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This thesis consists of two parts:

1) A bimodule structure on the bounded cohomology of a local ring (Chapter 1),

2) Modules of infinite regularity over graded commutative rings (Chapter 2).

Chapter 1 deals with the structure of stable cohomology and bounded cohomol-

ogy. Stable cohomology is a Z-graded algebra generalizing Tate cohomology and

first defined by Pierre Vogel. It is connected to absolute cohomology and bounded

cohomology. We investigate the structure of the bounded cohomology as a graded

bimodule. We use the information on the bimodule structure of bounded cohomology

to study the stable cohomology algebra as a trivial extension algebra and to study

its commutativity.

In Chapter 2 it is proved that if a graded, commutative algebra R over a field k is

not Koszul, then the nonzero modules mM , where M is a finitely generated R-module

and m is the maximal homogeneous ideal of R, have infinite Castelnuovo-Mumford

regularity.
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1

Introduction

In this thesis we use homological tools to study commutative rings. Commutative

algebra originated with the study of systems of polynomial equations in several vari-

ables. Their solutions sets are called algebraic varieties. Varieties are studied by the

closely related field of algebraic geometry. The introduction of homological algebra

in the 1950s gave a fresh approach to the subject and provided new directions for

exploration.

In commutative algebra we study modules over a commutative ring R which are

analogues of vector spaces over a field k. Finite dimensional vector spaces are all of

the form kn for some n. It is not true that any finitely generated R-module is of

the form Rn. Modules of the form Rn are called free modules. One way to study a

module is to approximate it by free modules. Iterations of such a construction leads

to objects called free resolutions. To understand resolutions we look for invariants

attached to them, usually through some cohomology theory.

Algebraic geometry studies varieties by studying rings of functions defined on a

neighbourhood of the points on the variety. These rings are local rings, i.e. rings

with an unique maximal ideal. In this thesis we study local rings or graded rings with

unique maximal homogeneous ideal.

In Chapter 1 we study the structure of the stable cohomology of a local ring.

Stable cohomology was introduced, in an unpublished work, by P. Vogel. In [19]

Goichot calls it Tate-Vogel cohomology. It is a generalization of Tate cohomology for
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modules over finite group rings. In commutative algebra this cohomology was studied

by Avramov and Veliche [10] under the name stable cohomology, for it brings out its

relation to the stabilization of module categories.

For modules over graded rings, there is an invariant arising from free resolutions,

namely the Castelnuovo-Mumford regularity, a numerical invariant that controls how

complex a free resolution is. In Chapter 2 we prove that a certain class of modules

has infinite regularity over quotients of polynomial rings. This construction is used to

prove that if a ring admits a module with infinite regularity then any nonzero module

has either infinite regularity or is an extension of modules with infinite regularity.

Next we give more specific descriptions of the main results in each part.

Stable Cohomology

Let (R,m, k) be a local Noetherian commutative ring with unique maximal ideal m

and residue field k = R/m. The ring R is Gorenstein if the injective dimension of R

as ma module over itself is finite. In Chapter 1 we study the structure of the stable

cohomology of a Gorenstein ring.

Stable cohomology ÊxtR and absolute cohomology ExtR are linked to another

cohomology theory, bounded cohomology. In [10] Avramov and Veliche give a de-

scription of bounded cohomology as a left module. In Chapter 1 we give a descrip-

tion of bounded cohomology as a right module and use this structural information

to prove Theorem 1.5.2. Before stating Theorem 1.5.2 we recall that the depth of a

connected k-algebra A is the minimum i such that ExtiA(k,A) 6= 0 and it is denoted

by depth A. The absolute cohomology ExtR(k, k) has a structure of graded k-algebra

so depth ExtR(k, k) is a well-defined numerical invariant of this algebra. Now we can

state the theorem:
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Theorem. If R is a Gorenstein ring of dimension d with depth ExtR(k, k) ≥ 2 then

the stable cohomology algebra is a trivial extension algebra

ÊxtR(k, k) ∼= ExtR(k, k) n Σ1−d TorR(k, k).

This theorem is used to give a complete description of the stable cohomology

algebra for complete intersection rings, which was previously known only for hyper-

surfaces. Noteworthy consequence of Theorem 1.5.2 is

Corollary 0.0.1. The algebra ÊxtR(k, k) is graded-commutative if and only if R is

a complete intersection defined by relations that are at least cubic.

Castelnuovo-Mumford Regularity

In Chapter 2 we turn our attention to quotients of polynomial rings. Let R be the

ring k[x1, . . . , xn]/I with deg xi = di > 0 and I a homogeneous ideal. We denote by

m the maximal homogeneous ideal. If M is a graded R-module then regRM denotes

the Castelnuovo-Mumford regularity of M . The ring R is said to be a Koszul ring

if regRk < ∞. It is known that over Koszul rings every module has finite regularity

and that this characterizes Koszul rings.

If R is not a Koszul ring then there are modules of infinite regularity. In Chapter

3 we identify a class of modules with infinite regularity.

We say that a finitely generated module M is tightly embeddable if there exists a

finitely generated module L such that mM $ mL ⊆ M ⊆ L. Avramov noticed in

[3] that these modules have special homological properties. Nonzero modules of the

form mL for some L are tightly embeddable (by Nakayama). Any nonzero module M

is either tightly embeddable or it is an extension of tightly embeddable modules, we
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just need to notice that k is tightly embeddable by taking L = R/((x2, . . . , xn) +m2).

Theorem. If R is not a Koszul ring, then any tightly embeddable module has infinite

regularity.

This gives us a simple recipe to construct modules with infinite regularity over

rings which are not Koszul: if L is any R-module with mL 6= 0 then mL has infinite

regularity. This Theorem also shows that any nonzero module either has infinite

regularity or is an extension of modules with infinite regularity.
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Chapter 1

A bimodule structure on the bounded cohomology of a local

ring

1.1 Introduction

Stable cohomology associates to every pair (M,N) of R-modules, modules

Êxt
n

R(M,N), n ∈ Z

which are zero if M or N have finite projective dimension. There is a canonical

transformation ι : ExtR → ÊxtR of absolute cohomology to stable cohomology.

We focus on local commutative Noetherian rings (R,m, k) that are not regular,

since in that case Êxt
n

R( , ) = 0 for every n. Under this hypothesis Martsinkovsky

in [27] proved that ι : ExtR(k, k) → ÊxtR(k, k) is an injective map. We want to

understand the algebra structure of ÊxtR(k, k) and to do that we need to determine

the ExtR(k, k)-bimodule structure of the cokernel of ι. The left module structure of

this cokernel was already studied in [10]. We describe the right module structure and

use it to determine the structure of ÊxtR(k, k) for Gorenstein rings for which ι is split

as a map of ExtR(k, k)-bimodules.

We then direct our attention to the complete intersection case, in which we give
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a complete characterization of the algebra structure of ÊxtR(k, k). It depends on the

codimension of the ring.

1.2 DG Lie Algebras and Modules

Let R be a commutative ring. Let g be a DG Lie algebra over R with differential ∂g

(see [2, Chapter 10] for the definition of DG Lie algebra). A DG R-module M is a

(right) DG Lie g-module if there exists a map

M ⊗R g→M

satisfying the following conditions, for m ∈ M and θ, ξ ∈ g, where we denote m ⊗ θ

by m · θ:

1) ∂M(m · θ) = ∂M(m) · θ + (−1)|m|m · ∂g(θ), where ∂M is the differential of M ,

2) m · [θ, ξ] = (m · θ) · ξ − (−1)|θ||ξ|(m · ξ) · θ,

3) m · θ[2] = (m · θ) · θ, for θ ∈ godd,

The definition of DG left g-module is similar.

