
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Industrial and Management Systems Engineering
Faculty Publications Industrial and Management Systems Engineering

1-1-2005

Design and Implementation of a Non-Proprietary
Campus Energy Management and Control System
(EMCS)
Stefan Newbold
University of Nebraska-Lincoln, snewbold@unl.edu

Lalit Agarwal
University of Nebraska-Lincoln, lagarwal2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/imsefacpub
Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Article is brought to you for free and open access by the Industrial and Management Systems Engineering at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Industrial and Management Systems Engineering Faculty Publications by an authorized
administrator of DigitalCommons@University of Nebraska - Lincoln.

Newbold, Stefan and Agarwal, Lalit, "Design and Implementation of a Non-Proprietary Campus Energy Management and Control
System (EMCS)" (2005). Industrial and Management Systems Engineering Faculty Publications. Paper 72.
http://digitalcommons.unl.edu/imsefacpub/72

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imse?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub/72?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages

Design and Implementation of a Non-Proprietary Campus Energy Management and
Control System (EMCS)

Stefan Newbold, BSME, MSCS, P.E. Lalit Agarwal, BSME
Software Engineer Software Engineer
942 North 22nd Street University of Nebraska – Lincoln
Lincoln, NE 68588-0605 lagarwal2@unl.edu
University of Nebraska – Lincoln
(402) 472-4852
snewbold@unl.edu

Abstract

The Energy Management and Control System (EMCS)
used at the University of Nebraska - Lincoln (UNL) is
unique in that system hardware and software has been
developed primarily in-house. UNL has a successful
track record with this approach stretching back more
than twenty years.

This paper presents an industry experience report
describing the high-level design and development of the
latest version of this EMCS. This system is now being
deployed on campus.

We discuss aspects of our EMCS that enhance usability,
fault tolerance, and security. Our system is unique in that
it was primarily developed using non-proprietary, open-
source software building blocks and software
construction tools. This approach provides a framework
for potential collaboration with others who are interested
in expanding this system beyond UNL.

1. Introduction

For the most part, University of Nebraska – Lincoln
(UNL) students, staff and faculty are unaware of campus
Heating Ventilating and Air Conditioning (HVAC)
Systems unless of course they are too hot or cold. The
HVAC systems within all major buildings at UNL are
monitored and controlled by a networked, digital control
system, which is commonly referred to as an Energy
Management and Control System (EMCS).

UNL’s EMCS is operated and maintained by the
Department of Facilities Management. Our system is
unique in that the majority of the field hardware and
system software has been designed in-house since the

early 1980s. Computer technology has changed a great
deal since then. However, the reasons for pursuing an in-
house EMCS solution remain unchanged. Key among
these is the proprietary nature of commercial EMCS
products. It is still the norm that once facility owners
have made the decision to use a particular vendor, they
are then very much locked into that relationship if they
want to maintain a high degree of consistency and
interoperability within their system. As a result, owners
are forced into an environment where they are never
entirely sure that they are seeing fair market prices for
future equipment purchases and service contracts from the
vendor. Other reasons for pursuing an in-house approach
include flexibility, standardization of equipment,
extensibility and most importantly, lower installation
costs.

An EMCS has two main purposes: to control building
systems and to conserve energy. We accomplish this
through the manipulation of four kinds of real world,
input/output interface objects, commonly referred to as
“points.”

• Digital Inputs (DI): These represent discrete (0 or 1)

inputs to the system and correspond to wall switches,
limit devices, etc.

• Digital Outputs (DO): These are the counterpart to
DI points and represent such devices as equipment
starters, two-position dampers, etc.

• Analog Inputs (AI): These represent non-discrete or
continuum type inputs such as temperature sensors,
pressure sensors, etc.

• Analog Outputs (AO): The counter part to AI points,
used for modulating dampers, equipment speed
control, etc.

Published in IEEE International Conference on Electro Information Technology, 2005; doi: 10.1109/EIT.2005.1627032
Used by permission.

System “intelligence” is provided by two software
abstractions called loops and control blocks. Loops
encapsulate a simple Proportional / Integral / Derivative
(PID) control algorithm [7] whereas control blocks are
small computer programs written in a domain specific
language [20]. Control blocks are responsible for logic
decisions and the overall manipulation of system input /
outputs, loop objects as well as other control blocks.

