Determining the Age of a Stabilized Dune Field

Carissa Raymond
University of Nebraska-Lincoln, carissa.raymond@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucarereresearch
Part of the Geology Commons, Geomorphology Commons, Natural Resources Management and Policy Commons, and the Paleontology Commons

Raymond, Carissa, "Determining the Age of a Stabilized Dune Field" (2016). UCARE Research Products. 82.
http://digitalcommons.unl.edu/ucarereresearch/82
Determining the Age of a Stabilized Dune Field
Carissa Raymond
School of Natural Resources, University of Nebraska-Lincoln

Objectives
The aim of this project was to assess the development and age of the Kearney Dunefield in central Nebraska through the collection and analysis of sand samples from the inactive dunes. These dunes are not part of the well-known Nebraska Sandhills, and so far have not been thoroughly studied. Similar assessments have been conducted on dune fields throughout the Great Plains, and this study seeks to place the Kearney Dunes into a regional context.

Methods
• Three cores were collected by vibracoring.
• 5 sediment samples were taken from the cores in a darkroom.
• The samples were treated to separate the quartz grains in the sand.
• Optically Stimulated Luminescence dating (OSL) was used to determine when the grains were last exposed to sunlight.
• The grains received incremental doses of radiation to determine luminescence.
• The ages received incremental doses of radiation to determine luminescence.
• The ages of burial were calculated using the Central Age Model.

Core Descriptions
Figure 1. Sediment from three cores collected from the Kearney Dunefield. OSL ages are given with their uncertainty in calendar years ago.

Core Locations

Optically Stimulated Luminescence Ages
Table 1. Equivalent dose, dose rate data, and OSL age estimates

<table>
<thead>
<tr>
<th>Field</th>
<th>UNL Lab</th>
<th>Depth U Th K2O Moisture Dose Rate</th>
<th>CAM1 D2</th>
<th>Aliquot</th>
<th>OSL Age</th>
<th>O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott Wells 1-2</td>
<td>UNL-4125</td>
<td>1.3 1.2 5.7 2.3 5.0</td>
<td>2.56 ± 0.15</td>
<td>1.7 ± 0.1</td>
<td>24/25</td>
<td>680 ± 60</td>
</tr>
<tr>
<td>Kearney SW 1-2</td>
<td>UNL-4127</td>
<td>1.9 1.1 5.3 2.3 5.0</td>
<td>2.52 ± 0.15</td>
<td>1.5 ± 0.1</td>
<td>23/25</td>
<td>590 ± 50</td>
</tr>
<tr>
<td>Kearney SW 1-3</td>
<td>UNL-4128</td>
<td>3.2 1.2 5.9 2.4 5.0</td>
<td>2.63 ± 0.16</td>
<td>1.5 ± 0.1</td>
<td>24/25</td>
<td>590 ± 60</td>
</tr>
<tr>
<td>Kearney SW 2-2</td>
<td>UNL-4130</td>
<td>1.5 1.1 5.9 2.4 5.0</td>
<td>2.59 ± 0.15</td>
<td>1.6 ± 0.0</td>
<td>21/24</td>
<td>610 ± 50</td>
</tr>
<tr>
<td>Kearney SW 2-4</td>
<td>UNL-4132</td>
<td>1.9 1.0 4.2 2.2 5.0</td>
<td>2.35 ± 0.14</td>
<td>1.6 ± 0.1</td>
<td>21/25</td>
<td>690 ± 60</td>
</tr>
</tbody>
</table>

* Assumes 5% error in long-term estimated moisture content
* Central-Age Model (Salisbury et al., 1999)
* Unsealed disk data

Dunefield Age Comparison
Figure 3 shows the ages (in thousands of years before present) of the activity of three separate dune fields in Nebraska. The Nebraska Sandhills show three distinct periods of activity, over the last 6000 years, the Duncan Dunes show two, and the Kearney Dunefield indicates one recent period of activity.

References
• Hanson, P.R., Jacek, R.M., Young, A.R., Horn, J., 2006, Late-Holocene dune activity in the eastern Platte River valley, Nebraska: Geomorphology, v. 103, p. 335-351.

Acknowledgements
Funding for this project was in part supplied from United States Geological Survey Statemap Program Award No. G15AC00015. Additional funding was provided through the UCARE program. Dr. Jeremy Dillon and Ashley Larsen of the University of Nebraska-Kearney assisted in collecting the cores and Les Howard provided the data for figure 2. Dr. Hanson’s guidance was invaluable in completing this project.

Discussion
The OSL ages for the Kearney cores fall between approximately 590 and 690 years ago. These dates overlap with a period of activation for the Nebraska Sandhills, as well as for the Duncan Dunes near Columbus, Nebraska. These events are associated with large-scale drought episodes in the Great Plains (Miao et al., 2007). Evidence for these megadroughts has also been found in Colorado and Kansas, supporting the interpretation that these are large regional events (Hanson et al., 2009).

The analysis of the Kearney Dunes shows that these megadroughts also significantly affected dunefields in the Eastern Great Plains.

The Kearney cores only reach 3.5 meters in depth, and thus do not show older periods of activation. Further study is required to determine if the Dunefield was activated during other times in the past, such as those recognized in the Sandhills.