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PHYSIOLOGY, BIOCHEMISTRY, AND TOXICOLOGY

Differential Immersion Survival by Populations of Cicindela hirticollis
(Coleoptera: Cicindelidae)

MATHEW LOUIS BRUST, WILLIAM WYATT HOBACK, KERRI FARNSWORTH SKINNER,
AND CHARLES BARRY KNISLEY'

Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849

Ann. Entomol. Soc. Am. 98(6): 973-979 (2005)

ABSTRACT In the past 20 yr, populations of Cicindela hirticollis Say (Coleoptera: Cicindelidae) that
inhabit river shorelines have declined dramatically. These habitats have routinely flooded in winter
and spring historically, but they have been altered by damming and controlled water releases for
irrigation and power generation. We tested the ability of C. hirticollis larvae from two river and one
bayshore population to survive immersion in severely hypoxic water. This is the first report of
population-level differences among insects in immersion survival and likely relates to exposure to
different flooding regimes. The larvae from the Chesapeake Bay population survived ~3 d of im-
mersion, and those from river populations survived about a day longer. Despite survival differences
between riverine and seashore populations, recovery times after exposure to severe hypoxia were
comparable. Second and third instars from the seashore population had similar survival at 9.0 and
16.5°C. Survival times of larvae more than doubled under aerated conditions. Adults survived >30 h
of immersion in severely hypoxic water, substantially longer than reported for other tested tiger beetle
species. Although riverine populations survive longer periods of immersion, dams cause habitats used
by riverine populations of this species to be inundated for weeks at a time, far longer than larvae were
able to survive under hypoxic or aerated conditions in the laboratory. Thus, alteration of flooding
regimes and subsequent larval habitat immersion is probably a major cause of the observed decline
of riverine populations of C. hirticollis. Moreover, these data represent the first report of significant
physiological differences among populations of an insect species exposed to different frequencies of

immersion and thus have both important experimental and evolutionary implications.

KEY WORDS Cicindelidae, tiger beetle, anoxia, soil moisture, flooding.

NATURAL RIVERS UNDERGO FLUCTUATIONS in water level,
the extremes of which vary by geography and seasonal
precipitation. Seasonal floods maintain heterogeneity
within riparian floodplains, creating distinct regener-
ation zones among plants (Naiman and Decamps
1997) and leaving many areas without vegetation.
Over the past century, human alterations to rivers,
such as damming and channelization, have signifi-
cantly affected river flow, flooding cycles, and habitat
immersion periods. The negative impact of dams on
North American fish species is well documented
(Moyle and Nichols 1974, Bain et al. 1988, Moyle and
Williams 1990, Frissell 1993, Ricciardi and Rasmussen
1999). Changes to terrestrial systems adjacent to
dammed rivers include prolonged periods of high and
low water levels, siltation, and vegetative encroach-
ment of downstream areas. Many terrestrial species
such as Cicindela hirticollis Say use these riparian ar-
eas, having life cycles adapted to annual flooding.
Although these specialized habitats have become in-
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creasingly altered by human activities, relatively few
studies have examined the potential impacts of habitat
changes on terrestrial floodplain inhabitants. The
careful documentation of carabid species may be use-
ful in understanding historic flooding regimes (Ellis et
al. 2001); however, despite the importance of terres-
trial invertebrates in ecosystem function, there is little
knowledge of the impacts of flooding on them.
Tiger beetles in the genus Cicindela (Coleoptera:
Cicindelidae) occupy a broad range of habitats, usu-
ally occurring in areas with exposed soil such as stream
and pond edges, dunes and blowouts, seashores, salt
flats, and open patches in grasslands (Pearson 1988,
Larochelle and Lariviere 2001). The larval stages for
most tiger beetle species are soil-dwelling, long-lived,
and sedentary (Knisley and Hill 1992, Pearson and
Vogler 2001). Many of the areas inhabited by tiger
beetles are subject to occasional flooding (Willis 1967,
Wilson 1974, Knisley and Schultz 1997, Pearson 1988),
which maintains open soil areas by scouring or drown-
ing vegetation and depositing sediment (Naiman and
Decamps 1997). The ability of tiger beetle larvae to
survive prolonged periods of immersion has been
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known for more than a century since Hamilton (1885)
reported active Cicindela repanda Dejean larvae in
burrows that had been submerged under ~1.7 m of
water for 1 wk. Willis (1967) and Wilson (1974) re-
corded larval activity in habitats submerged for peri-
ods exceeding 2 wk.

