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We present a model-independent theory for laser detachment of a weakly bound electron having a
nonzero angular momentum. Our treatment reduces to the well-known Keldysh result for tunnel
ionization upon neglecting rescattering effects. Numerical results for the above-threshold detachment
spectrum of a negative ion having an outer p electron show significant modification of the rescattering
plateau as compared to that for an ion having an outer s electron.
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Many effects of intense laser interactions with atoms
and ions have their origin in the basic processes of above-
threshold ionization (ATI) or detachment (ATD), in
which the electron spectrum exhibits a series of peaks,
separated by the photon energy, and having nearly equal
intensity over a large energy region (the so-called “pla-
teau” region). Key features of ATI spectra have been
understood using classical, semiclassical, or approximate
quantum analyses and calculations [1-3]. These indicate
that the low-energy ATI peaks result from direct ioniza-
tion by tunneling [and hence their intensity may be
estimated using the Keldysh approximation (KA) [4]],
while the high-energy ATI peaks on the plateau result
from inelastic, laser-assisted electron scattering from the
atomic core. An accurate quantum treatment may be
carried out for one-electron systems, either numerically
(the results of which support the single active electron
origin of plateaus in ATI spectra [5]) or by use of simple
analytical model potentials. A fruitful model for analy-
sing strong field effects in negative ions beyond the KA is
the zero-range potential (ZRP) model, which permits an
accurate, ab initio formulation of the problem [6] as well
as essentially exact numerical results [7]. However, the
ZRP is valid only for s-electron initial states and does not
allow one to analyze the dependence of ATD features on
the initial state symmetry. This symmetry is important
already in the KA [8]: in this approach it determines the
interference of two saddle-point contributions to the ATD
rate that result in a significant dependence of the photo-
electron angular distributions (ADs) on the initial state
parity.

In this Letter, we present a general approach for the
description of strong laser detachment of a weakly bound
electron having an initial angular momentum [ in a short-
range potential well. Our treatment combines the effec-
tive range approach of Refs. [9,10] (in which they treat a
weakly bound electron with arbitrary / subjected to a
static perturbation) with the quasistationary quasienergy
states (QQES) approach of Ref. [6] (in which they treat an
s electron bound in a ZRP in the presence of a strong laser

053003-1 0031-9007/03/91(5)/053003(4)$20.00

PACS numbers: 32.80.Rm, 32.80.Gc

field). Our analysis shows that the existence of a high-
energy (rescattering) plateau is a general feature for an
arbitrary initial /. However, the interference pattern at the
onset of the plateau, the height of the high-energy plateau
relative to the low-energy (KA) part of the electron
spectrum, and the shape of the ADs all depend signifi-
cantly on the initial state symmetry. The results presented
here are thus more appropriate than ZRP-based predic-
tions of either ATT features for inert gases (other than He)
or ATD features of negative ions having valence p elec-
trons (for which experiments are in progress [11]).

In the QQES approach, the decay of a bound state,
Jo(r), in the potential U(r) having the energy E, =
—(h?k?)/2m and subjected to a monochromatic laser field
F(r) = F coswt is described by the periodic in time QQES
wave function ®.(r, ), which satisfies outgoing-wave
boundary conditions. It is the solution of the eigenvalue
Schrodinger equation [12],

2
[iﬁi + e+ E—A - U(r) — |e|choswt}D€(r, 1) =0,
at 2m
(n

for the complex quasienergy, € = Ree — iI'/2, where I
is the total decay rate of the state i (r).

We assume that the potential U(r) supports a shallow
bound state i (r), having angular momentum /, and van-
ishes outside a radius r = r.. Owing to the known asymp-
totic form of an initial bound state i (r),

(0,0 = C; r e Y, (F), )

our assumption of a shallow bound state means that
kr, < 1. Ey and C; are regarded as parameters of the
problem. To obtain the complex quasienergy e, we
generalize the method used in Refs. [9,10] for time-
independent Hamiltonians to our time-dependent case.
The general idea is that at small r (r =< r.) the interaction
potential with the laser field may be neglected compared
to the binding potential U(r), whereas at large r (r > r,)
we can construct the general solution of Eq. (1) as a wave
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packet composed of free electron states in a laser field,
i.e., for U(r) = 0. The equation for € may then be ob-
tained by properly matching the solutions of Eq. (1) in the
small-7 and large-7 regions at some point r = r.. The key
simplification is that the solution of Eq. (1) inside a short-
range potential U(r) (i.e., for r < r,) is independent of the
shape of U(r), in accord with effective range theory. Since
any solution of Eq. (1) has the quasienergy form,
D (r, 1) => Pi“(r)exp(—iswt), we represent it for
small r as follows (cf. [10,13]):

d (r, 1)~ Ylm(f’)z:[r’l’1 + -+ r'B)(e + shw)]f,

X exp(—iswt), (3)

where the f, are Fourier-coefficients of a periodic func-
tion f.(1) = Y, f,exp(—iswt), and where

21 — DRI+ DUBJE) = — 1/a; + rk2/2,
k* = 2mE/R2.