If M is a DG left g-module we can turn it into a DG right g-module in the following

way

m · θ := −(−1)|θ||m|θ ·m, m ∈M, θ ∈ g,

A routine computation shows that this is indeed an action.

If M and N are DG right g-module then M ⊗R N is a DG right g-module with

action

(m⊗ n) · x := m⊗ (n · x) + (−1)|x||n|(m · x)⊗ n, m ∈M,n ∈ N, x ∈ g,
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similarly for tensor product of left modules.

If g is a graded Lie k-algebra with k a field, we denote by Ug its universal en-

veloping algebra (see [2, Chapter 10] for the definition). Notice that a Lie g-module

is just a Ug-module.

1.3 Stable and bounded cohomology

In this section we recall the construction of stable cohomology. Let R be a commuta-

tive ring, and let L and M be R-modules. Choose projective resolutions P and Q of

L and M , respectively. Recall that a homomorphism P → Q of degree n is a family

β = (βi)i∈Z of R-linear maps βi : Pi → Qi+n; that means an element of the R-module

HomR(P,Q)n =
∏
i∈Z

HomR(Pi, Qi+n) .

This module is the n-th component of a complex HomR(P,Q), with differential

∂(β) = ∂Qβ − (−1)|β|β∂P .

The maps β : P → Q with βi = 0 for i � 0 are called bounded maps and they

form a subcomplex with component

HomR(P,Q)n =
∐
i∈Z

HomR(Pi, Qi+n) for n ∈ Z .

We write ĤomR(P,Q) for the quotient complex. It is showed in [10] that this

complex is independent of the choices of P and Q up to R-linear homotopy, and so
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is the exact sequence of DG EndR(Q)− EndR(P )-bimodules

0 −→ HomR(P,Q) −→ HomR(P,Q) −→ ĤomR(P,Q) −→ 0 . (1.3.0.1)

The stable cohomology of the pair (L,M) is the graded R-module ÊxtR(L,M) with

ÊxtnR(L,M) = Hn(ĤomR(P,Q)) for each n ∈ Z .

The bounded cohomology of the pair (L,M) is the graded R-module ExtR(L,M) with

ExtnR(L,M) = Hn(HomR(P,Q)) for each n ∈ Z .

The sequence (1.3.0.1) defines an exact sequence

ExtR(L,M)
ηR // ExtR(L,M)

ιR // ÊxtR(L,M)
ðR //

ΣExtR(L,M)
ΣηR // Σ ExtR(L,M)

(1.3.0.2)

of graded ExtR(M,M)-ExtR(L,L)-bimodules.

We refer to [10] for a treatment on stable cohomology.

1.4 A bimodule structure on the complex of bounded maps

Let (R,m, k) be a commutative local Noetherian ring. For the rest of the paper F

will denote the acyclic closure of k, i.e. a DG algebra minimial free resolution of k

with divided powers, see [2, 6.3] for details. We denote by DerγR(F ) the subcomplex of

EndR(F ) of the Γ-derivations, i.e. R-linear endomorphisms of F satisfying the Leibniz

rule and respecting the divided power structure of F ; see [2, 6.2.2] for details. The

complex DerγR(F ) is a DG Lie R-subalgebra of EndR(F ), where the Lie structure on
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EndR(F ) is defined as

[θ, ξ] := θξ − (−1)|θ||ξ|ξθ,

ζ [2] := ζ2,

for θ, ξ ∈ EndR(F ), ζ ∈ EndR(F )odd.

Let N be a finitely generated R-module and G a free resolution of N . We want to

define a structure of DG EndR(G)-DerγR(F )-bimodule on HomR(F,R)⊗R (F ⊗R G).

For α ∈ EndR(G), θ ∈ DerγR(F ), ϕ ∈ HomR(F,R), f ∈ F, g ∈ G, we set the left and

right products as follow:

α · (ϕ⊗ f ⊗ g) := (−1)|α|(|ϕ|+|f |)ϕ⊗ f ⊗ α(g),

(ϕ⊗ f ⊗ g) · θ := (−1)|θ|(|f |+|g|)((ϕθ)⊗ f ⊗ g − ϕ⊗ θ(f)⊗ g).

The right action is the tensor product action as defined in Section 1, with right action

on F⊗RG obtained by changing the canonical left action to a right action as explained

in section 1: for θ ∈ DerγR F, f ∈ F, g ∈ G

θ · (f ⊗ g) := θ(f)⊗ g.
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Proposition 1.4.1. Let A be a DG R-algebra, g a DG Lie R-algebra. Assume that

A is also a DG right g-module such that if a, b ∈ A and θ ∈ g then

(ab)θ = a(bθ) + (−1)|θ||b|(aθ)b. (1.4.1.1)

Let M be a DG right A-module that is also a DG right g-module. Let N be a DG

left A-module that is also a DG right g-module. Let a ∈ A,m ∈M,n ∈ N, θ ∈ g and

assume that M and N satisfy the following compatibility conditions:

1) (an)θ = (−1)|θ||n|(aθ)n+ a(nθ)

2) (ma)θ = (−1)|a||θ|(mθ)a+m(aθ)

Then the DG right g-module structure of M ⊗R N induces a DG right g-module

structure on M ⊗A N .

Proof. Condition (1.4.1.1) is needed to ensure that if a, b ∈ A, n ∈ N and θ ∈ g then

((ab)n)θ = (a(bn))θ. In fact

((ab)n)θ = (−1)|θ||n|((ab)θ)n+ (ab)(nθ)

= (−1)|θ|(|b|+|n|)((aθ)b)n+ (−1)|θ||n|(a(bθ))n+ (ab)(nθ).

The first equality comes from the compatibility condition 1) and the second equality

follows from (1.4.1.1). On the other hand

(a(bn))θ = (−1)|θ|(|b|+|n|)(aθ)(bn) + a((bn)θ)

= (−1)|θ|(|b|+|n|)(aθ)(bn) + (−1)|θ||n|a((bθ)n) + a(b(nθ)).

The first equality comes from the compatibility condition 1) and the second equality

follows from (1.4.1.1). The two expressions are the same since N is a DG A-module.
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Similarly one can prove (m(ab))θ = ((ma)b)θ with m ∈M .

Recall that tensor product over A is defined by the exactness of the sequence

M ⊗R A⊗R N
η−→M ⊗R N →M ⊗A N → 0

where η is the map

η : m⊗ a⊗ n 7→ ma⊗ n−m⊗ an.

We need to prove that the image of η is a DG right g-module. Indeed

η(m⊗ a⊗ n)θ = (ma⊗ n)θ − (m⊗ an)θ

= (−1)|θ||n|(ma)θ ⊗ n+ma⊗ nθ − (−1)|θ|(|a|+|n|)mθ ⊗ an−m⊗ (an)θ

= (−1)|θ||n|+|a||θ|(mθ)a⊗ n+ (−1)|θ||n|m(aθ)⊗ n+

+ma⊗ nθ − (−1)|θ||a|+|θ||n|mθ ⊗ an+

− (−1)|θ||n|m⊗ (aθ)n−m⊗ a(nθ)

= (−1)|θ||n|+|a||θ|(mθ)a⊗ n− (−1)|θ||a|+|θ||n|mθ ⊗ an+

+ma⊗ nθ −m⊗ a(nθ)+

+ (−1)|θ||n|m(aθ)⊗ n− (−1)|θ||n|m⊗ (aθ)n.

