
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Industrial and Management Systems Engineering
Faculty Publications Industrial and Management Systems Engineering

1994

A Simplified Method for the Bilinear s-z
Transformation
Dan M. Scott
University of Nebraska-Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/imsefacpub

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Article is brought to you for free and open access by the Industrial and Management Systems Engineering at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Industrial and Management Systems Engineering Faculty Publications by an authorized
administrator of DigitalCommons@University of Nebraska - Lincoln.

Scott, Dan M., "A Simplified Method for the Bilinear s-z Transformation" (1994). Industrial and Management Systems Engineering
Faculty Publications. 73.
http://digitalcommons.unl.edu/imsefacpub/73

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imse?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/imsefacpub/73?utm_source=digitalcommons.unl.edu%2Fimsefacpub%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages

IEEE TRANSACTIONS ON EDUCATION, VOL. 31, NO. 3, AUGUST 1994

~

289

A Simplified Method for the
Bilinear s--x Transformation

Dan M. Scott

Abstract-A new technique for performing the bilinear trans-
formation of polynomials is presented. The technique is both
simple to understand as well as efficient in its computer im-
plementation. The key to the method is the way in which the
successive derivatives of a particular polynomial are computed.
A simple recursion formula is used which can be done either
by hand, if desired, or by computer. The order of complexity of
the algorithm is found to be O(n*), while storage requirements
are O(n), where n is the degree of the polynomial. The new
method will handle completely general bilinear transformations.
A computer implementation is presented which was found to be
satisfactory for both precision and speed.

I. INTRODUCTION

HE bilinear transformation of a variable in a polynomial T arises in several situations in the theory of discrete time
systems. For instance it is a fundamental step in designing dig-
ital filters [l], switched capacitor filters [2]-[4], and sampled
data control systems [5] from a specified rational function of
a continuous time system. In this respect the operation is the
conversion of the polynomial

n

Q(s) = C b i s i
i = O

to the polynomial
T l

P(Z) = a i 2
i=O

where

Actually, LJ irm of the bilinear transformation v

and Fielder [9] improved the computational complexity of
the matrix method. Jury [l l] showed how the setting up
of the matrix might be further simplified, but left the order
of complexity of the method unchanged. Jury and Chan
[12] have given a comprehensive discussion of the matrix
method. They considered a variety of specific bilinear trans-
formations and showed how the matrix method might be
used to solve these transformations. A simpler method has
been proposed by Davies [13]. In his method a sequence
of simpler transformations are performed on the polynomial
which together result in the bilinear transformation. Synthetic
division plays an important role in his method. Davies' work
is computationally superior to the others as it matches their
computational complexity and uses less storage space. Also,
unlike other papers, Davies shows how his method can be
used for almost all possible bilinear transformations (certain
special cases were not considered). Ismail and Vakilzadian [151
presented another approach based on the theory of continued
fractions.

The method presented here is an altemative which offers
great simplicity as well as computational efficiency.

11. THE ALGORITHM
We wish to find P (z) where

(3)

ich is most
often used is when a = 1, ,6 = -1, 15 = 1, and y = 1
and, except as noted, this is the specific case of the bilinear
transformation considered in the papers discussed below.

Closed forms for the ak in terms of the bk have been
given [6], but such closed form solutions are of little practical
consequence since they require much unwieldy and compli-
cated algebraic manipulation [7]. To avoid this, a variety
of different computational methods have been proposed by
various authors [7]-[15]. Power [7] first presented a matrix
method to obtain the coefficients of P(z) . Then Power [8]

Manuscript received February 1992; revised February 1993.
The author is with the Department of Industrial and Management Systems

Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-05 18 USA.
IEEE Log Number 9403874.

n

We shall see that it is convenient to write P (z) in the following
form:

n

P(2) = b;(az + p) i (S Z + y y
i = O

(5)
ij>O

i+j=n

where the final sum, as indicated, runs over all nonnegative
integers i and j whose sum is n. The ci,j coefficients must
be defined by

ci,j = bj for all integers i, j 2 0 such that i + j = n.
(6)

0018-9359/94$04.00 0 1994 IEEE

~~ ~

290 IEEE TRANSACrIONS ON EDUCATION, VOL. 37, NO. 3, AUGUST 1994

Now it may seem that writing P (z) in the form (5) is just 111. AN EXAMPLE
adding an unnecessary complication by doubly subscripting
the coefficients, c;,j, when there is no need. However, we
shall see that this notation will actually be quite helpful to us
in our development. (Values for c;,j when i + j # n will soon
be defined.)