The underlying mechanisms and software processes that
comprise the EMCS are distributed between operator
workstations, servers, building field computers, and
thousands of networked embedded systems located in
individual campus buildings.

This paper presents an industry experience report, which
outlines the high-level architecture, design, and
development of the software processes on each of the
major hardware platforms that comprise the EMCS. We
discuss some of the design imperatives as well as the
trade-offs we faced. We discuss aspects of our system,
which enhance usability, reliability and security. Finally,
we illustrate how the system was designed and
constructed using predominantly open-source [14]
software building blocks and development tools.

The remainder of this paper is organized as follows. First,
we present a high-level architectural view of the EMCS.
We focus on the different hardware platforms that
comprise our system and the manner in which these
platforms are networked together. Next, we discuss the
overall software architecture. We conclude with a
summary of what we have accomplished and identify
areas for future development and improvement.

2. Architectural View

This section presents a high-level architectural view of the
EMCS, which focuses on the different hardware platforms
that comprise the system and how these hardware
platforms are networked together.

Figure 1 shows the overall architecture of UNL’s EMCS.
User interaction with the system occurs primarily via the
EMCS user interface implemented on PC workstations.
Workstation software is presented in Section 4.

PC workstations communicate with the EMCS servers via
TCP/IP [4], allowing the system to be accessed from any
location that has internet connectivity. We encrypt all
packets between the user workstations and the server
using a 64-bit SSL protocol [15]. This provides added
security and prevents system tampering. Security is also
enhanced via a dedicated firewall running Astaro Security
Linux [1].

TCP/IP

Main
Database

Rack
Mounted
Server

Field Computer
(Pentium PC)

RS-485 Multiplexer

Controllers with Analog
and Digital I/O Points

Replicated
Database

Internet

Automatic Table
Replication over

TCP / IP

Other Buildings
(70+ Buildings OnLine)

TCP/IP

Campus
Network

Firewall

EMCS User Interface(s)

Typical Building

Figure 1: UNL EMCS Application Architecture

The EMCS servers are all rack mounted, Pentium Xeon
machines running Red Hat Linux “Fedora” [22]. In order
to provide some workload sharing, separate servers are
dedicated to the following tasks:

• Application Server: Runs various EMCS processes

that will be discussed in Section 5.
• Data Base Server: Is equipped with a RAID Level 5

[16] array and hosts the EMCS database. We use
mySQL [19], a popular open-source database.

• Web Server: Provides graphic files to EMCS
workstations via http requests. Our graphics package
is discussed in Section 4.6.

EMCS servers communicate with building field
computers over the campus network backbone using
TCP/IP.

Each campus building is equipped with a single Field
Computer (FC). The FC is a single-board, Pentium 3
computer plugged into a passive backplane, which along
with a power supply and hard disk, are installed inside a
wall-mounted cabinet.

The operating system for all FC’s is Red Hat Linux,
version 9.0. A mySQL database is also installed in order
to be able to store a replicated portion of the EMCS
database. This allows us to keep track of all directly
connected controllers. EMCS software processes for the
FC’s are discussed in Section 6.

EMCS Controllers are constructed using 8 or 16 bit
microcontrollers manufactured by Atmel [2] or Rabbit
Semiconductor [21]. They are capable of supporting
AI/AO, DI/DO, Loop and CB objects (See Section 1).
Controller software is presented in Section 7.

Communication between the FC and its associated
controllers occurs via RS-485 [9] communication links
running at 19,200 or 57,600 baud. These links are
connected to an in-house designed multiplexer board,
which is installed in the same backplane as the FC. Our
multiplexer subsystem can accommodate up to 2048
controllers spread over 32 links per FC.

Referring back to Figure 1, there are three communication
“hops” in our system.

1) User workstation to EMCS server (TCP/IP and SSL)
2) EMCS server to Field Computer (TCP/IP)
3) Field Computer to Controller (RS-485)

Even though different protocol stacks are used at each
hop, the application layer protocol at each hop is the
same. This protocol was also developed at UNL and is
designed around an attribute / data-tagging scheme
thereby making it very extensible.