Because of their adaptations to specific environ-
ments, many tiger beetle species are sensitive to hab-
itat changes and may be especially vulnerable to the
effects of hydrologic change. In fact, several “water-
edge” tiger beetle species have experienced sharp
declines in both abundance and distribution over the
past century, including Cicindela columbica Hatch,
Cicindela dorsalis dorsalis Say, Cicindela gabbii Horn,
Cicindela marginipennis Dejean, Cicindela puritana
Horn, and several subspecies of C. hirticollis (Nagano
1980, Shook 1981, Knisley and Schultz 1997, Laro-
chelle and Lariviere 2001).

C. hirticollis Say inhabits moist, sandy substrates
such as river sandbars, lake and ocean beaches, and
areas between dunes (Larochelle and Lariviere 2001).
It prefers clean moist sand and does not occur in areas
with heavy silt (Graves et al. 1988). The distribution
of C. hirticollis extends across much of the continent
from central Canada to Mexico, including both the
Pacific and Atlantic Coasts of North America (Graves
et al. 1988). Eleven subspecies are currently recog-
nized (Graves et al. 1988), and at least three of these
have declined seriously in the past 30 yr (Nagano 1980,
Dunn 1981, Larochelle and Lariviere 2001, Knisley
2003). Cicindela hirticollis rhodensis Calder is threat-
ened in much of its former range in New England
(Dunn 1981, Larochelle and Lariviere 2001) and has
declined severely along the Great Lakes (M.L.B., un-
published data). In addition, Cicindela hirticollis grav-
ida LeConte is extinct over most of its former range in
the southern half of California (Nagano 1980; Laro-
chelle and Lariviere 2001). Cicindela hirticollis
abrupta Casey once occurred in five limited areas
within ~8,000 km? on the Sacramento and Feather
rivers in central California (Knisley and Schultz 1997),
and its recent dramatic decline in distribution and
abundance is thought to be the result of prolonged
inundation or other habitat changes associated with
the Oroville and Shasta dams (Knisley 2003).

The greatest population declines of C. hirticollis
(sensu latu [s.1.]) have been observed among inland
populations, particularly in riverine habitats, whereas
populations of C. hirticollis (s.l.) in the Chesapeake
Bay region have persisted in good numbers (C.B.K,,
personal observation). Under natural conditions, lar-
val habitats along rivers may be inundated for several
days at a time and usually only several times per year.
Because of the decline of this species across a geo-
graphically broad area, and because dams have altered
water flow and shoreline inundation, we designed
experiments to test immersion tolerance of C. hirti-
collis (s.l.) larvae from two riverine populations. Be-
cause of easy access to large numbers of larvae and
their distinct pattern of inundation, we also tested
larvae from a Chesapeake Bay population. In addition,
adults from this population were tested for immersion

ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA

Vol. 98, no. 6

tolerance. Because this species is frequently exposed
to immersion, we hypothesized that C. hirticollis (s.1.)
larvae would be more resistant to immersion and hyp-
oxia than previously tested North American species
(Cicindela togata globicollis Casey and Amblycheila
cylindriformis Say). Despite our expectations that ti-
ger beetle larvae from different populations of the
same species would respond similarly to immersion
and hypoxia, we found significant differences in sur-
vival. This observation serves as an important re-
minder that experimental assumptions should be
tested (Riggins and Hoback 2005) because popula-
tions of any species exposed to different selection
pressures may vary physiologically.

Materials and Methods

Organisms. C. hirticollis (s.1.) adults and larvae are
active from April to September (Knisley and Schultz
1997). Third instars of C. hirticollis hirticollis Say (n =
36) for our experiment were collected from the Rap-
pahannock River ~18 km upstream from the Chesa-
peake Bay, Middlesex County, 11 km west northwest
of Deltaville, VA. Hereafter, these larvae are referred
to as VA riverine. Third instars of C. hirticollis shelfordi
Graves (n = 45) were collected from Calamus Res-
ervoir, ~12 km northwest of Burwell, Loup County,
Nebraska, and Harlan County Reservoir, Harlan
County, Nebraska, ~6 km south of Republican City.
These larvae were pooled and are hereafter referred
to as NE riverine. Second instars, third instars, and
adults of C. hirticollis hirticollis were obtained from
Virginia on the shorelines of the Chesapeake Bay in
Northumberland County, 6 km north northeast of
Reedville. Although this population occurs along a
bay, they will be referred to as the seashore population
for convenience. Larvae were collected in July, Au-
gust, and September 2003 and 2004, and adults were
collected in September 2003. Larvae were collected
by using a trowel to block their retreat into the bur-
row. Adults were collected with an aerial net. Animals
were maintained in the lab in containers with wet sand
from their habitats and were fed apterous fruit flies. All
experiments took place within 2 wk of collection of
larvae and adults. After the experiments, voucher
specimens of adults and second and third instars of
C. hirticollis hirticollis and C. h. shelfordi were depos-
ited in the insect collection at the University of Ne-
braska at Kearney.

