Measurement of the $t \bar{t}$ production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 8$ TeV

S. Chatrchyan
Yerevan Physics Institute

Ekaterina Avdeeva
University of Nebraska-Lincoln, tsukanovaeg@gmail.com

Kenneth A. Bloom
University of Nebraska - Lincoln, kbloom2@unl.edu

S. Bose
University of Nebraska-Lincoln, sbose2@unl.edu

Daniel R. Claes
University of Nebraska-Lincoln, dclaes@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicssnow
Authors
Measurement of the $t\bar{t}$ production cross section in the dilepton channel in pp collisions at $\sqrt{s} = 8$ TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

ABSTRACT: The top-antitop quark ($t\bar{t}$) production cross section is measured in proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb$^{-1}$. The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 ± 2 (stat.$)\pm11$ (syst.$)\pm6$ (lum.$)$ pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model.

KEYWORDS: Hadron-Hadron Scattering, Top physics

ArXiv ePrint: 1312.7582
1 Introduction

A precise measurement of the $t\bar{t}$ production cross section can be used to test the theory of quantum chromodynamics (QCD) at next-to-next-to-leading-order (NNLO) level. It can be also used in global fits of the parton distribution functions (PDF) at NNLO, and allows an estimation of $\alpha_s(M_Z)$ as described in [1, 2]. Furthermore, top-quark production is an important source of background in many searches for physics beyond the standard model (SM). A large sample of top-quark events has been collected at the Large Hadron Collider (LHC), and studies of top-quark production have been conducted in various decay channels as well as searches for deviations from the SM predictions [3–9].

This paper presents a measurement of the $t\bar{t}$ production cross section, $\sigma_{t\bar{t}}$, based on the dilepton channel ($e^+e^-, \mu^+\mu^-$, and $e^\pm\mu^\mp$) in a data sample of proton-proton collisions at $\sqrt{s} = 8$ TeV corresponding to an integrated luminosity of 5.3 fb$^{-1}$ recorded by the Compact Muon Solenoid (CMS) experiment. In the SM, top quarks are predominantly produced in $t\bar{t}$ pairs via the strong interaction and decay almost exclusively to a W boson and a bottom quark. We measure the $t\bar{t}$ production cross section selecting final states that contain two leptons of opposite electric charge, momentum imbalance associated to the neutrinos from the W boson decays, and two jets of particles resulting from the hadronisation of two b quarks.

2 The CMS detector and simulation

The CMS detector [10] has a superconducting solenoid occupying the central region that provides an axial magnetic field of 3.8 T. The silicon pixel and the strip tracker cover $0 < \theta \leq 0.9$ and $0.4 < \eta < 2.4$, respectively. The high-precision pixel detector has a design granularity of 1 mm in the transverse plane. The tracking and calorimetry systems are interleaved with support elements for high luminosity environment.
\(\phi < 2\pi \) in azimuth and \(|\eta| < 2.5 \) in pseudorapidity, where \(\eta \) is defined as \(\eta = -\ln(\tan(\theta/2)) \), with \(\theta \) being the polar angle measured with respect to the anticlockwise-beam direction. The lead-tungstate crystal electromagnetic calorimeter and the brass/scintillator hadron calorimeter are located inside the solenoid. Muons are measured in gas-ionisation detectors embedded in the steel flux return yoke outside the solenoid. The detector is nearly hermetic, thereby providing reliable measurement of momentum imbalance in the plane transverse to the beams. A two-tier trigger system selects the most interesting pp collisions for offline analysis.

Several MC event generators are used to simulate signal and background events: MADGRAPH (v. 5.1.4.8) [11], POWHEG (r1380) [12] and PYTHIA (v. 6.424) [13], depending on the process considered. The MadGraph generator with spin correlations is used to model \(\bar{t}t \) events with a top-quark mass of 172.5 GeV and combined with PYTHIA to simulate parton showering, hadronisation, and the underlying event. The MadGraph generator is also used to simulate the W+jets and Drell-Yan (DY) processes. Single-top-quark events are simulated using POWHEG. Inclusive production of the WZ and ZZ diboson final states is simulated with PYTHIA. Production of WW fully leptonic final states is simulated with MADGRAPH. Decays of \(\tau \) leptons are handled with TAUOLA (v. 2.75) [14]. The contributions from WW, WZ and ZZ (referred to as “VV”) and single-top-quark production are taken from MC simulations with appropriate next-to-leading order (NLO) cross sections. All other backgrounds are estimated from control samples extracted from collision data.