3. Software Technologies and Design

Approaches

This section discusses some of our high level software
design technologies, approaches and trade-offs as well as
some issues that are orthogonal to all of our software
processes.

3.1 Technologies

Design of the new system software began during the
spring of 2001. One of the most basic issues we had to
face involved the choice of software technologies to be
incorporated into the design.

Being an academic institution with limited monetary
resources for software purchases, one technology
paradigm we embraced very early was the use of open-
source building blocks and software construction tools.
The Linux Operating System [18] and mySQL Data Base
[19] were two components we gravitated towards
immediately. Since these components have matured and
achieved more market penetration over time, we feel that
these were wise choices.

At the beginning of our design process, we investigated
the trade-offs between a lightweight and heavyweight
User Interface (UI). A lightweight user interface is
typically developed to run within a web browser. In
contrast, a heavyweight UI is developed using one of
several UI frameworks.

We eventually abandoned the lightweight client approach
for several reasons.

• Since our user base is not large, the ease of

installation and maintenance benefits associated with
a lightweight user interface were minimal.

• It is more difficult to construct a feature rich UI with
a lightweight approach.

• We were concerned about the latencies associated
with continuously pulling all information and
components to populate the UI from the server.

• The same cross-platform capability of light-weight
approach can be achieved if one uses a Java native UI
framework

Our UI was ultimately designed using Java AWT / Swing
classes as our framework. However, if we were to make
the same choice today, we would strongly consider using
Eclipse Standard Widget Toolkit (SWT) [10] classes since
this alternative GUI framework has built a lot of
momentum in the last few years.

Since we were familiar with C/C++ and the fact that our
processes need access to low-level operating system calls,
we wrote all server and field computer processes using
these two “sister” languages. For code development, we
used the GNU [5] compiler and KDevelop [12] Integrated
Development Environment (IDE).

3.2 Design Approaches

Once we decided on the technologies we would use for
our system, we had to consider the trade-offs of various
design approaches. One of these dealt with whether or
not we should partition our server and field computer
applications into multiple processes. For example, one
approach would be to design a monolithic application for
the server and then dynamically create a new instance of
this application (i.e., “fork” system call) for every user
login. The main advantage of this scenario is that no
inter-process communication would be required.

Ultimately, we decided to use a modular approach by
splitting our server and field computer applications into
several processes. These are discussed in Sections 5 and
6. Partitioning the application made it easier to debug
problems, add new features as well as allowing team
members to concurrently write and test different process
modules.

The concept of fault tolerance is of particular importance
for this application domain. We therefore designed the
server and field computer processes so that they will
continue to run even if other processes are shut down,
suffer a segmentation fault, etc. In addition, all inter-
process communications are designed so that these
connections are automatically re-established after any
process fault events.

One very “Unix-like” concept we incorporated into our
system was the use of a plain text configuration file to
initialize process’ operating parameters on start-up. This
makes system tuning and troubleshooting much easier
than if we had “hard-coded” such parameters into our
source code.

4. User Interface

This section discusses the design approach as well as
some of the major features of our EMCS User Interface
(UI). As previously discussed in Section 3.1, the UI was
built with the Java AWT/Swing Framework using the
Netbeans Integrated Development Environment (IDE)
[13].

4.1 User Interface Design Approach

We chose a multiple document interface strategy for our
UI. This approach presents the user with one main parent
frame as a “container” for any number of child frames.
Our child frames provide various views of the system and
are discussed in subsequent sub-sections.

Our design includes several reusable components. Such
reuse was enhanced by using the Model View Controller
Design Pattern [6] for all major UI frames.

In order to provide true end-to-end EMCS packet routing,
all packets sent by the UI into the system are addressed to
a particular EMCS object or process using a hierarchical,
numeric object ID. We maintain a series of tree-like data
structures to map object acronyms (i.e., text) to these
object IDs. Acronyms and object IDs are retrieved from
the server and then stored locally at the user workstation
to provide quick lookups.

The UI executable is compiled into a single Java archive
(jar) file and is placed on our web server where users can
automatically retrieve the latest version using Java “Web
Start” [8] technology.

The following sections discuss some of the individual
child frames of our UI and the respective system views
that they provide.