Larval Immersion. To simulate flooding, larvae
were immersed individually in 15-ml screwcap vials
following the methods of Hoback et al. (1998). The
vials were filled with dechlorinated tap water, which
was bubbled with nitrogen to produce severely hy-
poxic water (<0.1 ppm dissolved oxygen). It was nec-
essary in many cases to force the larvae to the bottom
of the vial with a small piece of wet tissue because they
floated readily. The vials were then gently tapped to
dislodge any trapped air bubbles. The vials were
placed in unlit environmental chambers at 9.0 and
16.5°C. In all experiments, the 16.5°C temperature was
selected to simulate typical water temperatures under
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flooding conditions after summer rains. The cooler
temperature was selected to simulate temperatures of
bottom waters (hypolimnetic waters) of dammed
lakes, which are released for irrigation or for power
generation. For example, in the range occupied by
C. h. abrupta, Sacramento River water is 8-10°C when
released from the Shasta Dam (Bettelheim 2001).

At 24-h intervals, we removed subsets of five or 10
larvae from each group immersed in hypoxic water.
These larvae were individually placed on moist sand in
small containers. Larvae were checked for recovery
after 24 h. Larvae that did not resume movement and
dig a burrow in the sand were recorded as dead. Third
instars of the two riverine populations (36 from Vir-
ginia and 45 from Nebraska) were tested for immer-
sion tolerance at 16.5°C. From the seashore popula-
tion, a total of 64 second and 93 third instars were
tested. Second (n = 25) and third instars (n = 65)
were tested at 16.5°C. In addition, second (n = 35) and
third (n = 28) instars were tested at 9°C. Subsets of five
larvae were removed at ~24-h intervals and allowed to
recover following the methodology of the previous
tests. As controls, a set of second (n = 5) and third
(n = 5) instars from the seashore population and third
instars from each of the riverine populations (n = 5)
were placed individually in empty vials with a small
piece of moist paper towel (to prevent desiccation) at
each experimental temperature. These larvae were
checked each time that immersion survival was
checked. In all cases, they suffered zero mortality over
the course of the experiments.

All immersion data were analyzed using Toxstat 3.4
(Western Ecosystems Technology, Inc., Cheyenne,
WY.) to calculate lethal time to 50% mortality (LT,)
and 95% confidence intervals (CI). Because of the
difficulty of obtaining large numbers of larvae of the
inland populations of C. hirticollis standard statistical
analyses were not applied. Rather, significant differ-
ences in survivorship were judged by nonoverlapping
confidence intervals (Hoback et al. 1998, 2000).

Immersion in Aerated Water. Because flowing wa-
ter in natural habitats may replenish dissolved oxygen
and Zerm et al. (2004) showed oxygen uptake by
immersed tiger beetle larvae, we tested larval survival
in aerated water. Third instars (n = 30) from the
seashore population were submerged in individual
5-ml vials covered with pantyhose (to prevent escape,
but allow water movement) and placed in ~4 liters of
water, which was bubbled with an aquarium pump.
The container was placed in the 16.5°C environmen-
tal chamber, and the water was close to air saturation
(9.2 ppm dissolved oxygen as measured with an YSI
model 30 dissolved oxygen meter). Sets of five larvae
were removed at 24, 48, 72, 120, 168, and 192 h, and
those that did not resume activity after 24 h were
recorded as dead.