The parameters a; and r; are the scattering length and the
effective range [13], which may be expressed in terms of
x and C; [9,10]. Thus, the wave function (3) retains the
spatial symmetry of the initial state ¢,(r) [cf. Eq. (2)].
However, its radial dependence involves the irregular
solution ( ~ r~ '~ at r — 0) for the potential U(r).

Next, starting from Eq. (1) with U(r) = 0, we seek a
solution which satisfies the outgoing-wave boundary con-
dition for r — oo and has the singularity ~r~ /"1y, (?) at
r — 0. For this purpose we introduce the function

V(o) =27 ] et/ f (NGO, 1, 1), (4)

where G'*) is the retarded Green’s function for a free
electron in the laser field F(r). One easily verifies that
Xe(r, 0, 1) is the solution of Eq. (1) with U(r) = 0 having
an outgoing-wave form at large r and the singularity

[1 — (—e - 2ka)? + %(1 +e+ 2ka))}

~r~! at r— 0. The solution ®(r, ) with the proper

singularity at r — 0 may be obtained from y.(r, r/, r) by
acting on it with the differential operator ¥;,,(9/dr’) and
then setting r’ = 0 (cf. Refs. [9,10]). For p states, the
desired solution ®(r, ) is proportional to

9 \l-lml( 9 0 \Iml
<a_z’> (a_)c/+lma_yl> P07 | S )

Taking into account the Feynman form for G™) in terms
of the classical action S(r, #; 1/, ¢), the QQES wave func-
tion for a p state may be presented as

\/3_1' 0 eier+iS(r,t;0,z—T)
(I)E(r, t) = Cl g‘/o dTT

X [;@Yl,m(f’) + 8,00(1, T)i|fe(t -7),
(6)

where

2F[ . 2 | ot | T
o(t,7) = —[smw(f — ) — —sin— smw<f — tﬂ

w T 2 2
In Eq. (6) and below we use the following scaled units:
the laser amplitude F is measured in units of Fy =
V2m|Ey|3/|e|h, and energies and fiw in units of |E]|.
Since the interaction with a laser field destroys the spheri-
cal symmetry of the problem, only the initial angular
momentum projection, m, is conserved; thus, the QQES
wave function (6) involves (laser field-induced) angular
momentum components with any [ = |m| [14]. Analysis
of Eq. (6) shows that, as for the ZRP model [6], the
function f.(r) involves only even Fourier harmonics,
fs = fo, for both m =0 and |m| = 1. Expanding
@, (r, 1) in Eq. (6) in r up to terms ~r, projecting it
onto the spherical harmonic Y;,,(#), and comparing the
result with Eq. (3), we obtain an infinite homogeneous
system of linear equations for f5; and e:

fo = Z[Mk,k'(f) + SmoMiw (€)1f 2, @)

k'

where the matrix elements M, and M, involve integrals of Bessel functions J;_y(x) (cf. [6]).
The n-photon ATD amplitude, A,, for electron ejection in the direction n = r/r is given by the nth Fourier
coefficient in the asymptotic form of ®(r, ¢) in Eq. (6) at |r| — oo and may be presented as (cf. Ref. [7] for [ = 0):

m = 3
A () =i 1\/4——Wc1kn§(—1>"fzk

inf
X [& Opm+1 T (cos@ -

V2

where 6@ is the angle between n and F, k, =

6+nw—up,

& u 2Fk, cosf
Z Js(ﬁ )Jn+2572k<T )

§=—00

M >5m‘0 :|’ (8)

2k2 cosf

and u, is the scaled ponderomotive shift

U, = e’F*/(4mw?), ie., u, = U,/|Eogl = F?/(2w?). The n-photon differential detachment rate is given by

Aty m) _ o1 i A0 m)le ®)

dQ

Our quantum approach justifies analytically the Keldysh result [4] for tunnel ionization (in particular, it resolves a
longstanding problem regarding which gauge must be used in Keldysh-like theories [15]) and provides clear evidence of
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FIG. 1. ATD spectra in scaled units (s.u.) (along the polar-
ization axis, § = 0) as a function of electron energy in units of
U, for H™ (s state; thin lines) and F~ (p state; thick lines) at
the same scaled parameters: w = 0.203, F = 0.2835. Solid
lines: exact results; dashed lines: the KA results. Solid circles
mark the positions of ATD peaks (up to n = 67). Results for F~
are multiplied by the factor 6.24 in order that the maximum
rates are the same in the H™ and F~ ATD spectra.

“rescattering” effects. Indeed, for not too high F (F <
1) and low frequencies [y = (w/F) < 1], it is reasonable
to expect that the time dependence of f.(¢) in Eq. (3) is
weak and to retain only the coefficient f,_y = 1. Then the
KA result for A, follows from our exact Eq. (8) by
neglecting all coefficients f,; except fo = 1 and setting
€ = E; = —1. In the KA limit our numerical results (see
the dashed curves in Fig. 1) are in close agreement with
KA results by Gribakin and Kuchiev [8]. Thus, the KA
corresponds to an approximate (particular) solution of
Eq. (1), ie., the wave packet (6) with f, =1 and € =
E,y. The general solution (6), however, involves higher
harmonics of f.(¢#) as well, which correspond to the
shifted quasienergy, € — € + sw [see Eq. (3)], and, in
classical terminology, the terms with & # 0 in the ATD
amplitude (8) describe rescattering effects.