This proves the proposition.

As a corollary we get

Corollary 1.4.2. The complex HomR(F,R) ⊗F (F ⊗R G) is an EndR(G)-DerγR(F )-

bimodule with structure induced by the bimodule structure of

HomR(F,R)⊗R (F ⊗R G).
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We want to point out that F is a DG left Derγ(F )-module by evaluation, so its

right structure is

f · θ := −θ · f = −θ(f) f ∈ F, θ ∈ DerγR(F ).

The EndR(G)-DerγR(F)-bimodule structure of HomR(F,G) and HomR(F,G) is

given by left and right composition.

Theorem 1.4.3. The following map is a isomorphism of DG EndR(G)-DerγR(F )-

bimodules:

ω : HomR(F,R)⊗F (F ⊗R G)→ HomR(F,G) (1.4.3.1)

ϕ⊗ x⊗ y 7→ (f 7→ (−1)|f ||y|ϕ(xf)y).

Proof. The map ω is bijective since it is the compositions of the following maps

HomR(F,R)⊗F (F ⊗R G)
∼=−→ HomR(F,R)⊗R G

∼=−→ HomR(F,G).

The first map is tensor cancellation and the second map is bijective by [10, 1.3.3].

In the following α ∈ EndR(G);ϕ ∈ HomR(F,R); f, x ∈ F ; y ∈ G; θ ∈ DerγR(F ).

Now we check the left linearity:

ω(α · (ϕ⊗ x⊗ y))(f) = ω((−1)|α|(|ϕ|+|x|)ϕ⊗ x⊗ α(y))(f)

= (−1)|α|(|ϕ|+|x|)+|f ||α(y)|ϕ(xf)α(y),
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and

(α · ω(ϕ⊗ x⊗ y))(f) = α((−1)|f ||y|ϕ(xf)y)

= (−1)|f ||y|+|α||ϕ(xf)|ϕ(xf)α(y).

An elementary computation shows that the signs coincide.

Now for the right action

ω((ϕ⊗ x⊗ y) · θ)(f) = ω((−1)|θ|(|x|+|y|)((ϕθ)⊗ x⊗ y − ϕ⊗ θ(x)⊗ y))(f)

= (−1)|θ|(|x|+|y|)(ω((ϕθ)⊗ x⊗ y)(f)− ω(ϕ⊗ θ(x)⊗ y))

= (−1)|θ|(|x|+|y|)+|f ||y|(ϕθ(xf)y − ϕ(θ(x)f)y)

= (−1)|θ|(|x|+|y|)+|f ||y|ϕ(θ(xf)− θ(x)f)y

= (−1)|θ|(|x|+|y|)+|f ||y|+|θ||x|ϕ(xθ(f))y,

where the last equality holds because θ is a derivation. On the other hand

(ω(ϕ⊗ x⊗ y) · θ)(f) = ω(ϕ⊗ x⊗ y)(θ(f))

= (−1)|θ(f)||y|ϕ(xθ(f))y,

an elementary computation shows that the signs coincide.

Set π(R) = H(DerγR(F )); it is a graded Lie k-algebra. Recall that by Sjödin [30]

Uπ(R) = ExtR(k, k), and recall also that, by the discussion at the end of Section 1, a

right module over π(R) is the same as a right module over Uπ(R). The isomorphism

in Theorem 1.4.3 yields, in homology, an isomorphism of ExtR(N,N)-ExtR(k, k)-

bimodules.



14

Definition 1.4.1. Let A be a DG R-algebra, C a right DG A-module and D a left

DG A-module. Then the following map is called a Künneth map

κ : H(C)⊗H(A) H(D)→ H(C ⊗A D)

[c]⊗ [d] 7→ [c⊗ d].

Where c ∈ C and d ∈ D.

Theorem 1.4.4. Let F be the acyclic closure of k and G a minimal free resolution

of N . Then the Künneth map

κ : H(HomR(F,R))⊗H(F ) H(F ⊗R G)→ H(HomR(F,R)⊗F (F ⊗R G))

is an isomorphism of ExtR(N,N)-ExtR(k, k)-bimodules.

Proof. A straightforward computation shows the bilinearity of the map. We prove

that it is bijective. Let I be a minimal injective resolution of R.
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H(HomR(F,R))⊗H(F ) H(F ⊗R G) H(HomR(F,R)⊗F (F ⊗R G))

H(HomR(F, I))⊗H(F ) H(F ⊗R G) H(HomR(F, I)⊗F (F ⊗R G))

H(HomR(k, I))⊗k H(F ⊗R G) H(HomR(k, I)⊗F (F ⊗R G))

H(HomR(k, I)⊗R G)

H(HomR(k, I))⊗k H(k ⊗R G) HomR(k, I)⊗R G

HomR(k, I)⊗k k ⊗R G HomR(k, I)⊗k k ⊗R G

κ

ϕ1 ϕ2

ψ1 ψ2

id

Where ϕ1, ϕ2 are induced by the map R → I and ψ1, ψ2 are induced by the map

F → k. The map ϕ1 is an isomorphism because the quasi-isomorphism R → I

induces a quasi-isomorphism HomR(F,R)→ HomR(F, I) because of the choice of F .

Similarly for ψ1. The maps ϕ2, ψ2 are isomorphisms because F ⊗R G is a semifree

F -module since it is a graded-free module bounded below over a non negative DG

algebra (see [5] for the definition of semifree DG module. See also [5, Theorem 8.1]).

The bottom map is the identity. The complex HomR(k, I)⊗RG has zero differentials

because G is minimal and HomR(k, I) is a complex of k-vector spaces. The tensor

product H(HomR(k, I))⊗k H(F ⊗RG) is isomorphic to H(HomR(k, I))⊗k H(k⊗RG)

since the tensor product is over a field and H(F⊗RG) ∼= H(k⊗RG). The last equality
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on the left follows by the minimality of I and G. The commutativity of the diagram

follows by the naturality of the Künneth map. This proves that all the horizontal

maps are isomorphisms.

Corollary 1.4.5. The composition

H(ω) ◦ κ : ExtR(k,R)⊗k TorR(k,N)→ ExtR(k,N)

where κ is the Künneth map and ω is the map in (1.4.3.1), is an isomorphism of

ExtR(N,N)-ExtR(k, k)-bimodules.

In [10] Avramov and Veliche ask: what is the right ExtR(k, k)-module structure

on ExtR(k,R)⊗kTorR(k,N) that would make it isomorphic to bounded cohomology?

The previous corollary answers this question.

1.5 Gorenstein rings

The stable cohomology of a pair of modules is zero if R is regular. From now on

we will assume that R is a singular ring (i.e. not regular). If R is Gorenstein, then

ExtR(k,R) ∼= Σ−dk with d = dimR where Σ is the suspension functor, hence by

Corollary 1.4.5

ExtR(k,N) ∼= Σ−d TorR(k,N)

as ExtR(N,N)-ExtR(k, k)-bimodules. This is because Σ−dk⊗k TorR(k,N) is isomor-

phic to Σ−d TorR(k,N) as ExtR(N,N)-ExtR(k, k)-bimodules.