Postimmersion Recovery. Because survival times
differed markedly between populations, a second set
of experiments was conducted to determine whether
populations of C. hirticollis (s.l.) differed in postim-
mersion recovery times. Third instars from each pop-
ulation were immersed in severely hypoxic water by
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the same methods as the immersion survival experi-
ments, but at 20°C. Subsets of five larvae from each of
the three populations were removed at 2, 6, 16, and
24 h. The larvae were placed on their sides or backs in
the plastic containers with moist sand as before, except
that the containers were not closed, and the larvae
were observed throughout the recovery period. Larval
recovery was determined as the time to the nearest
minute when larvae were able to immediately right
themselves again when flipped over with a wire. Re-
covered larvae usually began to burrow within 10 min.
A two-way analysis of variance (ANOVA) was used to
test for differences in recovery time among popula-
tions.

Adult Immersion Tolerance. Because adult tiger
beetles dig burrows before periods of inactivity (Knis-
ley and Juliano 1988) and could become immersed by
increases in water level, we also tested adult survival
of immersion. Thirty adults from the seashore popu-
lation were immersed in severely hypoxic water and
placed in a 16.5°C environmental chamber. Sets of five
adults were removed at ~8-h intervals and placed on
moist sand; those that did not resume activity after 24 h
were recorded as dead.

Results

Larval Immersion. Under severely hypoxic condi-
tions at 16.5°C, third instars from the NE riverine
populations survived significantly longer periods than
larvae from the seashore population (Fig. 1). All NE
riverine larvae survived 4 d of immersion at 16.5°C;
LT5, and 95% CI for third instars was 108.42 = 6.8 h.
The LT, and 95% CI for the seashore population was
79.10 = 15.8 h. Neither was significantly different from
the VA riverine population, which had a LT, and 95%
CI of 101.70 + 165 h (Fig. 2).

Mean survival times were similar at both 9 and
16.5°C (Fig. 3) for second and third instars from the
seashore population. The LTx, and 95% CI was 77.96 +
20 h for third instars and 85.72 = 19.8 h for second
instars at 9°C. At 16.5°C the LTy, and 95% CI for
second instars from the seashore population was
59.84 + 20 h.

Immersion in Aerated Water. Third instars placed
in aerated water survived much longer than those in
hypoxic water (Fig. 4). The LTy, for third instars
under aerated conditions at 16.5°C was 177.01 = 26 h
and was significantly greater than the 79.10 + 158 h
LTy, in severely hypoxic water.

Postimmersion Recovery. The recovery times after
immersion did not differ between the populations
tested. The ratio of recovery time to immersion time
was between 0.068 and 0.081 min of the immersion
time for all trials (Fig. 5). A two-way ANOVA showed
no differences in recovery times between populations
(P =0.72).

Adult Immersion Tolerance. As the adults were
immersed, they struggled for 1 to 3 min and then
stopped moving and seemed dead. However, adults
survived up to 72 h of immersion (Fig. 6), which was
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Fig. 1.
(*) represents no survival of larvae tested.

significantly less than larvae. Adults had an LTy, of
34.96 = 6.9 h at 16.5°C.

Discussion

Although larvae of C. hirticollis (s.1.) survived 1-5d
of immersion, the substantial difference in immersion
survival of different populations was an unexpected
result of this study (Fig. 2). Larvae of the NE riverine
population survived hypoxia significantly longer than
the seashore population. Survival of larvae from the
VA riverine population was intermediate between the
other two populations but more similar to the NE river
population (Fig. 2). The differences in immersion
survival between populations of the same species are
most likely the result of different selection pressures
within their habitats. The majority of the C. h. hirti-
collis larvae along the shoreline of the Chesapeake Bay
is found above the normal high tides and rarely inun-
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Fig. 2. Comparison of LT, and 95% CI for three popu-
lations of C. hirticollis under severe hypoxia at 16.5°C. Dif-
ferent letters above bars represent significant differences as
judged by nonoverlap of 95% CI

Comparison of third instar survival after immersion at 16.5°C between three populations of C. hirticollis. Asterisk

dated, whereas those within the intertidal zone are
only submerged for about an hour or less during high
tide periods (C.B.K., unpublished data). Riverine pop-
ulations are often exposed to flooding that can last for
several days, and this has likely led to populations
dominated by individuals with higher immersion tol-
erance.