The \(\bar{t}t \) production cross section amounts to \(\sigma_{\bar{t}t} = 252.9^{+6.4}_{−8.6} \) pb (scale) ± 11.7 (PDF +\(\alpha_s \)) as calculated with the Top++ program [15] at NNLO in perturbative QCD, including soft-gluon resummation at next-to-next-to-leading-log order [16], and assuming a top-quark mass \(m_t = 172.5 \) GeV. The first uncertainty comes from the independent variation of the factorisation and renormalisation scales, \(\mu_F \) and \(\mu_R \), while the second one is associated to variations in the PDF and \(\alpha_s \) following the PDF4LHC prescriptions [17]. Expected signal yields in figures and tables are normalised to that value unless otherwise stated.

The simulated samples include additional interactions per bunch crossing (pileup), with the distribution matching that observed in data.

3 Event selection

Event selection is similar to that used for the measurement of the \(\bar{t}t \) dilepton cross section at \(\sqrt{s} = 7 \) TeV [4]. At trigger level, events are required to have two electrons, two muons, or one electron and one muon, where one of these leptons has transverse momentum \(p_T > 17 \) GeV and the other has \(p_T > 8 \) GeV. Events are then selected with two oppositely charged leptons reconstructed with the CMS particle-flow (PF) algorithm [18], both with \(p_T > 20 \) GeV and \(|\eta| < 2.5 \) for electrons and \(|\eta| < 2.1 \) for muons. In events with more than one pair of leptons passing these selections, the pair of opposite-sign leptons with the largest value of total transverse momentum is selected. Events with \(\tau \) leptons contribute to the measurement only if they decay to electrons or muons that satisfy the selection requirements. The efficiency for dilepton triggers is measured in data through triggers based on transverse momentum imbalance. The trigger efficiency is approximately 90% to
93% for the three final states. Using the measured dilepton trigger efficiency in data, the corresponding efficiencies in the simulation are corrected by \(p_T \) and \(\eta \) multiplicative data-to-simulation scale factors (SFs), which have an average value of 0.96 and uncertainties in the range 1 to 2%.

Charged-lepton candidates from W-boson decays are usually isolated from other particles in the event. For each electron or muon candidate, a cone of \(\Delta R < 0.3 \) is constructed around the track direction at the event vertex, where \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \), and \(\Delta \eta \) and \(\Delta \phi \) are the differences in pseudorapidity and azimuthal angle between any energy deposit and the axis of the lepton track. The scalar sum of the \(p_T \) of all particles reconstructed with the PF algorithm, consistent with the chosen primary vertex and contained within the cone, is calculated, excluding the contribution from the lepton candidate itself. The relative isolation discriminant, \(I_{rel} \), is defined as the ratio of this sum to the \(p_T \) of the lepton candidate. The neutral component is corrected for pileup based on the average energy density deposited by neutral particles in the event: an average transverse energy due to pileup is determined event by event and is subtracted from the transverse energy in the isolation cone. A lepton candidate is rejected if \(I_{rel} > 0.15 \).

The efficiency of the lepton selection is measured using a “tag-and-probe” method in dilepton events enriched in Z-boson candidates, as described in \([4, 19]\). The measured values for the combined identification and isolation efficiencies are typically of 96% for muons and 90% for electrons. Based on a comparison of lepton selection efficiencies in data and simulation, the event yield in simulation is corrected by \(p_T \)-and \(\eta \)-dependent SFs, which have an average value of 0.99 and uncertainties in the range 1 to 2% to provide consistency with data. Considering also the dilepton trigger, the combined factors have an average value of 0.96 and uncertainties around 2% for the three \(t\bar{t} \) final states.

Dilepton candidate events with an invariant mass \(M_{\ell\ell} < 20 \) GeV (\(\ell = e \) or \(\mu \)) are removed to suppress backgrounds from heavy-flavour resonances, as well as contributions from low-mass DY processes. Events with dilepton invariant masses within \(\pm 15 \) GeV of the Z mass are also rejected in the same-flavour channels.