Figure 2: User Interface Grid Display Frame

4.2 Grid Display Frame

The Grid Display (GD) presents both real time and static
object data in a table format. Our GD is unique in that we
have designed it so that a user can quickly drill down to
any subsystem or individual object without having to
click on a number of intermediate tables or views. For
example, the GD shown in Figure 2 shows a portion of
the air handling system for a particular building.
Alternatively, users can simultaneously view objects that
span multiple systems and buildings on one single table.

This customization and flexibility is provided
dynamically without forcing the user to predefine such
table views.

4.3 Tree Display Frame

The tree display frame provides a hierarchical, hardware
platform view of the system with the EMCS server and
field computers at the root level. Expanding these nodes
shows all resident objects or other connected controller
hardware objects. EMCS objects resident on a particular
hardware platform comprise the leaf nodes of the tree

display.

4.4 Chart Display Frame

The chart display provides the capability to plot live data
from a number of EMCS objects. We constructed this
display frame with the aide of JFreeChart [11], an open-
source plotting framework.

4.5 Distributed Control Language (DCL) Control

Block Editor Frame

Control blocks encapsulate the operational logic for our
system and were previously discussed in Section 1. They
are written in a domain specific language called
Distributed Control Language (DCL) [20]. Our DCL
editor provides a utility for writing, compiling and
debugging DCL code. This frame includes all the
standard features one would find in any recent code editor
including line numbering, syntax highlighting, etc.

Figure 3: User Interface Graphics Viewer Frame

4.6 Graphics Composer and Graphics Viewer
Frames

The graphics composer and graphics viewer frames are
used to create and view real-time EMCS system values in
a schematic format. To speed development of this aspect
of our UI, we reluctantly broke with our “open-source”
paradigm and purchased the JViews graphic framework
by ILOG [17]. This framework was used for the
development of these two child frames. However, it
would not be difficult to remove the code for these frames
from our application if we wished to make the entire UI
“open-source.”

Once a system graphic file is created using the graphics
composer frame, the file is stored on our web server.
When launching the graphics viewer frame, one or more
graphic files are retrieved and then displayed. Figure 3
shows a typical graphic screen for one of our heating hot
water systems. Users can control the system from these
graphic screens via mouse clicks and other interactions.

4.7 Other Frames

Additional child frames that are available within our UI
include:

• History, Trend, Report and Log Viewer Frames
• Chat Window Frame (allows logged-in users to chat)
• User Group Administration Frame
• Individual EMCS Object Definition and Real Time

Data Frames

5. EMCS Application Server Software

Components

This section presents an overview of the EMCS software
processes resident on our application server. These
processes are shown in Figure 4.

5.1 Field Computer Manager

The Field Computer Manager (FCM) maintains local
sockets to each of the server resident processes as well as
a TCP/IP socket to each of the system field computers.
The primary responsibility of the FCM is to route EMCS
packets between server resident processes and Field
Computers.

When a local process or field computer connects and
identifies itself, the FCM adds the client socket and its
routing information to a hash map. The FCM checks all
active sockets for packet activity in a round-robin manner.
If an active socket has any packets, the FCM “drains” the

socket for a pre-determined number of packets or until
there are no more packets pending on that socket. This
strategy is a compromise, which attempts to provide good
throughput on continuous data streams, without starving
other sockets.

If the hash map lookup for a client socket fails, the FCM
takes the following actions.

• If the original packet was sent by another server

process or user, an error is sent back to the original
sender.

• Otherwise, the packet is handed to Garbage Manager
(Section 5.7).

The FCM continuously checks all active sockets for
communication error conditions or process disconnects
and continuously updates its socket hash map
accordingly.

Figure 4: EMCS Application Server Software

Components

5.2 Database Manager

The main task of the Database Manager (DM) is to
provide a business logic layer between the user interface
and the system database. The DM implements object
creates and deletes as well as reads and writes of static
definition data. The DM communicates with the system
through a dedicated socket to the FCM.

All object create / read / write / delete requests are in the
form of EMCS packets. The DM parses these packets,
performs any necessary business logic, and then generates
appropriate SQL statements. Any parse, logic or SQL
problems will generate an error packet, which is sent back
to the requestor.