This section will illusmate the method on the same example
used in [15]. For this problem we have the COmOn case
where a = 1, P = -1, 6 = 1, = 1. suppose that
the polynomial, is given as

It is easily seen from (2) that Q(s) = 12 + 14s + 17s’ + lls3 + 5s4 + s5 (14)

(7)

The above equation shows how the various coefficients, U k ,

of P (z) can be computed if all orders of derivatives of P (z)
evaluated at z = 0 are known. Our problem, then, is seen to
reduce to the efSlcient evaluation of these derivatives. Consider
the following differentiation:

i+j=n

= ca,g{i6(6z+y)i-1(az+P)j

+ja(6z + y) ; (az + py-1)
iJ20

i+j=n

= [(i + 1)6Ci+l,j + (j + Wi,j+ll

(6z + y) i (az + P) j

i , j>O
i+j=n-l

(9)

= Ci,j(6Z + y) i (az + P) j (10)
i , j > O

i+j=n-1

Notice that the ci,j of (10) (where i + j = n - 1) are defined
in terms of the c;,j of (8) (where i + j = n) by the recursion
formula

(1 1)

It should be noted that the form of the derivative in (10)
is identical to the form of P (z) in (8). Thus the same
argument could be applied to P’(z) to obtain P”(z). In fact
the argument can be repeated as many times as desired to

c;,j = (2 + l)SCi+l,j + (j + l)QCi,j+l.

In calculating the ci,j it is convenient to use a table. The
complete table is shown below, followed by a discussion of
how it was computed and how it should be interpreted and
used.

l o 1 2 3 4 5 1
7200 2544 540 82 10 1
4656 1464 294 42 5 -
1596 438 84 11 - -
386 90 17 - - -
74 14 - - - -
12 - - - - -

The numbers on the left edge of the table are the values of
i; the numbers on the top edge of the table are the values
of j , and the numbers in the body of the table are the ci,j.
To generate this table the values of bo, bl, . . ., b5 are entered
up the diagonal where i + j = 5. This is from (6). Then
the recursion formula (1 1) is used to generate the remaining
entries. For example

cg,i = (4)(1)Cq,l + (2)(1)C3,2 = 4(14) + 2(17) = 90.

Proceeding in this fashion the ci , j ’s are computed along each
‘diagonal’ in turn until finally CO,O = 7200 is computed.

One interpretation of this table is that it shows us represen-
tations for P(z)and its derivatives. For example, by reading
up the diagonal on which i + j = 3 and making use of (12)
we see that

P”(z) = 386(z + 1)3 + 438(z + 1)2(z - 1)l
+294(z + l)l(~-l)~ +82(~-1)~

We may now use (13) to determine the coefficients ak of P(z) :

obtain all higher order derivatives of P(z) . Specifically, if we
repeat the argument IC times the result is

uo = (12 - 14 + 17 - 11 + 5 - l)/O! = 8,
a1 = (74 - 90 + 84 - 42 + lO)/l! = 36,
a2 = (386 - 438 + 294 - 82)/2! = 80,
a3 = (1596 - 1464 + 540)/3! = 112,
a4 = (4656 - 2544)/4! = 88,
a5 = (7200)/5! = 60.

i+j=n-k

where the ci,j satisfy (6) and the recursion formula (1 1). (Note
that ci,j values when i + j > n are not defined and are of no
interest.) From this we easily obtain Thus P (z) = 8 + 362 + 802’ + l12z3 + 88z4 + 60z5,

which agrees with the result obtained in [HI. (Note that the
ak = - - {P(z) } = - ci,jyiPj (13) altemating pattem of signs in the computation above results

from the fact that y iPj = (-1)j.)
One refinement of this procedure is worth noting. If we

define

1

i ! j > O k! dzk z=o k !
i+j=n-k

Note that in case either y or ,I3 is zero we interpret 0’ as 1.
Equations (6), (l l) , and (13) may now be used to compute r;,j = bj for all integers i, j 2 0 such that i + j = n.
P(z>* (15)

SCOTC SIMPLIFIED METHOD FOR BILINEAR s-z TRANSFORMATION

~

29 1

and compute the other r i , j ’ s by the recursion formula double sum, alpha, beta, delta, gamma;
double *r, *beta-powers, *gamma-powers;

printf(”P1ease enter alpha, beta, delta, and

scanf(”%lf %If %If %If ’, &alpha, &beta, &delta,

ri,j = [(i + 1)6ri+l,j + (j + l)a~i,j+l]/(n - i - j) . (16)

gamma in that order ”);

&gamma);

The reader may verify that these r i j values will satisfy

where k is defined by i + j = n - k (17) r ’ , - ci,3
2 J k!