We will use the following notation

S = ÊxtR(k, k), E = ExtR(k, k), B = ExtR(k, k).
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In [10, 5.1.8] (and [27, Theorem 6]) it is proved that the map ηR for the pair (k, k) in

the sequence (1.3.0.2) is zero, yielding an exact sequence of E-bimodules

0→ E ι−→ S → ΣB → 0. (1.5.0.1)

Definition 1.5.1. Let k be a field and A a graded k-algebra with A0 = k and Ai = 0

for all i < 0. Let M be a graded left A-module. Set

ΓiM := {µ ∈M | A≥iµ = 0} and ΓM =
∞⋃
i=0

ΓiM.

The left torsion E-subbimodule of S is

T := ΓS.

Lemma 1.5.1. If S = ι(E)⊕T ′ for some graded E-subbimodule T ′ of S, then T ′ = T

and

T ′ ∼= Σ1−d TorR(k, k)

as graded E-bimodules.

Proof. Our hypothesis and (1.5.0.1) implies that T ′ is isomorphic to ΣB as graded

E-bimodules. By [10, (7.3.2)] B = ΓB, hence the following containments hold

T ′ = ΓT ′ ⊆ ΓS = T .

By [10, (7.3.4)] one has ι(E) ∩ T = (0), and since S = ι(E)⊕ T ′ we deduce T ⊆ T ′;

this gives us

T = T ′.
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Definition 1.5.2. Let k be a field and A a graded k-algebra with A0 = k and Ai = 0

for all i < 0. Let M be a graded left A-module. The depth of M over A as

depthAM = inf{n ∈ N | ExtnA(k,M) 6= 0}.

Definition 1.5.3. Let A be a graded k-algebra with k a field. Let M be a graded

A-bimodule. The trivial extension algebra of A by M is an algebra denoted by AnM

with underlying bimodule A⊕M and product given by

(a,m) · (b, n) := (ab, an+mb).

Theorem 1.5.2. If R is a Gorenstein ring with depth E ≥ 2, then the stable coho-

mology algebra is a trivial extension algebra,

S ∼= E n Σ1−d TorR(k, k).

Proof. By [10, 7.2(3)] if depth E ≥ 2 then S = ι(E) ⊕ T as E-bimodules, hence by

Lemma 1.5.1 T ∼= Σ1−d TorR(k, k) as graded E-bimodules. By [10, 9.2(3)] T · T = 0,

hence S is a trivial extension of ι(E) and T .

Remark 1.5.3. We recall that R is a complete intersection if its completion R̂ with

respect to the m-adic topology is the quotient of a regular local ring by an ideal

generated by a regular sequence.If R is a complete intersection then by [10, 8.3]

depth E = codimR, hence any complete intersection with codimR ≥ 2 satisfies the

hypothesis of Theorem 1.5.2. The structure of S for hypersurfaces is already known,

see [12, (10.2.3)] (see also [10, 8.4]). In this case, stable cohomology ÊxtR(k, k) is a

central localization of absolute cohomology ExtR(k, k).
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1.6 Commutativity

We recall that by [30] (see also [18]) the algebra ExtR(k, k) is

graded-commutative if and only if R is a complete intersection R̂ = Q/I with (Q, n)

regular ring, I generated by a regular sequence, and I ⊆ n3.

In the following F is the acyclic closure of k and G a free resolution of N . We

compute ExtR(N,N) using the complex EndR(G). We compute TorR(k,N) using

the complex F ⊗R G. The ExtR(N,N)-ExtR(k, k)-bimodule structure of TorR(k,N)

is defined, in a more general setting, in Section 1.4. Let [α] ∈ ExtR(N,N) and

[Σifi ⊗ gi] ∈ TorR(k,N) then

[α] · [Σifi ⊗ gi] = [Σi(−1)|α||fi|fi ⊗ α(gi)].

Let [θ] ∈ π(R), then

[Σifi ⊗ gi] · [θ] = −[Σi(−1)|θ|(|fi|+|gi|)θ(fi)⊗ gi].

Lemma 1.6.1. Let (R,m, k) → (R′,m′, k′) be a local homomorphism such that the

R-module R′ is flat and R′ ⊗R k ∼= k. Let N be a finitely generated R-module and let

N ′ be the R′-module R′ ⊗R N . There are isomorphisms of algebras

α : R′ ⊗R ExtR(k, k)→ ExtR′(k
′, k′)

β : R′ ⊗R ExtR(N,N)→ ExtR′(N
′, N ′).

The canonical map ϕ : R′ ⊗R TorR(k,N) → TorR
′
(k′, N ′) is bijective and β-α-

covariant.
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Proof. We denote by F ′ and G′ the complexes R′ ⊗R F and R′ ⊗R G respectively.

Consider the canonical map of algebras

β̂ : R′ ⊗ HomR(G,G)→ HomR′(G
′, G′).

This map fits in the following commutative diagram

R′ ⊗R HomR(G,G) R′ ⊗R HomR(G,N)

HomR′(G
′, G′) HomR′(G

′, N ′)

β̂

where the horizontal maps are quasi-isomorphisms and the right vertical map is an

isomorphism. It follows that the left vertical map is a quasi-isomorphism. Now we

set β = H(β̂).

Consider the canonical map of DG Lie algebras

α̂ : R′ ⊗R DerγR(F )→ DerγR′(F
′).

We denote by DiffγRF and DiffγR′F
′ the modules of Γ-differentials of F and F ′ respec-

tively, see [2, Proposition 6.2.3] for the definition and its properties. The map α̂ fits

in the following commutative diagram

R′ ⊗R DerγR F R′ ⊗R HomF (DiffγRF, F )

DerγR′ F
′ HomF ′(DiffγR′F

′, F ′)

α̂
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where the horizontal maps are isomorphisms because of [2, Proposition 6.2.3]. The

same argument used to prove that β̂ is a quasi-isomorphism shows that the right map

in the previous diagram is a quasi-isomorphism. By commutativity of the diagram

then α̂ is a quasi-isomorphism. We set α = H(α̂).

Tensor cancelation yields an isomorphism

ϕ̂ : R′ ⊗R F ⊗R G→ F ′ ⊗R′ G′.

We set ϕ = H(ϕ̂). A straightforward computation shows that ϕ is β-α-covariant.

Definition 1.6.1. Let A be a graded k-algebra and M a graded A-bimodule. We say

that M is symmetric if for every m ∈M and a ∈ A

am = (−1)|a||m|ma.

Theorem 1.6.2. If R is a complete intersection R̂ = Q/I with I generated by a reg-

ular sequence, (Q, n) regular ring, I ⊆ n3, then TorR(k, k) is a symmetric ExtR(k, k)-

bimodule.

Proof. First we want to know how π(R) acts on TorR(k, k).

By Lemma 1.6.1 we can assume that R is complete and R = Q/I with n =

(a1, . . . , ae), I = (f1, . . . , fc), Q regular, f1, . . . , fc a Q-sequence and I ⊆ m2. Write

fi = Σj≤krijkajak

Let F be an acyclic closure of k over R. If a ∈ Q we denote by ā the class of a in R.
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Then by [31]

F = R〈x1, . . . , xe, y1, . . . , yc | ∂(xi) = āi, ∂(yi) = Σj≤kr̄ijkājxk〉

is an acyclic closure of k over R. Since R is a complete intersection, by [30] π(R) is

generated as a k-vectorspace by elements ξ1, . . . , ξe of degree 1 and elements χ1, . . . , χc

of degree 2, where e is the embedding dimension of R and c its codimension. These

generators are classes of derivations of F defined as follows

ξt(xi) = δit and ξt(yi) = −Σj≤tr̄ijtxj

χt(xi) = 0 and χt(yi) = δit

The generators (as an algebra) of degree 1 of TorR(k, k), which is H(F ⊗R F ), are the

classes of

xi ⊗ 1− 1⊗ xi i = 1, . . . , e

and the generators of degree 2 are the classes of

yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi

for i = 1, . . . , c.

