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A Simplified Method for the 
Bilinear s--x Transformation 

Dan M. Scott 

Abstract-A new technique for performing the bilinear trans- 
formation of polynomials is presented. The technique is both 
simple to understand as well as efficient in its computer im- 
plementation. The key to the method is the way in which the 
successive derivatives of a particular polynomial are computed. 
A simple recursion formula is used which can be done either 
by hand, if desired, or by computer. The order of complexity of 
the algorithm is found to be O(n*), while storage requirements 
are O(n),  where n is the degree of the polynomial. The new 
method will handle completely general bilinear transformations. 
A computer implementation is presented which was found to be 
satisfactory for both precision and speed. 

I. INTRODUCTION 

HE bilinear transformation of a variable in a polynomial T arises in several situations in the theory of discrete time 
systems. For instance it is a fundamental step in designing dig- 
ital filters [l], switched capacitor filters [2]-[4], and sampled 
data control systems [5] from a specified rational function of 
a continuous time system. In this respect the operation is the 
conversion of the polynomial 

n 

Q(s )  = C b i s i  
i = O  

to the polynomial 
T l  

P(Z) = a i 2  
i=O 

where 

Actually, LJ irm of the bilinear transformation v 

and Fielder [9] improved the computational complexity of 
the matrix method. Jury [ l l ]  showed how the setting up 
of the matrix might be further simplified, but left the order 
of complexity of the method unchanged. Jury and Chan 
[12] have given a comprehensive discussion of the matrix 
method. They considered a variety of specific bilinear trans- 
formations and showed how the matrix method might be 
used to solve these transformations. A simpler method has 
been proposed by Davies [13]. In his method a sequence 
of simpler transformations are performed on the polynomial 
which together result in the bilinear transformation. Synthetic 
division plays an important role in his method. Davies' work 
is computationally superior to the others as it matches their 
computational complexity and uses less storage space. Also, 
unlike other papers, Davies shows how his method can be 
used for almost all possible bilinear transformations (certain 
special cases were not considered). Ismail and Vakilzadian [ 151 
presented another approach based on the theory of continued 
fractions. 

The method presented here is an altemative which offers 
great simplicity as well as computational efficiency. 

11. THE ALGORITHM 
We wish to find P ( z )  where 

(3) 

ich is most 
often used is when a = 1, ,6 = -1, 15 = 1, and y = 1 
and, except as noted, this is the specific case of the bilinear 
transformation considered in the papers discussed below. 

Closed forms for the ak  in terms of the bk have been 
given [6], but such closed form solutions are of little practical 
consequence since they require much unwieldy and compli- 
cated algebraic manipulation [7]. To avoid this, a variety 
of different computational methods have been proposed by 
various authors [7]-[15]. Power [7] first presented a matrix 
method to obtain the coefficients of P(z) .  Then Power [8] 
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n 

We shall see that it is convenient to write P ( z )  in the following 
form: 

n 

P(2)  = b;(az + p ) i ( S Z  + y y  
i = O  

(5) 
ij>O 

i+j=n 

where the final sum, as indicated, runs over all nonnegative 
integers i and j whose sum is n. The ci,j coefficients must 
be defined by 

ci,j = bj for all integers i, j 2 0 such that i + j = n. 
(6) 
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Now it may seem that writing P ( z )  in the form (5) is just 111. AN EXAMPLE 
adding an unnecessary complication by doubly subscripting 
the coefficients, c;,j, when there is no need. However, we 
shall see that this notation will actually be quite helpful to us 
in our development. (Values for c;,j when i + j # n will soon 
be defined.) 

This section will illusmate the method on the same example 
used in [15]. For this problem we have the COmOn case 
where a = 1, P = -1, 6 = 1, = 1. suppose that 
the polynomial, is given as 

It is easily seen from (2) that Q(s)  = 12 + 14s + 17s’ + lls3 + 5s4 + s5 (14) 

(7) 

The above equation shows how the various coefficients, U k ,  

of P ( z )  can be computed if all orders of derivatives of P ( z )  
evaluated at z = 0 are known. Our problem, then, is seen to 
reduce to the efSlcient evaluation of these derivatives. Consider 
the following differentiation: 

i+j=n 

= ca,g{i6(6z+y)i-1(az+P)j 

+ja(6z + y) ; (az  + py-1) 
iJ20 

i+j=n 

= [(i + 1)6Ci+l,j + (j + Wi,j+ll 

(6z + y ) i (az  + P ) j  

i , j>O 
i+j=n-l 

(9) 

= Ci,j(6Z + y) i (az  + P ) j  (10) 
i , j > O  

i+j=n-1 

Notice that the ci,j of (10) (where i + j = n - 1) are defined 
in terms of the c;,j of (8) (where i + j = n) by the recursion 
formula 

(1  1) 

It should be noted that the form of the derivative in (10) 
is identical to the form of P ( z )  in (8). Thus the same 
argument could be applied to P’(z) to obtain P”(z). In fact 
the argument can be repeated as many times as desired to 

c;,j = (2  + l)SCi+l,j + (j + l)QCi,j+l. 