This means that

.”. i , j>O i , j>O
i+j=n-k i+j=n-k

Use of the ri,j’s is slightly superior from a computational
standpoint since it lessens the likelihood of an overflow on
the computer and reduces the size of the numbers in the table
if one is doing hand calculations. (Incidentally, the r;,j will
always be integers as long as a, p. 6, y, and the bi coefficients
are all integers.)

Iv. COMPUTATIONAL ANALYSIS AND PROGRAM

The new algorithm was extremely simple to program. It
was programmed in C and run on some example problems
on a NeXTStation computer. (The NeXTStation is based on
a Motorola 68040 CPU running at 25MHz.) The code was
based on the refined method mentioned above which uses the
rZj values. In the interests of efficiency it was observed that it
is not actually necessary to declare a two dimensional array to
hold these rij values. This is because only a few of them are
needed at any one time. In fact it turns out that we need only
declare an array which is big enough to hold all the coefficients
of Q(s) (i.e. bo, b l , . . . , bn). Thus the memory requirements
are trivial even for very large problems. For convenience, two
other arrays of similar size are declared which are used to hold
the powers of p and y. The number of operations performed
is also quite modest. The ‘guts’ of the algorithm (that is,
all except for input/output) requires 2n(n + 2) floating point
multiplications, n(n + 1)/2 floating point divisions, n(n + 1)
floating point additions or subtractions. This makes the method
competitive with any of the alternatives. For special cases such
a s theusua la= l ,p=- l ,S= l , andy=lbo th thenumber
of operations and the storage requirements can be more than
halved-but requirements are already so low that it would
be pointless to specialize the code. A listing of the program
together with a sample run are given below. First the program
listing:

#includei stdlib.hi
#include jstdio.hi

main()

int Order, k, j;
{

printf(”P1ease enter the order of Q(s): ”);
scanf(”%d”, &Order);

r = (double *) malloc((Order+l)*sizeof(double));
beta-powers = (double *) malloc((Order+l)*

gamma-powers = (double *) malloc((Order+l)*
sizeof(doub1e));

sizeof(doub1e));

betapowers[O] = gamma-powers[O] = 1;
for U=l ; ji=Order; j++)

{
betapowerslj] = beta*beta-powerslj- 11;
gammapowerslj] = gamma*gamma-powerslj- 11;

1

printf(”Now enter the coefficients of Q(s) in

for (k=O; ki=Order; k++) scanf(”%lf‘, r+k);
ascending order \n”);

for (k=O; kiOrder; k++)

{
sum = 0.0;
for Q=O; ji=Order-k; j++) sum +=

for (j=O; jiOrder-k; j++) rljl =
((Order-k-j)*delta*ru] +

beta~powerslj]*gamma~powers[Order-k-j] *rlj];

(j+ l)*alpha*rlj+ l])/(k+ 1);
r[Order-k] = sum;

1
for (k=O; ki=Order; k++)
printf(”a[%d]=%20.17le\n”,k,r[Order-k]);

And now the sample run:

Please enter alpha, beta, delta, and gamma in
that order 1 -1 1 1
Please enter the order of Q(s): 10
Now enter the coefficients of Q(s) in ascending

292 IEEE TRANSACTIONS ON EDUCATION, VOL. 37, NO. 3, AUGUST 1994

order
1 6.392453 20.43 1729 42.802061 64.882396
74.233429 64.882396 42.802061 20.431729
6.392453 1
a[O]= 5.7929999999970505Oe-03
a[l]= -1.06581410364015030-14
a[2]= l.O9289500000024020e+00
a[3]= -1.1368683772161603Oe-13
a[4]= 2.65985379999981430Ml
a[5]= 4.547473508864641 2Oe- 13
a[6]= 1.8828380599999673Oe+02
a[7]= 0.00000000000000000e+00
a[8]= 4.62768261000000170eM2
a[9]= 0.00000000000000000e+00
a[lo]= 3.4525070700000003Oe+02

The example run above is for the same tenth order Butter-
worth low-pass filter presented in [15]. As observed there, the
symmetry of this polynomial means that the coefficients on
the odd power terms should equal zero. The (small) nonzero
numbers observed in the output are due to finite precision
of the double precision floating point numbers used in the
program.