Jets are reconstructed from the PF particle candidates using the anti-\(k_T \) clustering algorithm \([20]\) with a distance parameter of 0.5. The jet energy is corrected for pileup in a manner similar to the correction of the energy inside the lepton isolation cone. Jet energy corrections are also applied as a function of the jet \(p_T \) and \(\eta \) \([21]\). Events are required to have at least two reconstructed jets with \(p_T > 30 \) GeV and \(|\eta| < 2.5 \).

The missing transverse energy, \(E_T^miss \), is defined as the magnitude of the momentum imbalance, which is the negative sum of the momenta of all reconstructed particles in the plane transverse to the beams. A value of \(E_T^miss > 40 \) GeV is required in the \(e^+e^- \) and \(\mu^+\mu^- \) channels while no \(E_T^miss \) requirement is imposed for the \(e^+\mu^- \) mode, as there is very little contamination from DY events in this channel.

Since \(t\bar{t} \) events contain jets from hadronisation of b quarks, requiring their presence can reduce background from events without b quarks. Jets are identified as b jets using the combined secondary vertex algorithm (CSV) \([22]\). The operating point chosen for CSV corresponds to an identification efficiency of about 85% and a misidentification (mistag) probability of about 10% \([23]\) for light-flavour jets (u, d, s and gluons). The selection requires the presence of at least one b jet in the event.
Figure 1 shows the p_T distributions of the highest-p_T lepton and jet after jet multiplicity selection, for all three final states combined. This and the following figures the signal yields refer to an assumed top-quark mass of 172.5 GeV. The hatched regions correspond to the total statistical uncertainties in the predicted event yields. The ratio of the data to the sum of simulations and data-based predictions for the signal and backgrounds is shown in the bottom panels. A detailed description of the different background estimates is given in section 4. The multiplicities of selected jets and b jets are shown in figure 2 for the $e^\pm\mu^\mp$ channel, which is expected to have less background contamination. A similar level of agreement is obtained with the e^+e^- and $\mu^+\mu^-$ channels.

4 Background determination

Backgrounds in this analysis arise from single-top-quark, DY and VV events, in which at least two prompt leptons are produced from Z or W decays. Other background sources, such as $t\bar{t}$ or W+jets events with decays into lepton+jets and where at least one jet is incorrectly reconstructed as a lepton (which mainly happens for electrons) or a lepton from the decay of bottom or charm hadrons (which mainly happens for muons), are grouped into the non-W/Z lepton category. Background yields from single-top-quark and VV events are estimated from simulation, while all other backgrounds are estimated from data.

The DY background is estimated using the “$R_{\text{out/in}}$” method $[3, 4, 24]$ in which the events outside of the Z mass window are obtained by normalising the event yield from simulation to the observed number of events inside the Z mass window. The data-to-simulation scale factor is found to be 1.3 ± 0.4 for the $e^\pm\mu^\mp$ channel. This value is compatible
with 1.5 ± 0.5, which is estimated using a template fit as described in [4]. For the e^+e^- and $\mu^+\mu^-$ channels the factors are found to be 1.7 ± 0.5 and 1.6 ± 0.5, respectively.

Non-prompt leptons can arise from decays of mesons or heavy-flavour quarks, jet misidentification, photon conversions, or finite resolution detector effects whereas prompt leptons usually originate from decays of W or Z bosons and are isolated and well identified. Backgrounds with non-prompt leptons are estimated [25] from a control sample of collision data in which leptons are selected with relaxed identification and isolation requirements defining the loose lepton candidate, while the set of signal selection cuts described in section 3 defines the tight lepton candidate. The prompt and non-prompt lepton ratios are defined as the ratio of the number of tight candidates to the number of loose ones as measured from samples enriched in leptonic decays of Z bosons or in QCD dijet events, respectively. These ratios, parametrized as a function of p_T and η of the lepton, are then used to weight the events in the loose-loose dilepton sample, to obtain the estimated contribution from the non-prompt lepton background in the signal region. The systematic uncertainty comes from the jet p_T spectrum in dijet events and amounts, together with the statistical one, to 40% of the estimated yield.