In calculating the ci,j it is convenient to use a table. The 
complete table is shown below, followed by a discussion of 
how it was computed and how it should be interpreted and 
used. 

l o  1 2 3 4 5 1  
7200 2544 540 82 10 1 
4656 1464 294 42 5 - 
1596 438 84 11  - - 
386 90 17 - - - 
74 14 - - - -  
12 - - - - -  

The numbers on the left edge of the table are the values of 
i; the numbers on the top edge of the table are the values 
of j ,  and the numbers in the body of the table are the ci,j. 
To generate this table the values of bo, bl, . . ., b5 are entered 
up the diagonal where i + j = 5. This is from (6). Then 
the recursion formula (1  1) is used to generate the remaining 
entries. For example 

cg,i = (4)(1)Cq,l + (2)(1)C3,2 = 4(14) + 2(17) = 90. 

Proceeding in this fashion the ci , j ’s  are computed along each 
‘diagonal’ in turn until finally CO,O = 7200 is computed. 

One interpretation of this table is that it shows us represen- 
tations for P(z)and its derivatives. For example, by reading 
up the diagonal on which i + j = 3 and making use of (12) 
we see that 

P”(z) = 386(z + 1)3 + 438(z + 1)2(z - 1)l 
+294(z + l)l(~-l)~ +82(~-1)~ 

We may now use (13) to determine the coefficients ak of P(z ) :  

obtain all higher order derivatives of P(z ) .  Specifically, if we 
repeat the argument IC times the result is 

uo = (12 - 14 + 17 - 11 + 5 - l)/O! = 8, 
a1 = (74 - 90 + 84 - 42 + lO)/l! = 36, 
a2 = (386 - 438 + 294 - 82)/2! = 80, 
a3 = (1596 - 1464 + 540)/3! = 112, 
a4 = (4656 - 2544)/4! = 88, 
a5 = (7200)/5! = 60. 

i+j=n-k 

where the ci,j satisfy (6) and the recursion formula ( 1  1). (Note 
that ci,j  values when i + j > n are not defined and are of no 
interest.) From this we easily obtain Thus P ( z )  = 8 + 362 + 802’ + l12z3 + 88z4 + 60z5, 

which agrees with the result obtained in [HI. (Note that the 
ak = - - {P( z ) }  = - ci,jyiPj (13) altemating pattem of signs in the computation above results 

from the fact that y iPj  = (-1)j.) 
One refinement of this procedure is worth noting. If we 

define 

1 

i ! j > O  k!  dzk z=o k !  
i+j=n-k 

Note that in case either y or ,I3 is zero we interpret 0’ as 1. 
Equations (6), ( l l ) ,  and (13) may now be used to compute r;,j = bj for all integers i, j 2 0 such that i + j = n. 
P(z>* (15) 
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and compute the other r i , j ’ s  by the recursion formula double sum, alpha, beta, delta, gamma; 
double *r, *beta-powers, *gamma-powers; 

printf(”P1ease enter alpha, beta, delta, and 

scanf(”%lf %If %If %If ’, &alpha, &beta, &delta, 

ri,j = [(i + 1)6ri+l,j + ( j  + l)a~i,j+l]/(n - i - j ) .  (16) 

gamma in that order ”); 

&gamma); 

The reader may verify that these r i j  values will satisfy 

where k is defined by i + j = n - k (17) r ’  , - ci,3 
2 J  k! 

This means that 

.”. i , j>O i , j>O 
i+j=n-k i+j=n-k 

Use of the ri,j’s is slightly superior from a computational 
standpoint since it lessens the likelihood of an overflow on 
the computer and reduces the size of the numbers in the table 
if one is doing hand calculations. (Incidentally, the r;,j will 
always be integers as long as a, p. 6, y, and the bi coefficients 
are all integers.) 