An investigation into the accuracy of results obtained from
this program was performed. Random polynomials of degree
200 were generated, and the s--z transformation was performed
both by the program above as well as by a similar (though
vastly slower) program written in Mathematica which used
a precision of 100 digits. A comparison of the coefficients
obtained showed that in all of the examples tested the largest
relative error obtained was less than Though, obvi-
ously, computer speed varies considerably from one machine
to another, one may get a general idea of the speed of
the algorithm by the fact that the average execution time
(exclusive of inpuqoutput time) for a polynomial of degree
200 on the NeXTStation was 0.175 seconds.

v. SUMMARY

In this paper a new technique for computing an arbi-
trary bilinear transformation was presented. An analysis of
the number of floating point operations necessary using this
approach shows that 2n(n + 2) multiplications, n(n + 1)/2
divisions, and n(n + 1) additions are required. The mem-

ory requirements were only O(n) compared to O(n2) for
almost all other methods. This makes it competitive with
any of the alternatives. Unlike other approaches, this method
is completely general-any bilinear transformation can be
performed, even in cases where one or more of the a, /?,
6, or +y are zero. The simplicity of the method makes it
appropriate for class explanation and hand calculation. An
efficient computer implementation was written in C, and was
found to be satisfactory for both precision and speed.

REFERENCES

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En-
glewood Cliffs, NJ: hentice-Hall, 1975.
M. S . Lee and C. Chang, “Low sensitivity switched-capacitor ladder
filters,” IEEE Trans. Circuits Syst., vol. CAS-27, pp. 475480, June
1980.
K. Martin and A. S. Sedra, “Exact design of switched capacitor
bandpass filters using coupled-biquad structures,” IEEE Trans. Circuifs
Syst., vol. CAS-27, pp. 469475, June 1980.
M. Ismail and T. Bacon, “A new approach to synthesis of switched-
capacitor filters in the Z-domain,” Proc. 28th Midwest Symp. Circuits
Syst., Aug. 1985, pp. 386-389.
E. I. Jury, Inners and Stability of Dynamic Systems. New York: Wiley,
1974.
E. I. Jury, Theory and Application of the Z-Transform Method. New
York: Wiley, 1964.
H. M. Power, “The mechanics of the bilinear transformation,” IEEE
Trans. Educ., vol. E-10, pp. 114-116, June 1967.
H. M. Power, “Comments on the mechanics of the bilinear transforma-
tion,” IEEE Trans. Educ., vol. E-11, p. 159, June 1968.
D. C. Fielder, “Some classroom comments on bilinear transformation,”
IEEE Trans. Educ., vol. E-13, p. 105, Aug. 1970.
K. A. Moore, “An APL program for bilinear transformation,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-22, pp. 225-226,
June 1974.
E. I. Jury, “Remarks on the mechanics of bilinear transformation,”
IEEE Trans. Audio Electro Acoust., vol. AU-21, pp. 380-382, Aug. 1973.

[12] E. I. Jury and 0. W. C. Chan, “Combinitorid-rules for some useful
transformations,” IEEE Trans. Circuit Theory, vol. CT20, pp. 476-480
Sept. 1973.

[13] A. C. Davies, “Bilinear transformation of polynomials,” IEEE Trans.
Circuits Syst., vol. CAS-21, pp. 792-794, Nov. 1974.

[14] C. F. Chen and Y. T. Tsay, “A new formula for the discrete-time system
stability,” Proc. IEEE, pp. 1200-1202, Aug. 1977.

[15] M. Ismail and H. Vakilzadian, “The computer implementation of
bilinear s - z transformation using new continued fraction algorithms,”
IEEE Trans. Educ., vol. 32, pp. 270-219, Aug. 1989.

Dan Scott received his B.S. from Iowa State University in Mathematics and
his Ph.D. from Stanford University in Operations Research.

He has taught Mathematics and Physics at Iowa State University, Mathemat-
ics at Rose-Hulman Institute of Technology, and currently teaches Industrial
Engineering at The University of Nebraska-Lincoln. He has published research
in mathematics, chemistry, physics, genetics, and operations research. His
current research interests include network flow algorithms, combinatorial
optimization, and production scheduling.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1994

	A Simplified Method for the Bilinear s-z Transformation
	Dan M. Scott

	A simplified method for the bilinear s-z transformation - Education, IEEE Transactions on

