SD) contributions (solid histogram). The dashed histogram shows the non-DD contribution. The agreement
larger rapidity gaps and hence larger ND background in the multiplicity in the MC generated events, resulting in a correction factor needed to transform the measured gap fractions to gap fractions corresponding to the gap definition on which Eq. (3) is based, namely \(\Delta \eta^0 \equiv \ln(s_{0i}/M_i^2)[\ln(M_i^2/\sqrt{s_0}) < 0, i = 1, 2] \), were evaluated using the DD Monte Carlo simulation and found to be 0.81(0.75) for \(\sqrt{s} = 1800[630] \) GeV. Correcting the measured DD gap fractions by these factors and for the vertex cut efficiency, and normalizing the results to our previously measured cross sections of 51.2 \pm 1.7 \text{ mb} [39.9 \pm 1.2 \text{ mb}] for events triggering the BBC arrays, we obtain 2.51 \pm 0.01(\text{stat}) \pm 0.08(\text{norm}) \pm 0.58(\text{bg}) \text{ mb} [2.16 \pm 0.01(\text{stat}) \pm 0.06(\text{norm}) \pm 0.65(\text{bg}) \text{ mb}] for the DD cross section in the region \(\Delta \eta^0 > 3 \).

The trigger acceptance, evaluated from the DD MC simulation, is 0.57 \pm 0.07(\text{syst}) [0.63 \pm 0.07(\text{syst})]. The uncertainty was estimated by considering variations in the simulation of small mass diffraction dissociation. The acceptance corrected DD cross sections for \(\Delta \eta^0 > 3 \) are 4.43 \pm 0.02(\text{stat}) \pm 1.18(\text{syst}) \text{ mb} [3.42 \pm 0.01(\text{stat}) \pm 1.09(\text{syst}) \text{ mb}].

The corresponding cross sections predicted by Eq. (3), determined by the DD MC simulation, are 49.4 \pm 10.0(\text{syst}) \text{ mb} [27.7 \pm 5.5(\text{syst}) \text{ mb}], where the uncertainty is due to an assigned 10% systematic error in the triple-Pomeron coupling [9]. The ratio (discrepancy factor) of measured to predicted cross sections is \(D_{\text{DD}} = 0.09 \pm 0.03 [0.12 \pm 0.03] \), where the errors include all systematic uncertainties. The deviation of \(D \) from unity represents a breakdown of factorization, which is similar to that observed in SD [9,12], where the corresponding discrepancy factors, calculated from the fit parameters in Ref. [9], are \(D_{\text{SD}} = 0.11 \pm 0.01 [0.17 \pm 0.02] \).

Our data are compared with the UA5 results [3] in Fig. 4. The comparison is made for cross sections integrated over \(t \) and over all gaps of \(\Delta \eta > 3 \), corresponding to \(\xi = e^{-\Delta \eta} = 0.05 \) in SD. The extrapolation of our data from \(\Delta \eta^0 > 3 \) (gaps overlapping \(\eta = 0 \)) to \(\Delta \eta > 3 \) (all gaps) was made using Eq. (3) and amounts to multiplying the \(\Delta \eta^0 > 3 \) cross sections by a factor of 1.43[1.34] at \(\sqrt{s} = 1800[630] \) GeV, yielding \(\sigma_{\text{DD}}(\sqrt{s} = 1800[630] \text{ GeV}; \Delta \eta > 3) = 6.32 \pm 0.03(\text{stat}) \pm 1.7(\text{syst}) [4.58 \pm 0.02(\text{stat}) \pm 1.5(\text{syst})] \text{ mb} \). The UA5 cross sections were obtained by extrapolating the cross sections measured over limited large-gap regions to \(\Delta \eta > 3 \) using a Monte Carlo simulation in which the p and \(\bar{p} \) dissociated independently with a \((1/M^2)e^{-t}\) distribution [18]. For a meaningful comparison, we corrected the reported UA5 values by backtracking to the measured limited \(\Delta \eta \) regions using a \((1/M^2)e^{-t}\) dependence and then extrapolating to \(\Delta \eta > 3 \) using Eq. (3). This correction increases the cross sections by a factor of...
FIG. 4. The total double diffractive cross section for $p(\bar{p}) + p \to X_1 + X_2$ versus \sqrt{s} compared with predictions from Regge theory based on the triple-Pomeron amplitude and factorization (solid curve) and from the renormalized gap probability model (dashed curve).

1.43 ± 0.19 at $\sqrt{s} = 200(900)$ GeV. The solid curve in Fig. 4 was calculated using Eq. (3). The disagreement between this curve and the data represents a breakdown of factorization. The dashed curve is the prediction of the renormalized gap probability model [10,12], in which the integral of the gap probability $[\text{first factor in Eq. (3)}]$ over all available phase space is normalized to unity. The error bands around the curves are due to the 10% uncertainty in the triple-Pomeron coupling [9]. Within the quoted uncertainties, the data are in agreement with the renormalized gap model.

In conclusion, we have measured double diffraction differential cross sections in $\bar{p}p$ collisions at $\sqrt{s} = 1800$ and 630 GeV and compared our results with data at $\sqrt{s} = 200$ and 900 GeV and with predictions based on Regge theory and factorization. We find a factorization breakdown comparable in magnitude to that observed in single diffraction dissociation. The data are in agreement with the renormalized gap probability model [10].

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science, Sports and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fuer Bildung und Forschung, Germany; and the Korea Science and Engineering Foundation.

*Present address: Northwestern University, Evanston, Illinois 60208.
†Present address: Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.

[1] $\eta = -\ln(\tan \theta)$, where θ is the polar angle relative to the proton beam, ϕ is the azimuthal angle, and transverse energy is defined as $E_T = E \sin \theta$.