5 Sources of systematic uncertainty

Simulated events are scaled according to the lepton efficiency correction factors, which are typically close to one, measured using control samples in data, leading to a 1 to 2% uncertainty in the $t\bar{t}$ selection efficiency.

The impact of uncertainty in the jet energy scale (JES) and jet energy resolution (JER) are estimated from the change observed in the number of selected MC $t\bar{t}$ events
after varying the jet momenta within the JES uncertainties [21], and in the case of JER by an \(\eta \)-dependent correction with an average of \(\pm 10\% \). For the \(e^+e^- \) and \(\mu^+\mu^- \) channels these uncertainties are also propagated to \(E_T \) resulting in a larger uncertainty than for the \(e^+\mu^- \) channel.

The uncertainties on the b jet scale factors in \(t\bar{t} \) signal events are approximately 2% for b jets and 10% for mistagged jets [22, 23], depending on the \(p_T \) of the jets. They are propagated to the \(t\bar{t} \) selection efficiency in simulated events.

The uncertainty assigned to the pileup simulation amounts to 0.8%, as obtained by varying the inelastic cross section by 5%. The uncertainty in the integrated luminosity is 2.6% [26].

The systematic effects related to the missing higher-order diagrams in MadGraph are estimated with two different methods. The uncertainty in the signal acceptance is determined by varying the renormalisation and factorisation scales simultaneously up and down by a factor of two using MadGraph, and the uncertainty is taken as the maximum difference after the final event selection. The effect on the calculated \(t\bar{t} \) production cross section is 2.3%, which is the value used in the analysis for this uncertainty. This estimate is cross-checked by comparing the predictions of the leading-order and NLO generators MadGraph and Powheg, where both use Pythia for hadronisation and extra radiation. The systematic uncertainty is found to be 2.2%, comparable with the above estimate.

The matching between the matrix elements (ME) and the parton shower (PS) evolution is done by applying the MLM prescription [27]. Changing the thresholds that control the matching of partons from the matrix element with those from PS by factors of 0.5 and 2.0 for one of the parameters (minimum \(k_T \) measure between partons) and 0.75 and 1.5 for the other (jet matching threshold for the \(k_T \)-MLM scheme) compared to the default thresholds, produces a 1.6% variation in the \(t\bar{t} \) event selection efficiency.

The uncertainty arising from the hadronisation model affects mainly the JES and the fragmentation of b jets. As the b-jet efficiencies and mistagging rates are taken from data, no additional uncertainty is expected from this source. The uncertainty in the JES already contains a contribution from the uncertainty in the hadronisation. The hadronisation uncertainty is also determined by comparing samples of events generated with Powheg where the hadronisation is modelled with Pythia or Herwig, and the effect on the calculated \(t\bar{t} \) cross section is 1.4%, which is well within the JES uncertainty.

Uncertainties in the selected number of single-top-quark and VV events are calculated following the same prescription as for the signal yield. In addition, an uncertainty in the cross sections for single-top-quark and VV backgrounds, taken from measurements and estimated to be approximately 20% [28–36], is added in quadrature.

Table 1 summarizes the magnitude of the systematic uncertainties on the \(t\bar{t} \) production cross section from the different sources.

6 Results

The \(t\bar{t} \) production cross section is measured by counting events after applying the selection criteria described in section 3. Table 2 shows the total number of events observed in data.
and the number of signal and background events expected from simulation or estimates from data. Table 3 lists the mean acceptance (which contains contributions from $W \rightarrow \tau\nu$, with leptonic τ decays) multiplied by the selection efficiency and the branching fraction in the dilepton final state, and the measured cross section for each of the three final states, e^+e^-, $\mu^+\mu^-$, and $e^\pm\mu^\mp$, which give compatible results. The e^+e^- and $\mu^+\mu^-$ channels have two additional sources of uncertainty, arising from the DY background estimation and from the propagation of the JES to the E_T estimation, which limit the precision of the measurement of $\sigma_{t\bar{t}}$ in those final states.