Iv. COMPUTATIONAL ANALYSIS AND PROGRAM 

The new algorithm was extremely simple to program. It 
was programmed in C and run on some example problems 
on a NeXTStation computer. (The NeXTStation is based on 
a Motorola 68040 CPU running at 25MHz.) The code was 
based on the refined method mentioned above which uses the 
rZj values. In the interests of efficiency it was observed that it 
is not actually necessary to declare a two dimensional array to 
hold these rij values. This is because only a few of them are 
needed at any one time. In fact it turns out that we need only 
declare an array which is big enough to hold all the coefficients 
of Q(s )  (i.e. bo, b l ,  . . . , bn).  Thus the memory requirements 
are trivial even for very large problems. For convenience, two 
other arrays of similar size are declared which are used to hold 
the powers of p and y. The number of operations performed 
is also quite modest. The ‘guts’ of the algorithm (that is, 
all except for input/output) requires 2n(n + 2) floating point 
multiplications, n(n + 1)/2 floating point divisions, n(n + 1) 
floating point additions or subtractions. This makes the method 
competitive with any of the alternatives. For special cases such 
a s theusua la= l ,p=- l ,S= l , andy=lbo th thenumber  
of operations and the storage requirements can be more than 
halved-but requirements are already so low that it would 
be pointless to specialize the code. A listing of the program 
together with a sample run are given below. First the program 
listing: 

#includei stdlib.hi 
#include jstdio.hi 

main() 

int Order, k, j; 
{ 

printf(”P1ease enter the order of Q(s): ”); 
scanf(”%d”, &Order); 

r = (double *) malloc((Order+l)*sizeof(double)); 
beta-powers = (double *) malloc((Order+l)* 

gamma-powers = (double *) malloc((Order+l)* 
sizeof(doub1e)); 

sizeof(doub1e)); 

betapowers[O] = gamma-powers[O] = 1; 
for U=l ;  ji=Order; j++) 

{ 
betapowerslj] = beta*beta-powerslj- 11; 
gammapowerslj] = gamma*gamma-powerslj- 11; 

1 

printf(”Now enter the coefficients of Q(s) in 

for (k=O; ki=Order; k++) scanf(”%lf‘, r+k); 
ascending order \n”); 

for (k=O; kiOrder; k++) 

{ 
sum = 0.0; 
for Q=O; ji=Order-k; j++) sum += 

for (j=O; jiOrder-k; j++) rljl = 
((Order-k-j)*delta*ru] + 

beta~powerslj]*gamma~powers[Order-k-j] *rlj]; 

(j+ l)*alpha*rlj+ l])/(k+ 1); 
r[Order-k] = sum; 

1 
for (k=O; ki=Order; k++) 
printf(”a[%d]=%20.17le\n”,k,r[Order-k]); 

And now the sample run: 

Please enter alpha, beta, delta, and gamma in 
that order 1 -1 1 1 
Please enter the order of Q(s): 10 
Now enter the coefficients of Q(s) in ascending 
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order 
1 6.392453 20.43 1729 42.802061 64.882396 
74.233429 64.882396 42.802061 20.431729 
6.392453 1 
a[O]= 5.7929999999970505Oe-03 
a[l]= -1.06581410364015030-14 
a[2]= l.O9289500000024020e+00 
a[3]= -1.1368683772161603Oe-13 
a[4]= 2.65985379999981430Ml 
a[5]= 4.547473508864641 2Oe- 13 
a[6]= 1.8828380599999673Oe+02 
a[7]= 0.00000000000000000e+00 
a[8]= 4.62768261000000170eM2 
a[9]= 0.00000000000000000e+00 
a[ lo]= 3.4525070700000003Oe+02 

The example run above is for the same tenth order Butter- 
worth low-pass filter presented in [15]. As observed there, the 
symmetry of this polynomial means that the coefficients on 
the odd power terms should equal zero. The (small) nonzero 
numbers observed in the output are due to finite precision 
of the double precision floating point numbers used in the 
program. 

An investigation into the accuracy of results obtained from 
this program was performed. Random polynomials of degree 
200 were generated, and the s--z transformation was performed 
both by the program above as well as by a similar (though 
vastly slower) program written in Mathematica which used 
a precision of 100 digits. A comparison of the coefficients 
obtained showed that in all of the examples tested the largest 
relative error obtained was less than Though, obvi- 
ously, computer speed varies considerably from one machine 
to another, one may get a general idea of the speed of 
the algorithm by the fact that the average execution time 
(exclusive of inpuqoutput time) for a polynomial of degree 
200 on the NeXTStation was 0.175 seconds. 

v. SUMMARY 

In this paper a new technique for computing an arbi- 
trary bilinear transformation was presented. An analysis of 
the number of floating point operations necessary using this 
approach shows that 2n(n + 2) multiplications, n(n + 1)/2 
divisions, and n(n + 1) additions are required. The mem- 

ory requirements were only O(n)  compared to O(n2) for 
almost all other methods. This makes it competitive with 
any of the alternatives. Unlike other approaches, this method 
is completely general-any bilinear transformation can be 
performed, even in cases where one or more of the a, /?, 
6, or +y are zero. The simplicity of the method makes it 
appropriate for class explanation and hand calculation. An 
efficient computer implementation was written in C, and was 
found to be satisfactory for both precision and speed. 
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