Before this study, it was assumed that differences in
anoxia tolerance among tiger beetles were a species-
level trait that reflected adaptations to specific selec-
tion pressures (Hoback et al. 2000, Hoback and Stan-
ley 2001). However, based on our results, abiotic
factors can select differences in physiological re-
sponse at the population level that are not species
specific. These differences have been previously dem-
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Fig.3. Survival of second and third instars of C. hirticollis

from seashore population immersed in severely hypoxic wa-
ter at 16.5 and 9°C. Bars represent percentage of larvae
surviving. Asterisk (*) represents no data.
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Fig. 4. Survival of third instars of C. hirticollis immersed
in severely hypoxic or aerated water. Bars represent per-
centage of larvae surviving at 16.5°C.

onstrated experimentally with populations of Dro-
sophila melanogaster (Meigen) (Gibbs et al. 2003).
Future genetic testing of C. hirticollis (s.].) popula-
tions could reveal the genetic mechanism that confers
hypoxia resistance in tiger beetle larvae.

Previous studies found remarkable resistance to
flood-induced hypoxia among different species of ti-
ger beetle larvae (Table 1). Moreover, Phacoxantha
klugii Chaudoir larvae slowly flooded in their burrows
and then placed in a nitrogen environment survived an
average of 26 d at 29°C (Zerm and Adis 2003). The
differences in survival by A. cylindriformis, which in-
habits dry clay banks away from water, and P. klugii,
an inhabitant of floodplains of the Amazon River, are
expected. However, the substantial differences we
found in immersion tolerance among C. h. hirticollis
larvae from seashore and riverine populations were
surprising. In fact, the two populations of C. h. hirti-
collis from Virginia where larvae were collected were

120

I Seashore
| | == VAriver
100 mmm NE river

80 A

60 -

40 1

20 A

Recovery time (minutes)

2 6 16 24
Exposure time (hours)

Fig. 5. Comparison of mean recovery time (*+SE) after
exposure to anoxia in three populations of C. hirticollis third
instars.
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Fig. 6. Survival of adult C. hirticollis immersed in se-
verely hypoxic water. Bars represent percentage of adults
surviving at 16.5°C.

only ~20 km apart and yet exhibited different (al-
though not significant) immersion tolerances. The NE
riverine population was similar in immersion toler-
ance to the VA riverine population despite being a
different subspecies, C. hirticollis shelfordi.

Hoback et al. (1998) found no difference in survival
between third instars of C. togata, a North American
salt flat species, exposed to aerated or severely hypoxic
water. However, C. h. hirticollis larvae from the sea-
shore habitat survived [>3 times longer in aerated
water than larvae from the same population in hypoxic
water (Fig. 4). Unfortunately, larvae from riverine
populations were unavailable to test for survival in
aerated water. In riverine habitats, larvae could re-
main in burrows and continue to extract dissolved
oxygen from flowing water. Aquatic respiration also
may help to explain the differential survival between
the seashore and riverine populations, because wave
action along seashores might maintain aerated condi-
tions and prevent larvae from being exposed to severe
hypoxia. Zerm et al. (2004) found P. klugii larvae to
extract dissolved oxygen from water and maintain
metabolic rates between 22 and 4% of the rates in air.

Table 1. Comparison of published of tiger beetle anoxia tol-
erance (in hours)

T(ffé“)p C. hirticollis®  C. togata”®  A. cylindriformis  P. klugii®
9 77.96
10 >240
15 127.1

16.5  79.10 (seashore)
101.70 (riverine)
108.42 (riverine)

20 1319

25 102.2 34

29 136.8
35 25.7

“ Present study.

” Hoback et al. (1998).
¢ Hoback et al. (2000).
@ Zerm and Adis (2003).
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Dissolved oxygen levels were found to be reduced
with time in areas adjacent to the larval spiracles and
the authors suggest that larvae maintain a small bubble
of air at the spiracular opening and obtain oxygen by
diffusion though a plastron.

Because we observed survival differences among
populations of C. hirticollis (s.l.), we hypothesized
that inland populations were suppressing their me-
tabolism further than seashore populations as an ad-
aptation to longer flooding duration. We anticipated
riverine populations would recover more slowly from
immersion. However, in all three populations tested,
the relationship between recovery time and anoxia
exposure was found to be linear (Fig. 4). These results
suggest that differences in metabolic depression are
unlikely. Another mechanism, such as different an-
aerobic end products (Hoback and Stanley 2001),
might be the cause of the differences observed be-
tween populations.