Now we check how the derivations act on these generators

ξj · (xi ⊗ 1− 1⊗ xi) = −1⊗ δij

(xi ⊗ 1− 1⊗ xi) · ξj = δij ⊗ 1

χt · (yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) = −1⊗ δti



23

(yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) · χt = −δti ⊗ 1

ξt · (yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) =

− Σj≤tr̄ijtxt ⊗ 1− Σj≤tr̄ijt ⊗ xj + Σt≤kr̄itk ⊗ xk + Σj≤tr̄ijt ⊗ xj

(yi⊗1 + Σj≤kr̄ijkxk⊗xj−Σj≤kr̄ijk⊗xkxj−1⊗ yi) · ξt = Σj≤tr̄ijtxj⊗1−Σj≤tr̄ijt⊗xt.

So

ξj · (xi ⊗ 1− 1⊗ xi) = −(xi ⊗ 1− 1⊗ xi)ξj

χt · (yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) =

(yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) · χt

so only the action of elements of degree 1 on elements of degree 2 might break the

symmetry, but the rijk are in m because I ⊆ n3. So applying ε⊗ F , where ε : F → k

is the augmentation, to

ξt · (yi ⊗ 1 + Σj≤kr̄ijkxk ⊗ xj − Σj≤kr̄ijk ⊗ xkxj − 1⊗ yi) =

− Σj≤tr̄ijtxt ⊗ 1− Σj≤tr̄ijt ⊗ xj + Σt≤kr̄itk ⊗ xk + Σj≤tr̄ijt ⊗ xj

(yi⊗1 + Σj≤kr̄ijkxk⊗xj−Σj≤kr̄ijk⊗xkxj−1⊗ yi) · ξt = Σj≤tr̄ijtxj⊗1−Σj≤tr̄ijt⊗xt.

we get zero, the left and right product of a derivation of degree 1 on a cycle of degree

2 is zero. We just proved that the action of π(R) is symmetric, but ExtR(k, k) ∼=

Uπ(R) and by [30] ExtR(k, k) is graded-commutative, hence the action of ExtR(k, k)

is symmetric.
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Example 1.6.3. We show that TorR(k, k) is not in general symmetric. Let R =

k[[x, y]]/(xy), and denote by x̄, ȳ the classes of x and y in R. The acyclic closure of

k over R is

F = R〈T1, T2, S | ∂T1 = x̄, ∂T2 = ȳ, ∂S = x̄T2〉.

Consider the cycle

z = S ⊗ 1 + T2 ⊗ T2 − 1⊗ T2T1 − 1⊗ S

and the derivation defined by

ξ(T1) = 0, ξ(T2) = 1, ξ(S) = −T1

then

ξ · z = −1⊗ ξ(T2T1)− 1⊗ ξ(S)

= −1⊗ (ξ(T2)T1 − T2ξ(T1)) + 1⊗ T1

= −1⊗ ξ(T2)T1 + 1⊗ T1

= 0

but

z · ξ = −ξ(S)⊗ 1− ξ(T2)⊗ T1

= −T1 ⊗ 1− 1⊗ T1

= −(T1 ⊗ 1 + 1⊗ T1)

Denote by π1 and g1 k-vectorspaces of rank e and π2, g2 k-vectorspaces of rank c.
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Fix basis

π1 = 〈ξ1, . . . , ξe〉 π2 = 〈χ1, . . . , χc〉

g1 = 〈x1, . . . , xe〉 g2 = 〈y1, . . . , yc〉.

Denote by E the graded k-algebra E =
∧
π1⊗k Sym(π2) and by T the k-vectorspace

T =
∧

g1 ⊗k Sym(g2), we give T the following graded E-bimodule structure

ξjxi = −δij, xiξj = δij,

χjyi = −δji, yiχj = −δji,

ξjyi = 0, yiξj = 0.

With this notation we prove

Theorem 1.6.4. The following conditions on a local ring R are equivalent:

1) R̂ ∼= Q/I with (Q, n) regular, I generated by a regular sequence and I ⊆ n3.

2) the k-algebra ÊxtR(k, k) is graded-commutative.

When they hold ÊxtR(k, k) ∼= E n Σ1−dT if codimR ≥ 2. If R is an hypersurface

then ÊxtR(k, k) ∼=
∧
π1 ⊗k k[t, t−1] with deg t = 2.

Proof. 2) ⇒ 1) If ÊxtR(k, k) is graded-commutative then so is ExtR(k, k) since it is

a subalgebra (see [27]), and by [30] the ring R has the desired form.

1)⇒ 2) if codimR ≥ 2, then by 1.5.2

ÊxtR(k, k) ∼= ExtR(k, k) n Σ1−d TorR(k, k)
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but by [30] if R has the required form then ExtR(k, k) ∼= E, and by 1.6.2

TorR(k, k) ∼= T.

If the ring is an hypersurface, then by [12] ÊxtR(k, k) has the desired form.

The algebras E n T and
∧
π1 ⊗k k[t, t−1] are clearly graded-commutative.

1.7 The dual bimodule structure of TorR(k, k)

As before F is an acyclic closure of k and G a free resolution of a module N . The

complex G⊗R F is a DG EndRG-DerγR F -bimodule with actions

α · (g ⊗ f) := α(g)⊗ f α ∈ EndRG

(g ⊗ f) · θ := −(−1)|θ||f |g ⊗ θ(f) θ ∈ DerγR F

where the right action is obtained by twisting a left action.

The complex HomF (G⊗R F, F ) is a right DG EndRG-module with product

(ψ · α)(g ⊗ f) := ψ(α(g)⊗ f) ψ ∈ HomF (G⊗R F, F ) α ∈ EndRG, g ∈ G, f ∈ F

It has two structure of left DG DerγR F -module, let ψ ∈ HomF (G ⊗R F, F ), θ ∈

DerγR F, f ∈ F, g ∈ G and define

(θ ∗1 ψ)(g ⊗ f) := θ(ψ(g ⊗ f))

(θ ∗2 ψ)(g ⊗ f) := −(−1)|θ|(|ψ|+|g|)ψ(g ⊗ θ(f))

where the second action is obtained by acting on the right on g ⊗ f .
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We are going to combine these two left actions into a third one that we are going

to use in the next theorem

(θ · ψ)(g ⊗ f) := θ(ψ(g ⊗ f))− (−1)|θ|(|ψ|+|g|)ψ(g ⊗ θ(f)). (1.7.0.1)

Theorem 1.7.1. The following map is an isomorphism of DG DerγR F -EndRG-

bimodules

χ : HomR(G,F )→ HomF (G⊗R F, F )

ϕ 7→ (g ⊗ f 7→ ϕ(g)f)

where HomR(G,F ) has the canonical bimodule structure and HomF (G ⊗R F, F ) has

the bimodule structure 1.7.0.1.

Proof. The map χ is bijective because of the canonical isomorphism F → EndF F

and adjunction. We just need to check left and right linearity.

We start with right linearity, let α ∈ EndRG,ϕ ∈ HomR(G,F ), f ∈ F, g ∈ G

χ(ϕα)(g ⊗ f) = ϕα(g)f

(χ(ϕ)α)(g ⊗ f) = χ(ϕ)(α · (g ⊗ f)) = χ(ϕ)(α(g)⊗ f) = ϕα(g)f,

this proves χ(ϕα) = χ(ϕ)α.