Depending on the nature of the original request, the DM
may send packets addressed to a particular controller,
EMCS object or another process. Since communication
latencies become significant during packet exchanges
with controllers, the DM maintains a packet registry that
keeps track of all requests and associated responses or
timeouts. This allows the DM to asynchronously process
additional requests while responses to previous requests
remain outstanding.

5.3 Compiler Manager

The Compiler Manager (CM) processes all requests
related to control block source code (See Section 1). The
CM’s main responsibility involves compilation of user
generated control block source code into byte code and
then downloading this byte code to EMCS controllers or
field computers. Due to the dynamic data structures
required by the compiler (e.g., parse tree, symbol table),
we spawn a new CM instance with each new compiler
request via a “fork” system call. Thus, memory for all
dynamic data structures are returned to the heap after the
request has been fulfilled.

The CM communicates with the rest of the EMCS with
local sockets in a manner similar to the Database Manager
(DM).

5.4 Client Manager

The Client Manager (CLM) acts as the “gatekeeper”
between user workstations and the EMCS. This process
maintains a TCP/IP socket, which listens for user login
request. During such a login request, the CLM attempts
to authenticate the user. If this authentication is
successful, the CLM “forks” to create a new CLM
instance solely dedicated to a particular user login. If the
user is not authenticated, an error packet is sent back to
the user workstation and the CLM terminates the session.

The “forked” CLM maintains a dedicated socket to the
Field Computer Manager for the duration of the user
login. The CLM will terminate a user session after a
specified period without any packet activity. This period
can be set when a user is defined in the system can be
modified anytime by a user with EMCS administration
rights.

5.5 Control Block Manager

Control Blocks (CB’s) provide the overall operational
logic for the system and were briefly discussed in Section
1. When a CB is created, the user must define the
location where the CB will reside (i.e., execute its code)
among three possibilities:

1) The EMCS Server
2) A particular Field Computer
3) A particular Controller

The Control Block Manager (CBM) is responsible for
executing the byte code associated with each resident CB
and to process any I/O generated by these CB’s. At the
server level, all CB I/O involves sending out and
receiving EMCS packets. The CBM acts as a proxy for
this I/O on behalf of the CB.

CB’s are executed by the CBM in a round robin fashion
by dispatching CB opcodes for a given number of
instructions or until the CB requires I/O. The CB is then
placed at the end of the CBM’s run queue. If a CB has an
outstanding I/O request, the CBM will continue to place
the CB at the end of the run queue until a response is
received or the request times out.

5.6 Trender

In this application domain, it is often desirable to
temporarily cache real time object data for the purpose of
troubleshooting problems or erratic behavior. Typically,
only the most recent few days worth of data is maintained.
The Trender process is responsible for gathering live data,
entering it in the database, and purging old data. This
data can then be viewed at the EMCS operator
workstation.

The Trender process at the server only gathers data for
server resident objects (i.e., CB’s). Trender processes are
also present on field computers (Section 6) and are
responsible for gathering data for all field computer
resident objects as well as objects that reside on any
connected controllers.

5.7 Garbage Manager

The primary responsibility of the Garbage Manager (GM)
is to handle packets that the Field Computer Manager
(FCM) is unable to resolve. Packet information is logged
into a file and then dropped.

The GM has an important additional role which makes its
name somewhat misleading. Control Blocks (CB’s) can
be written so that they send up real time object data for
long-term energy use or performance analysis. These

types of packets are parsed by the GM and inserted into
the EMCS database.

6. Field Computer Software Components

This section presents an overview of the EMCS software
processes resident on each Field Computer (FC). These
are listed as follows:

• Controller Manager
• Control Block Manager
• Trender

6.1 Controller Manager

The Controller Manager (CM) has two tasks: maintain
communication paths and route EMCS packets.
Communication to the EMCS server takes place via a
dedicated TCP/IP socket. The FC communicates with
connected controllers via a RS-485 [9] multiplexer board,
which was designed in-house.

The CM routes packets between controller links, the
EMCS server and other FC processes. Managing packet
routing on controller links was a particular challenge due
to the baud rate limitations and the fact that RS-485 can
only provide a “half-duplex” communication channel.
This means that only one device can be transmitting at
any given time.