In addition to the unexpected results for larval
C. hirticollis (s..), adult C. h. hirticollis are substan-
tially more tolerant of immersion in anoxic water than
other species examined. Zerm and Adis (2003) found
that adults of P. klugii died after <6 h in a nitrogen
environment, and Hoback et al. (1998) found C. togata
adults survived <3 h of immersion. In comparison,
adult C. h. hirticollis survived 35 h in anoxic water, and
one adult recovered after 72 h (Fig. 6). This was
similar to adults of another tiger beetle, Megacephala
(Tetracha) sobrina Dejean, that survived 24-30 h of
immersion (Adis and Messner 1997). These authors
suggested that adults survive by trapping a bubble of
air beneath the elytra. We suggest that adults of
C. hirticollis (s.l.) are able to survive immersion by
similar means. Although the reason for adults having
high tolerance to drowning is unknown, the life cycle
of C. hirticollis (s.1.) may offer an explanation. C. hir-
ticollis (s.1.) is amember of a large group of spring—fall
active U.S. species that most often overwinter as adults
and would be exposed to winter submergence along
river edge habitats, unlike C. togata, which has a sum-
mer life cycle and overwinters only as larvae (Pearson
and Vogler 2001).

Human-induced changes to aquatic ecosystems, in-
cluding damming, channelization, and bank stabiliza-
tion, have had negative impacts not only on aquatic
organisms but also on terrestrial organisms in adjacent
areas (Layzer et al. 1989). Because C. hirticollis (s.1.)
seems to be adapted to regular flooding cycles and
specific habitat requirements, dam construction and
intensive recreational use of sandy shorelines likely
contribute to the decline of this species across much
of its range. Although such human activities have
likely affected other terrestrial insect species, some
water-edge tiger beetle species such as C. repanda and
Cicindela oregona LeConte seem less affected. Con-
tinuing investigations into the mechanisms that allow
immersion survival and the effects of dams on terres-
trial invertebrates are critical to understanding eco-
system function in these water-edge ecosystems.

ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA

Vol. 98, no. 6

Acknowledgments

We thank Dawn Adams for assistance in arranging for a
research permit for the work at Point Reyes National Sea-
shore related to this study. We gratefully acknowledge the
assistance of Chris Nagano (U.S. Fish and Wildlife Service,
Sacramento Field Office) for interest, support, and facilita-
tion of financial support for this work (U.S. FWS contract nos.
10181-3-M374 and 10181333M375). The University of Ne-
braska at Kearney Department of Biology and University of
Nebraska Research Services Council also provided support
for this work.

References Cited

Adis, J., and B. Messner. 1997. Adaptations to life underwa-
ter: tiger beetles and millipedes. Ecol. Stud. 126: 319-330.

Bain, M. B., J. T. Finn, and H. E. Booke. 1988. Streamflow
regulation and fish community structure. Ecology 6: 382-
392.

Bettelheim, M. 2001. Temperature and flow regulation in
the Sacramento River and its effect on the Sacramento
pikeminnow (Ptychocheilus grandis). California Depart-
ment of Fish and Game, Central Valley Bay-Delta, CA.

Dunn, G. A. 1981. Tiger beetles of New Hampshire. Cicin-
dela 13: 1-28.

Ellis, L. M., C. S. Crawford, and M. C. Molles. 2001. Influ-
ence of annual flooding on terrestrial arthropod assem-
blages of a Rio Grande riparian forest. Regil. Rivers Res.
Manag. 17: 1-20.

Frissell, C. A. 1993. Topology of extinction and endanger-
ment of native fishes in the Pacific Northwest and Cali-
fornia (U.S.A.). Conserv. Biol. 7: 342-354.

Gibbs, A. G., Fukuzato, F., and Matzkin, L. M. 2003. Evo-
lution of water conservation mechanisms in Drosophila.
J. Exp. Biol. 203: 1183-1192.

Graves, R. C., M. E. Krejci, and C. F. Graves. 1988. Geo-
graphic variation in the North American tiger beetle,
Cicindela hirticollis Say, with a description of five new
subspecies (Coleoptera: Cicindelidae). Can. Entomol.
120: 647-678.

Hamilton, J. 1885. Hibernation of Coleoptera. Can. Entomol.
17: 35-38.

Hoback, W. W., D. W. Stanley, L. G. Higley, and
C. M. Barnhart. 1998. Survival of immersion and anoxia
by larval tiger beetles, Cicindela togata. Am. Midl. Nat.
140: 27-33.