Now let θ ∈ DerγR F , then

χ(θϕ)(g ⊗ f) = θϕ(g)f
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(θχ(ϕ))(g ⊗ f) = θ(χ(ϕ)(g ⊗ f))− (−1)|θ|(|ϕ|+|g|)χ(ϕ)(g ⊗ θ(f))

= θ(ϕ(g)f)− (−1)|θ|(|ϕ|+|g|)ϕ(g)θ(f)

= θϕ(g)f + (−1)|θ|(|ϕ|+|g|)ϕ(g)θ(f)− (−1)|θ|(|ϕ|+|g|)ϕ(g)θ(f)

= θϕ(g)f.

where the third equality holds as θ is a derivation. This proves that χ(θϕ) = θχ(ϕ).

Corollary 1.7.2. The graded ExtR(k, k)-ExtR(M,M)-bimodules ExtR(M,k) and

Homk(TorR(M,k), k) are isomorphic, where the bimodule actions are induced in ho-

mology by the actions on HomR(G,F ) and HomF (G⊗R F, F ).

Proof. We only need to prove that

H(HomF (G⊗R F, F )) ∼= Homk(TorR(M,k), k).

Since G ⊗R F is a semifree DG F -module the functor HomF (G ⊗R F, ) preserves

quasi-isomorphisms, hence

H(HomF (G⊗R F, F )) ∼= H(HomF (G⊗R F, k))

now it remains to notice that HomF (G⊗R F, k) = Homk(G⊗R F, k) and

H(Homk(G⊗R F, k)) = Homk(H(G⊗R F ), k)

since k is a field.

Dualizing the isomorphism in the previous corollary and using 1.5.2 we get
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Corollary 1.7.3. If R is a Gorenstein ring of dimension d with depth E ≥ 2 then

the stable cohomology algebra is a trivial extension algebra,

S ∼= E n Σ1−dE∨.

where ( )∨ denotes Homk( , k).

Let R! be the Koszul dual of R, i.e. the subalgebra of ExtR(k, k) generated by

Ext1
R(k, k). In [21, 3.3] it is proved that ExtR(M,k) and Homk(TorR(M,k), k) are

isomorphic as right R!-modules where the action on ExtR(M,k) is the usual left action

twisted with the antipode map. We want to prove that the left ExtR(k, k)-action of

the previous corollary restricts to the left R!-action of [21, 3.3] once we turn the

modules from right to left using the antipode map.

Proof. Let e be the embedding dimension of R and y1, . . . , ye an algebra basis of R!

as constructed in [21, 2.9]. Fix yi = [θi] with θi ∈ DerγR(F ), we drop the subscript i.

Let G be a projective resolution of M and F an acyclic closure o k. Consider the

following commutative diagram where ε : F → k is the augmentation

HomR(G,F ) HomF (G⊗R F, F )

HomR(G, k) HomF (G⊗R F, k)

χ

HomR(G, ε) HomF (G⊗R F, ε)

(1.7.3.1)

The vertical maps are isomorphisms. Take α ∈ HomR(F, k) of degree 1−n and z ∈ G

of degree n. Denote by z̄ the image of z in G ⊗R k = TorR(M,k). Denote by ϕ the
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element χ(α̃) where α̃ is a lifting of α to HomR(G,F ). By 1.7.1 we have

(θϕ)(g ⊗ f) = θ(α̃(g))f

Let r1, . . . , re be a minimal generating set of m, and let ∂(z) = Σe
j=1rjfj with fj ∈

Fn−1. Now we calculate [θϕ](z̄) by lifting z̄ to G⊗R F

[θϕ](z̄) = ε((θϕ)(z ⊗ 1 + · · · ))

= εθ(α̃(z))

= (−1)|α|εα̃(fi)

= (−1)|α|α(fi)

where the first equality follows from the commutativity of the diagram 1.7.3.1, the

second from 1.7.1 and degree reasons, the third from [21, 2.12], the fourth from the

definition of α̃.

In the proof of [21, 3.3] it is proved that (α · yi)(z) = −α(fi), twisting this into a

left action using yi · α := −(−1)|α|α · yi we get that this left action is the same as the

one defined in 1.7.0.1.
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Chapter 2

Modules of infinite regularity over graded commutative rings

2.1 Introduction

Let k[x1, . . . , xn] be a polynomial ring, graded by setting deg xi = di ≥ 1, and let

R = k[x1, . . . , xn]/I where I is a homogeneous ideal. We denote by m the maximal

homogeneous ideal of R. The size of a minimal free resolution of a graded R-module

M is measured by its graded Betti numbers βi,j(M) = rankk Exti,jR (M,k). Invariants

arising from the Betti numbers of M are its projective dimension and its Castelnuovo-

Mumford regularity. In [4] Avramov and Eisenbud prove that the regularity of k is

finite if and only if the regularity of every finitely generated module is finite. In

[3], Avramov proves that nonzero modules of the form mM have infinite projective

dimension, provided R is not regular. In this chapter we prove that they also have

infinite regularity, provided R is not Koszul.

In section 2 we prove that a nonzero direct summands of a syzygy of k has infinite

regularity, provided R is a complete intersection which is not Koszul. We ask whether

or not this holds true for any non Koszul ring.

In section 3 we provide a connection between having a nonzero direct summand

of a syzygy of k of finite regularity and the vanishing of the graded deviations of R.
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2.1 Tightly embeddable modules

In this section we construct a class of modules which, over non Koszul rings, have

infinite regularity.

Definition 2.1.1. Let M be a graded R-module. We say that M is tightly embed-

dable if there exists a finitely generated graded R-module L such that

mM & mL ⊆M ⊆ L.

In that case M ⊆ L is a tight embedding.

2.1.1. It follows from Nakayama’s Lemma that if L is finitely generated then miL ⊆

mi−1L is a tight embedding for each i ≥ 1 such that miL is not zero.

Motivated by results in [3], we explore the relation between tightly embeddable

modules and regularity.

We make the convention that if V is a graded k-vector space then V j = V−j:

2.1.2. The Hilbert series of a graded k-vector space V is

HV (s) = Σj rankk Vjs
j.

2.1.3. The bigraded Poincaré series of a graded R-module M is

PR
M(s, t) = Σi,jβ

R
i,j(M)sjti ∈ Z[s±1][[t]].

2.1.4. Let Σiait
i and Σibit

i be formal power series in Z[[t]]. If ai ≤ bi for every i we

write

Σiait
i � Σibit

i
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or

Σibit
i � Σiait

i.

2.1.5. If A is a graded k-algebra and X a graded A-module, the sth shift of X is the

graded A-module (ΣsX)i = X i−s. The A-action is defined as a ·x = (−1)|a|sax, where

|a| denotes the degree of a.

Remark 2.1.6. By a bigraded version of Gulliksen and Levin [20], the algebra ExtR(k, k)

is a (bi-)graded Hopf k-algebra. This algebra is the universal enveloping algebra of

a (bi-)graded Lie algebra π∗,∗(R) where the first degree is homological and the sec-

ond is the internal degree. This follows from bigraded versions of theorems in [28,

(5.18)] (characteristic 0), [1, Theorem 17] (positive odd characteristic) [30, Theorem

2] (characteristic 2).