CM-to-controller communication uses the master-slave
paradigm. The master (CM) always initiates
communication, whereas the slaves (i.e., controllers) only
transmit in response to a request from the master.

The CM maintains four EMCS packet priority queues for
each RS-485 link. This allows us to prioritize packets that
contain more important or urgent communication
requests.

We also maintain a link map data structure within the CM
that contains an entry for each connected controller. Each
entry provides information regarding the controller’s link
number and baud rate.

The CM process was designed to be “self-healing.”
What we mean by this is that CM can re-establish the
connection to the EMCS server after a network failure or
server re-boot. In addition, it will adjust the link map as
controllers are added or removed.

The CM contains four modules named:

• “Q”
• Finder

• PushPuller
• Poller

“Q’s” role is to listen for EMCS packets on all local
sockets (to other FC processes) and the single TCP/IP
socket back to the EMCS server. “Q” routes packets to
the correct socket or, if the packet is addressed to
controller, “Q” will add the packet to the appropriate link
priority queue. If a packet is addressed to a controller that
does not have an entry in the link map, the packet is
handed over to Finder.

Finder is responsible for discovering the baud rate of a
particular controller and on which RS-485 link it resides.
This discovery process is started by sending a packet
addressed the controller we wish to find, down all RS-485
links at a particular baud rate. If the controller exists on
one of the links and is communicating correctly, it will
acknowledge our find request. Once the controller is
found in this manner, the link map data structure is
updated with the appropriated link number and baud rate.

If all the packets sent by Finder time out, we perform
another iteration at the next higher baud rate. This
process repeats until the controller is found, or all Finder
packets have timed out at all baud rates. In the latter
instance (i.e., “controller not found”), Finder sends an
error packet back to the original requestor.

Pushpuller’s task involves packet transmission and
reception to controllers on all connected RS-485 links.
Sending EMCS packets to individual controllers involves
PushPuller draining the various link priority queues
discussed previously and then transmitting the packet on
the RS-485 communication link. Figure 5 is a UML
Activity Diagram [6] illustrating the algorithm that
PushPuller uses for packet transmission and reception for
one particular link.

Note that if a request packet has been sent on a RS-485
link, we “lock” this link from further requests until a
response is received or the packet times out. We compute
individual packet timeouts dynamically based on packet
size and the particular baud rate at which they are
transmitted.

Poller’s single function is to “poll” the controllers by
periodically sending very short packets. This serves three
purposes:

1. It allows us to synchronize controller date and time

values to the current system time.
2. It allows controllers to send any packets they may

have queued up since the last poll.
3. It provides a continuous mechanism for updating our

link-map data structure. In effect, we are asking each

Controller the question “Are you there?”

Check Link Timeout

Check HIGH Queue

Check MED Queue

Check LOW Queue

Check MAX Queue

exit/Lock Link

Send Packet

Check Link(i) Lock

[Link is
Locked]

[Else]

[Packet in Max queue]

[Packet in
HIGH queue]

[Packet in
MED queue]

[Else]

Check COUNT_HIGH

[COUNT_HIGH <
N_High]

[Else][Else]

Check COUNT_MED

[COUNT_MED <
N_Med]

[Else][Else]

[Packet in LOW queue]

COUNT_HIGH & COUNT_MED = 0

Send Error
[Link timed out]

[Else]

exit/Unlock Link

Response Received

Increment Link Number

[Else]

Figure 5: Activity Diagram for Controller

Manager RX / TX on RS-485 Link

6.2 Control Block Manager and Trender

Other EMCS processes resident on a Field Computer
includes the Control Block Manager and Trender. These
are similar to the processes previously described for the
EMCS application server in Section 5.
7. Controller Software Components

This section outlines the major software components that
reside on the lowest rung of our system hierarchy. We do
not go into as much detail as we have with the server or
field computer processes since a great deal of the
Controller software is tightly coupled to our embedded

processors and its I/O peripherals.

Other than communication, the building controls domain
does not really have any strict timing constraints as may
be present in other embedded process control systems.
We therefore elected not to incorporate any type of real-
time operating system. An operating system would also
have added some additional memory burdens on a
platform, which is already resource, constrained. Our
process scheduling strategy is very simple. We give equal
priority to all controller tasks except communication,
which is given higher priority and is entirely interrupt
driven.