Hoback, W. W., J. E. Podrabsky, L. G. Higley, D. W. Stanley,
and S. C. Hand. 2000. Anoxia tolerance of con-familial
tiger beetle larvae is associated with differences in energy
flow and anaerobiosis. J. Comp. Physiol. B Biochem. Syst.
Environ. Physiol. 170: 307-314.

Hoback, W. W.,and D. W. Stanley. 2001. Insectsin hypoxia.
J. Insect Physiol. 47: 533-542.

Knisley, C. B. 2003. A status review of the Sacramento Val-
ley tiger beetle, Cicindela hirticollis abrupta. Report to
U.S. Fish and Wildlife Service, Sacramento Field Office,
CA.

Knisley, C. B., and S. A. Juliano. 1988. Survival, develop-
ment, and size of larval tiger beetles: effects of food and
water. Ecology 69: 1983-1992.

Knisley, C. B.,and J. M. Hill. 1992. Effects of habitat change
from ecological succession and human impact on tiger
beetles. Va. J. Sci. 43: 335-340.

Knisley, C. B., and T. D. Schultz. 1997. The Biology of Tiger
Beetles and a Guide to the Species of the South Atlantic
States. Special Publication No. 5, Virginia Museum of
Natural History, Martinsville, VA.



November 2005

Larochelle, A., and M. C. Lariviere. 2001. Natural history of
the tiger beetles of North America north of Mexico.
Cicindela 33: 41-162.

Layzer, J. B., T. J. Nehus, W. Pennington, J. A. Gore, and
J. M. Nestler. 1989. Seasonal variation in the drift below
a peaking hydroelectric project. Regul. Rivers Res.
Manag. 3: 29-34.

Moyle, P. B, and R. D. Nichols. 1974. Decline of the native
fish fauna of the Sierra Nevada foothills, central Califor-
nia. Am. Midl. Nat. 92: 72-83.

Moyle, P. B.,and J. E. Williams. 1990. Biodiversity lossin the
temperate zone: decline of the native fish fauna of Cal-
ifornia. Conserv. Biol. 4: 275-284.

Nagano, C. D. 1980. Population status of the tiger beetles of
the genus Cicindela (Coleoptera: Cicindelidae) inhabit-
ing the marine shoreline of southern California. Atala 8:
33-42.

Naiman, R. J., and H. Decamps. 1997. The ecology of inter-
faces: riparian zones. Annu. Rev. Ecol. Syst. 28: 621-658.

Pearson, D. L. 1988. Biology of tiger beetles. Annu. Rev.
Entomol. 33: 123-147.

Pearson, D. L., and A. P. Vogler. 2001. Tiger beetles: the
evolution, ecology, and diversity of the cicindelids. Cor-
nell University Press, Ithaca, NY.

BRUST ET AL.: IMMERSION SURVIVAL IN C. hirticollis

979

Ricciardi, A., and J. B. Rasmussen. 1999. Extinction rates
of North American freshwater fauna. Conserv. Biol. 13:
1220-1222.

Riggins,J. R.,and W. W. Hoback. 2005. Diurnal tiger beetles
(Coleoptera: Cicindelidae) capture prey without sight.
J. Insect Behav. 18: 305-312.

Shook, G. 1981. The status of the Columbia tiger beetle
(Cicindela columbica Hatch) in Idaho. Pan-Pac. Entomol.
57: 359-363.

Willis, H. L. 1967. Bionomics and zoogeography of tiger
beetles of saline habitats in the central United States
(Coleoptera: Cicindelidae). Univ. Kans. Sci. Bull. 48: 145-
313.

Wilson, D. A. 1974. Survival of cicindelid larvae after flood-
ing. Cicindela 6: 79-82.

Zerm, M., and]J. Adis. 2003. Exceptional anoxia resistance in
larval tiger beetle, Phaeoxantha klugii (Coleoptera: Cicin-
delidae). Physiol. Entomol. 28: 150-153.

Zerm, M., D. Zinkler, and J. Adis. 2004. Oxygen uptake and
local PO, profiles in submerged larvae of Phaecoxantha
klugii (Coleoptera: Cicindelidae), as well as their meta-
bolic rate in air. Physiol. Biochem. Zool. 77: 378-389.

Received 27 December 2004; accepted 31 July 2005.




	Differential Immersion Survival by Populations of Cicindela hirticollis (Coleoptera: Cicindelidae
	

	tmp.1208878494.pdf.MLJt9