To present our numerical results we choose w = 0.203;
this corresponds to A = 1.8 um (or iw = 0.689 eV) for
the F~ ion (for which |Ey| = 3.4 eV and C; = 0.84 a.u.),
as in the experiment [11]. We present also results for H™
for the same scaled laser parameters @ and F (note that
the scaled unit of intensity I = F? for F~ is Ip- = 1.37 X
10'* W/cm? = 91.5Iy-). Figure 1 shows a number of
marked differences between results for p and s states in
the strong field regime (for the Keldysh parameter y =
w/F = 0.715). In both cases the KA breaks down (and
thus the onset of the plateau occurs) at approximately the
same electron energy (i.e., ~3.8U, for the s state and
~4.4U, for the p state) [16] and the plateau cutoffs
correspond to the well-known classical estimate,
~10U, [3]. However, the interference pattern near the
onset energy is much more pronounced for F~, and the
height of the plateau (relative to the KA part of the ATD
spectrum) for p states exceeds that for s states by an order
of magnitude on average.

053003-3

As a result of interference between ‘““direct” and “‘re-
scattered” electrons near the plateau onset, for p states
the ATD spectrum in Fig. 1 decreases (on average) less
precipitously with energy than for s states. Such behavior,
as well as the relation between the KA and high-energy
parts of the spectrum, are in better qualitative agreement
with experiments for the inert gases [17] (other than He,
for which the s-state ATD spectrum is more relevant [18]).
Figure 2 presents 3D ADs. One sees that the p state (F~)
AD differs considerably from that for the s state (H™).
The two ADs have similar shapes only near and beyond
the cutoff [where only a few coefficients f,; with k =
kmax contribute to the amplitude (8); see below]. On the
plateau one observes also a clear periodicity of the ADs
with energy (or n). However, the AD for F~ is much more
localized about 6 = 0°(along the direction of F) and
exhibits a more pronounced side-lobe structure near the
plateau onset.

These results are consistent with the assumption that
the relative enhancement of the p-electron plateau is
caused mostly by a decrease of the KA part of the
spectrum with increasing initial angular momentum.
Figure 3 presents numerical evidence supporting this

{(n-s) ores jswyoseleq)bo]

(('n's) ayes Juawyoelaq)bo

FIG. 2 (color online). Photoelectron ADs for (a) H™ and
(b) F~ for the same laser parameters as in Fig. 1. The solid
curves parallel to the # axis mark the ADs at the onset of the
plateaus, i.e., at E, = 3.8U, (n = 28) for the s state and E, =
4.37U, (n = 31) for the p state. The first open ATD channel is
nyp = 10

053003-3
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FIG. 3. The spectra of coefficients f,; for laser parameters as
in Fig. 1. Squares: / = m = 0; solid circles: / = 1, m = 0; open
circles: /=1, m = *1. The arrow marks the cutoff at
2kpax @ = 1+ 3.1732u,, (see text).

assumption: the coefficients f5; for k = 0 that are respon-
sible for the plateau have about the same magnitude for
the cases of / =0 and / = 1, m = 0. The suppression of
coefficients for m = =1 (cf. Fig. 3) is expected, since
rescattering stems mostly from the S-wave component
of (6), whereas for m = =1 there is none; rescattering
for higher / components is suppressed by the centrifugal
barrier. The most spectacular feature of Fig. 3 is the
plateaulike structure of the f,; spectrum, which in turn
leads to plateau features in the ATD spectrum. A detailed
analysis for different F and w predicts the cutoff in
the f,; spectrum to occur at k= k,,., where (in
abs. units) Ey + 2kyfiw = E,, and where &, =
4U ,sin*(wA1/2) = 3.1732U, is the well-known maxi-
mum energy of a classical electron, produced with zero
velocity in a laser field, that returns to the same point r
after a time interval At [19]. This connection of the cutoff
in the quantum coefficients f,, with the purely classical
quantity, £, gives clear evidence of classical features in
the behavior of a bound electron in a strong laser field.

In conclusion, we have presented the first quantum
analysis of strong field ATD spectra for a weakly bound
electron with initial angular momentum / in a short-
range potential U(r). Our treatment encompasses the
well-known KA result as a limiting case and demon-
strates how the classical rescattering model follows
from our quantum analysis. Our predicted enhancement
of plateau effects and modification of ADs for valence
p electrons may be useful for quantitatively de-
scribing negative ion ATD and qualitatively describing
rare gas ATL

This work was supported by NSF Grant No. PHY-
0070980, by Grant No. E00-3.2-515 of the Russian
Ministry of Education, and by the UNL Research
Computing Facility.
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