Notation 2.1.7. We denote by E the algebra ExtR(k, k). For every R-module M we

denote by E(M) the left E-module ExtR(M,k).

The following theorem is a graded version of [3, Lemma 6], and has a similar proof.

Theorem 2.1.8. If M ⊆ L is a tight embedding, then, with V = mL
mM

, there is a

coefficient wise inequality

HV (s)PR
k (s, t) � PR

M(s, t)
n∏
i=1

(1 + sdit).

Proof. We set the following notation

M = M/mM, L = L/mL,

N = L/M, W = L/mM.
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Consider the following commutative diagram

0 //M //

��

L //

��

N // 0

0 //M //W // N // 0

This induces a commutative diagram of homomorphisms of bigraded left E-modules.

E(L) // E(M) ð // ΣE(N)

E(W ) //

OO

E(M)

OO

δ // ΣE(N).

(2.1.8.1)

As m annihilates M and N , there are natural isomorphisms E(M) ∼= E ⊗k M
∨

and

E(N) ∼= E ⊗k N∨. Let K denote the universal enveloping algebra of π≥2,∗(R).

Consider the following commutative diagram

E(M) δ // ΣE(N)

M
∨ δ0 //

OO

E1 ⊗k N∨

OO

where the vertical maps are natural injective maps. Fix k-basis

µ1, . . . , µm of M
∨
, ν1, . . . , νn of N∨, ξ1, . . . , ξe of E1.

The map δ is E-linear, and so also K-linear. Hence if ε ∈ E

δ(ε⊗ µh) = εδ0(µh) = Σi,jai,j,hεξj ⊗ νi
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where

δ0(µh) = Σi,jai,j,hξj ⊗ νi with ai,j,h ∈ k.

By the Poincaré-Birkhoff-Witt theorem E is a free K-module with basis

{ξj1 · · · ξjk}j1<···<jk . (2.1.8.2)

hence E(N) is a free K-module with basis

{ξj1 · · · ξjk ⊗ νi}j1<···<jk,i. (2.1.8.3)

If κ ∈ K then

δ(κ⊗ µh) = Σi,jai,j,hκξj ⊗ νi.

This means that as a K-module Im δ|K⊗kM
∨ is generated by the elements δ0(µh).

We can change the basis of M
∨

such that the coordinate vectors of

δ0(µ1), . . . , δ0(µm′),

with respect to the basis (2.1.8.3), are linearly independent over k and

δ0(µm′+1), . . . , δ0(µm)

are all zero. Since the elements ξj ⊗ νi are part of a K-basis of E(N) we deduce that

δ0(µ1), . . . , δ0(µm′) are linearly independent over K.

This shows

Im δ|K⊗kM
∨ = ΣK ⊗k Im δ0.

This means that E(N) contains a copy of K ⊗k Im δ0, and by commutativity of
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the diagram (2.1.8.1) this gives

HE(M)(s, t) � HK⊗kIm δ0(s, t) = HK(s, t)HIm δ0(s).

By 2.1.8.2 there is an equality of formal power series

HK(s, t) =
HE(s, t)

H∧
E1(s, t)

.

Since E1 ∼= (m/m2)∨ and HX∨(t) = HX(t−1) for every R-module X, we deduce

H∧
E1(s, t) =

∏
i

(1 + s−dit).

Now consider the following chain of equalities of Hilbert series

HIm δ0(s) = HM
∨(s)−HW∨(s) +HN∨(s)

= HM(s−1)−HW∨(s) +HN(s−1)

= HW (s−1)−HW∨(s)

= HV (s−1) +HL(s−1)−HW∨(s)

= HV (s−1).

The first equality follows from the exact sequence in cohomology induced by 0 →

M → L→ N → 0, i.e.

0→ N∨ → (W )∨ →M∨ → Im δ0 → 0,

the second equality follows from the already mentioned fact: HX∨(t) = HX(t−1) for
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every R-module X. The third equality follows from

0→M → W → N → 0,

the fourth equality follows from

0→ V → W → L→ 0,

and the last equality follows from HW∨(s) = HL(s−1).

Putting everything together we get

HE(M)(s, t) � HK⊗kIm δ0(s, t)

= HK(s, t)HIm δ0(s, t)

=
HE(s, t)∏n

i=1(1 + s−dit)
HV (s−1).

Now notice that

HE(M)(s, t) = PR
M(s−1, t) and HE(s, t) = PR

k (s−1, t).

Hence we get

PR
M(s−1, t) � PR

k (s−1, t)∏n
i=1(1 + s−dit)

HV (s−1),

and replacing s−1 with s we get the desired inequality.

Let M be a finitely generated graded R-module. The Castelnuovo-Mumford reg-

ularity of M is

regRM = sup{j − i | βi,j(M) 6= 0}.

Definition 2.1.2. A ring R is Koszul if the algebra ExtR(k, k) is generated by
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Ext1,∗
R (k, k).

By [9] if regR k < ∞ then regR k = Σi(di − 1), and this happens if and only if R

is Koszul.

Corollary 2.1.9. If M is a tightly embeddable module and regRM < ∞ then R is

Koszul.

Proof. Set r := regRM . If regRM <∞, then βRi,j(M) = 0 for j − i > r. If

Σi,jai,js
jti = PR

M(s, t)
∏
i

(1 + sdit)

then ai,j = 0 for j − i > r′. By 2.1.8 if

Σi,jci,js
jti = HV (s)PR

k (s, t)

then ci,j = 0 if j − i > r′ for some r′. Since mL/mM 6= 0 we deduce βRi,j(k) = 0 if

j − i > r′′ for some r′′ which is equivalent to regR k <∞.

2.2 Direct summands of syzygies of the residue field

In this section we prove that nonzero direct summands of syzygies of k have infinite

regularity if R is a complete intersection that is not generated by quadrics. Special

homological properties of this class of modules were already noticed in [3, 27, 29].

Theorem 2.2.1. If R is a complete intersection, M = Ωmk, β : M → N is an R-

module homomorphism of finitely generated graded R-modules such that for some n

the map βn : ExtnR(N, k) → ExtnR(M,k) is not zero, then for some b ∈ Z there is a



39

coefficient wise inequality

sbPR
k (s, t) � PR

ΩnN(s, t)
n∏
i=1

(1 + sdit).

Proof. We set the following notation

N ′ = ΩnN, N
′
= N ′/mN ′, M ′ = Ωm+nk.

Let π be the canonical projection N ′ → N ′/mN ′, and β′ be a morphism M ′ → N ′

obtained by extending β to a morphism of free resolutions.

Let ξ denote the composed map

ξ : E ⊗k (N
′
)∨ ∼= E(N

′
)
π∗−→ E(N ′)

β′∗−→ E(M ′)
α∗−→ Σm+nE≥m+n,∗,

where α∗ is an iterated connecting homomorphism, hence an isomorphism. By con-

struction ξ0 6= 0.

By the Poincaré-Birkhoff-Witt Theorem E ∼= K ⊗k
∧
E1 as (bi-)graded left K-

modules; if R is a complete intersection then πi,∗(R) = 0 if i ≥ 3, see for example [2,

Theorem 7.3.3 and Theorem 10.1.2] and the references given there. Since πi,∗(R) = 0

if i ≥ 3, K is a polynomial ring. Hence Im ξ is a torsion-free K-module (since E≥m+n

is a submodule of a free module over the polynomial ring K). So any nonzero element

in the image of ξ0 generates a copy of K in Im ξ, copy whose internal degree might

be shifted by some b ∈ Z. It follows that

HE(N ′)(s, t) � sbHK(s, t) = sb
HE(s, t)∏n

i=1(1 + s−dit)
.