A combination of the three final states using the BLUE method [37] yields a measured cross section of $\sigma_{t\bar{t}} = 239.0 \pm 2.1$ (stat.) ± 11.3 (syst.) ± 6.2 (lum.) pb for a top-quark mass of 172.5 GeV. In the combination, the systematic uncertainties are 100% correlated across channels, except those associated to the lepton efficiencies, which have a correlation coefficient of 0.64 for e^+e^- with $e^\pm\mu^\mp$ and 0.55 for $\mu^+\mu^-$ with $e^\pm\mu^\mp$. Finally, the uncertainties associated with the data-based estimates and the statistical uncertainties are taken as uncorrelated.

In this analysis the dependence of the acceptance on the top-quark mass is found to be quadratic within the present uncertainty of the top-quark mass [38]. The cross-section

<table>
<thead>
<tr>
<th>Source</th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^\pm\mu^\mp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiencies</td>
<td>4.1</td>
<td>3.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Lepton efficiencies</td>
<td>5.8</td>
<td>5.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>10.3</td>
<td>10.8</td>
<td>5.2</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>3.2</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>b-jet tagging</td>
<td>1.9</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Pileup</td>
<td>1.7</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Scale (μ_F and μ_R)</td>
<td>5.7</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Matching partons to showers</td>
<td>3.9</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Single top quark</td>
<td>2.6</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>VV</td>
<td>0.7</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Drell-Yan</td>
<td>10.8</td>
<td>10.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Non-W/Z leptons</td>
<td>0.9</td>
<td>3.2</td>
<td>1.9</td>
</tr>
<tr>
<td>Total systematic</td>
<td>18.6</td>
<td>18.6</td>
<td>11.4</td>
</tr>
<tr>
<td>Integrated luminosity</td>
<td>6.4</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Statistical</td>
<td>5.2</td>
<td>4.5</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 1. Summary of the individual contributions to the systematic uncertainty on the $\sigma_{t\bar{t}}$ measurement. The uncertainties are given in pb. The statistical uncertainty on the result is given for comparison.
dependence in the range 160–185 GeV can be parametrized as

$$
\frac{\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}} (m_t = 172.5) = 1.00 - 0.009 \times (m_t - 172.5) - 0.000168 \times (m_t - 172.5)^2
$$

(6.1)

where m_t is given in GeV. Assuming a top-quark mass value of 173.2 GeV [38], a cross section value $\sigma_{t\bar{t}} = 237.5 \pm 13.1$ pb is obtained.

Figure 3 shows the distributions of $M_{\ell\ell}$, E_T and the difference of the azimuthal angle between the two selected leptons ($\Delta \phi_{\ell\ell}$) and their ratios to expectations for the $e^{\pm}\mu^{\mp}$ channel, which dominates the combination.
Table 2. Number of dilepton events after applying the event selection and requiring at least one b jet. The results are given for the individual sources of background, $t\bar{t}$ signal with a top-quark mass of 172.5 GeV and $\sigma_{t\bar{t}} = 252.9$ pb, and data. The uncertainties correspond to the statistical and systematic components added in quadrature.

<table>
<thead>
<tr>
<th>Source</th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^\pm\mu^\mp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drell-Yan</td>
<td>386 ± 116</td>
<td>492 ± 148</td>
<td>194 ± 58</td>
</tr>
<tr>
<td>Non-W/Z leptons</td>
<td>25 ± 10</td>
<td>114 ± 46</td>
<td>185 ± 72</td>
</tr>
<tr>
<td>Single top quark</td>
<td>127 ± 28</td>
<td>157 ± 34</td>
<td>413 ± 88</td>
</tr>
<tr>
<td>VV</td>
<td>30 ± 8</td>
<td>39 ± 10</td>
<td>94 ± 21</td>
</tr>
<tr>
<td>Total background</td>
<td>569 ± 120</td>
<td>802 ± 159</td>
<td>886 ± 130</td>
</tr>
<tr>
<td>$t\bar{t}$ dilepton signal</td>
<td>2728 ± 182</td>
<td>3630 ± 250</td>
<td>9624 ± 504</td>
</tr>
<tr>
<td>Data</td>
<td>3204</td>
<td>4180</td>
<td>9982</td>
</tr>
</tbody>
</table>

Table 3. The total efficiencies ϵ_{total}, i.e. the products of event acceptance, selection efficiency and branching fraction for the respective $t\bar{t}$ final states, as estimated from simulation for a top-quark mass of 172.5 GeV, and the measured $t\bar{t}$ production cross sections, where the uncertainties are from statistical, systematic and integrated luminosity components, respectively.