All controllers include modules for loop objects and
interpreters for control block objects. This allows us to
distribute our system intelligence down to the controller
level, thereby making the overall system more robust and
fault tolerant.

Figure 6 shows how our controller software modules were
designed with a layered approach. All modules located in
the middle layer are designed to be platform neutral so
that they can be reused in future controller hardware
platforms. In contrast, the lower software layer is tightly
coupled to the actual hardware platform and is not
portable.

8. Evaluation and Future Work

We have designed and developed a software solution for a
fully functional campus Energy Management and Control
System. Our system is designed so that it is fault
tolerant, extensible and easy to maintain. Fault tolerance
is further enhanced by the fact that all of our low-level
controllers are able to support control blocks (Section 1).
This means that communication outages will not affect
basic system control functions.

Our Java based User Interface (UI) provides a feature rich
environment and which is portable to other hardware
platforms for which a Java Virtual Machine has been
implemented. The overall system response time at our UI
is equivalent to, or better than our first hand experience
with other commercially available systems.

Figure 6: Controller Software Module Layering Scheme

Finally, the majority of our system was built using open-
source building blocks and software construction tools.
This makes it easier for others to adopt and expand upon
our system.

We have identified a number of system enhancements and
extensions we would like to implement.

• Card access capabilities. Our goal is to provide a

campus wide, cost effective alternative to door keys.
One innovation we are starting to work on is a
combination room temperature / card access
controller that would eliminate the need for two
separate controllers for offices, classrooms and
dormitory rooms.

• Better capabilities for system alarming. This will be
of particular importance as we move into access
control.

• UI code generation “wizards” that would generate
control block code for simple tasks such as system
scheduling.

• More UI customization capabilities, particularly with
respect to the chart display frame (Section 4.4).

9. References

[1] Astaro Corporation, 3 New England Executive

Park, Burlington, MA 0180.
http://www.astaro.com.

[2] ATMEL Corporation, 2325 Orchard Parkway, San
Jose, CA 9513, www.atmel.com.

[3] Booch, G., Rumbaugh, J., Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley,
NJ, 1999.

[4] Comer, D. Internetworking with TCP/IP Volume I:
Principles, Protocols and Architecture. Prentice
Hall, NJ 07632, 1991.

[5] Free Software Foundation, 59 Temple Place - Suite
330, Boston, MA 02111-1307,
http://directory.fsf.org/devel/compilers/gcc.html

[6] Gamma, E., Helm, R., Johnson, Vlissides, J.,
Design Patterns, Elements of Reusable Object-
Oriented Software. Addison-Wesley, NJ, 1995.

[7] Honeywell Inc., The Engineering Manual of
Automatic Control, Minneapolis, MN, 55408,
1988.

[8] http://java.sun.com/products/javawebstart
[9] http://www.bb-

elec.com/tech_articles/rs485_basics.asp
[10] http://www.eclipse.org/swt
[11] http://www.jfree.org/jfreechart
[12] http://www.kdevelop.org
[13] http://www.netbeans.org/index.html
[14] http://www.opensource.org/docs/definition.php
[15] http://www.openssl.org
[16] http://www.storagereview.com/guide2000/ref/hdd/
 perf/raid/levels/singleLevel5
[17] ILOG, Inc., 1080 Linda Vista Ave., Mountain

View, CA 94043.
 http://www.ilog.com/products/jviews
[18] Linux Online, Ogdensburg, New York, USA.

www.linux.org
[19] MySQL Inc. 2510 Fairview Avenue East, Seattle,

WA 98102, www.mysql.com
[20] Newbold, S., Design and Implementation of a

Distributed Control Language for a Campus
Energy Management System, Masters Thesis,
University of Nebraska – Lincoln, Department of
Computer Science and Engineering, 2003.

[21] Rabbit Semiconductor, 2932 Spafford Street,
Davis, CA 95616-6800.

 http://www.rabbitsemiconductor.com
[22] Red Hat, Inc., 1801 Varsity Drive, Raleigh, NC

27606. http://www.redhat.com

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2005

	Design and Implementation of a Non-Proprietary Campus Energy Management and Control System (EMCS)
	Stefan Newbold
	Lalit Agarwal