Now we conclude as in 2.1.8.
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Corollary 2.2.2. Let R be a complete intersection with regR k =∞. For any n ≥ 0,

each nonzero direct summand of Ωnk has infinite regularity.

We raise the following question

Question 2.2.3. If β : Ωmk → N is an R-module homomorphism of finitely generated

graded R-modules such that for some n the map

βn : ExtnR(N, k)→ ExtnR(Ωmk, k)

is not zero and N has finite regularity, is then R Koszul?

2.3 On the vanishing of the graded deviations

In this section we relate Question 2.2.3 and the vanishing of the graded deviations of

R. Let R〈X〉 be an acyclic closure of k (see [2, 6.3] for the definition). Over graded

rings we require the differential of the acyclic closure to be a homogeneous map. In

order to make the differential homogeneous we have to give the elements of X an

internal grading, making X a bigraded set.

Definition 2.3.1. The (i, j)th graded deviation of R is

εi,j(R) := Card(Xi,j),

where Xi,j is the set of variables in the acyclic closure of homological degree i and

internal degree j.

Theorem 2.3.1. If M = Ωmk and β : M → N is a homomorphism of finitely gener-



41

ated graded R-modules such that for some n the map

βn : ExtnR(N, k)→ ExtnR(M,k)

is not zero, and regRN <∞ then εi,j(R) = 0 for i > m+ n and i 6= j.

Proof. We set the following notation

N ′ = ΩnN, N
′
= N ′/mN ′, M ′ = Ωm+nk.

Let V be the universal enveloping algebra of π>m+n,∗(R). Let ξ denote the composed

map

ξ : E(N
′
)
π∗−→ E(N ′)

β′∗−→ E(M ′)
α∗−→ Σm+nE≥m+n,∗.

Consider the following commutative diagram

E(N
′
)

ξ
// Σm+nE≥m+n,∗

(N
′
)∨

OO

ξ0
// Em+n,∗

OO

By the Poincaré-Birkhoff-Witt theorem a V-basis of E≥m+n is given by

{θ(i1)
1 · · · θ(in)

n ||θ1| ≤ · · · ≤ |θn|, ij ≤ 1 if |θj| odd , (2.3.1.1)

Σjij|θj| ≥ m+ n, θj ∈ π<m+n,∗(R)}.

The V-module Im ξ|V⊗k(N
′
)∨ is generated by the elements ξ0(νh) where ν1, . . . , νm
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is a k-basis of (N
′
)∨. We set

ξ0(νh) = Σai1,...,inθ
(i1)
1 · · · θ(in)

n , ai1,...,in ∈ k.

We can change the basis of (N
′
)∨ so that the coordinate vectors of ξ0(ν1), . . . , ξ0(νn′),

with respect to the basis (2.3.1.1), are linearly independent over k and ξ0(νn′+1), . . . , ξ0(νn)

are all zero. Since the elements θ
(i1)
1 · · · θ(in)

n form a basis of E≥m+n,∗ over V we deduce

that ξ0(ν1), . . . , ξ0(νn′) are also linearly independent over V .

This shows

Im ξ|V⊗k(N
′
)∨ = Σm+nV ⊗ Im ξ0.

This means that Im ξ contains a copy of V and by construction of ξ so does E(N ′).

We now recall that by [2, Theorem 10.2.1] dimk π
i,j(R) = εi,j(R).

If there is an even i > m+n such that εi,j(R) 6= 0 and i 6= j then there is a nonzero

element x ∈ πi,j(R). The powers of x belong to V . But a copy of V is contained in

E(N ′). Since bideg x = (i, j) then bideg x(l) = (li, lj) and lj − li = l(j − i) goes to

∞ as l goes to ∞, this implies regRN
′ =∞ which is a contradiction.

If there are infinitely many i’s with i > m + n, i odd, i 6= 0 and εi,j(R) 6= 0

then there are infinitely many nonzero xt with t = 1, 2, . . . belonging to πit,jt(R). The

products x1x2 · · ·xs belong to V . But a copy of V is contained in E(N ′). The bidegree

of this product is

bideg x1x2 · · ·xs = (i1 + i2 + · · ·+ is, j1 + j2 + · · ·+ js)

and since jt − it ≥ 1 for every t the following inequality holds

j1 + j2 + · · ·+ js − (i1 + i2 + · · ·+ is) ≥ s,
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and as s goes to ∞, we get regRN
′ =∞, which is a contradiction.

Now we assume that εi,j(R) 6= 0 for finitely many i’s with i > m + n, i odd

and i 6= j. Let R〈X〉 be an acyclic closure of k. Then we can choose an element

y ∈ X of odd degree, off diagonal, of maximal homological degree. We denote by

|.| the homological degree of a homogeneous element in the acyclic closure and by

deg its internal degree. We claim that A = R〈X\{y}〉 is a DG subalgebra of the

acyclic closure. Indeed if x1, . . . , xn, y are all the odd elements off diagonal then, by

[9, Lemma 7], R〈X\{x1, . . . , xn, y}〉 is a DG subalgebra of the acyclic closure. By

maximality of y also A is a DG subalgebra of the acyclic closure. So A is a DG algebra

and the acyclic closure of k can be written as A〈y〉, which implies (by [9, Lemma 6])

that |y| = 1, which is a contradiction since m ≥ 1.

Proposition 2.3.2. Let d ≥ 4 be an even number. If εi,j(R) = 0 for i ≥ d and i 6= j,

then εi,j(R) = 0 for i ≥ d− 1 and i 6= j.

Proof. Let R〈X〉 be an acyclic closure of k. Let y be an element of X of homological

degree d − 1, we need to prove that deg y = d − 1. We assume that y appears in a

boundary of a (bi)homogeneous element x with |x| ≥ d

dx = Σriai + rwy.
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There are the following string of (in)equalities

degw + deg y = deg(wy)

≥ |wy|

= |x| − 1 = deg x− 1

= degw + deg y + deg r − 1

≥ degw + deg y.

We deduce

degw + deg y = |w|+ |y|.

If deg y > |y| then degw < |w| which is not possible, hence deg y = |y|.

If y doesn’t appear in the boundary of any element then we can write the acyclic

closure as A〈y〉 with A = R〈X\{y}〉 and by [9, Lemma 6] |y| = 1, hence d = 2 which

is not possible.

Set εi(R) = Σjεi,j(R). It is known that if εi(R) = 0 for i� 0 then εi(R) = 0 for

i ≥ 3, see [2, Theorem 7.3.3]. Motivated by this and by the previous proposition we

raise the following question

Question 2.3.3. If εi,j(R) = 0 when i� 0 and i 6= j is it true that εi,j(R) = 0 when

i ≥ 3 and i 6= j?

By [2, Theorem 7.3.3] and [2, Theorem 7.3.2]

1) εi(R) = 0 for i ≥ 2 if and only if R is regular,

2) εi(R) = 0 for i ≥ 3 if and only if R is a complete intersection.

By [9, Theorem 2] if εi,j(R) = 0 when i ≥ 2 and i 6= j then the ring R is of the form

Q⊗k S with Q regular and S a standard graded Koszul ring. Motivated by these last
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results we raise the following question

Question 2.3.4. If εi,j(R) = 0 when i ≥ 3 and i 6= j is the ring R of the form Q⊗kS

with Q a complete intersection and S a standard graded Koszul ring?
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