<table>
<thead>
<tr>
<th></th>
<th>e^+e^-</th>
<th>$\mu^+\mu^-$</th>
<th>$e^\pm\mu^\mp$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ_{total} (%)</td>
<td>0.203 ± 0.012</td>
<td>0.270 ± 0.017</td>
<td>0.717 ± 0.033</td>
</tr>
<tr>
<td>$\sigma_{t\bar{t}}$ (pb)</td>
<td>244.3 ± 5.2 ± 18.6 ± 6.4</td>
<td>235.3 ± 4.5 ± 18.6 ± 6.1</td>
<td>239.0 ± 2.6 ± 11.4 ± 6.2</td>
</tr>
</tbody>
</table>

7 Summary

A measurement of the $t\bar{t}$ production cross section in proton-proton collisions at $\sqrt{s} = 8$ TeV is presented for events containing a lepton pair (e^+e^-, $\mu^+\mu^-$, $e^\pm\mu^\mp$), at least two jets with at least one tagged as b jet, and a large imbalance in transverse momentum in the final state. The measurement is obtained through an event-counting analysis based on a data sample corresponding to 5.3 fb$^{-1}$. The result obtained by combining the three final states is $\sigma_{t\bar{t}} = 239 \pm 2$ (stat.) ± 11 (syst.) ± 6 (lum.) pb, in agreement with the prediction of the standard model for a top-quark mass of 172.5 GeV.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies:
BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, co-financed by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

– 10 –

The CMS collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan¹, M. Friedl, R. Frühwirth¹, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler¹, W. Kiesenhofer, V. Knünz, M. Krammer¹, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady², B. Rahbaran, H. Rohringer, R. Schöbeck, J. Strauss, A. Taurok, W. Treberer-Treiberspurg, W. Waltenberger, C.-E. Wulz¹

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caeberegs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes b, F.A. Dias a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F. Novaes a, Sandra S. Padula a

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tivkica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A.A. Abdelalim, Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud, A. Radi
RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, J. Jones, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillas

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shrivpuri

Saha Institute of Nuclear Physics, Kolkata, India

Bhabha Atomic Research Centre, Mumbai, India
A. Abdul salam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
P. Fabbricatore, R. Ferretti, F. Ferro, M. Lo Vetere, R. Musenich, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
Kangwon National University, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia
J.R. Komaragiri

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Blu\l{}32, B. Boimska, T. Frueboes, M. Górska, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zelewski
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas2, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsof, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin7, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhitin, S. Obraztsov, M. Perfilov, V. Savrin, N. Tsiriova

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic34, M. Djordjevic, M. Ekmedzic, J. Milosevic
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brum, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Günaydın, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA
University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA
Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzwieg, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Zewail City of Science and Technology, Zewail, Egypt
10: Also at Suez Canal University, Suez, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at British University in Egypt, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Joint Institute for Nuclear Research, Dubna, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, USA
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Sharif University of Technology, Tehran, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
30: Also at Purdue University, West Lafayette, USA
31: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
32: Also at National Centre for Nuclear Research, Swierk, Poland
33: Also at Institute for Nuclear Research, Moscow, Russia
34: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
35: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
36: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
37: Also at University of Athens, Athens, Greece
38: Also at Paul Scherrer Institut, Villigen, Switzerland
39: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
40: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
41: Also at Gaziosmanpasa University, Tokat, Turkey
42: Also at Adiyaman University, Adiyaman, Turkey
43: Also at Cag University, Mersin, Turkey
44: Also at Mersin University, Mersin, Turkey
45: Also at Izmir Institute of Technology, Izmir, Turkey
46: Also at Ozyegin University, Istanbul, Turkey
47: Also at Kafkas University, Kars, Turkey
48: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
49: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
50: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
51: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
52: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
53: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
54: Also at Utah Valley University, Orem, USA
55: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
56: Also at Argonne National Laboratory, Argonne, USA
57: Also at Erzincan University, Erzincan, Turkey
58: Also at Yildiz Technical University, Istanbul, Turkey
59: Also at Texas A&M University at Qatar, Doha, Qatar
60: Also at Kyungpook National University, Daegu, Korea