2001

Worms, Nematoda

Scott Lyell Gardner
University of Nebraska - Lincoln, slg@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs

Part of the Parasitology Commons

Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78.
https://digitalcommons.unl.edu/parasitologyfacpubs/78

This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Worms, Nematoda

Scott L. Gardner
University of Nebraska, Lincoln

I. What Is a Nematode? Diversity in Morphology
II. The Ubiquitous Nature of Nematodes
III. Diversity of Habitats and Distribution
IV. How Do Nematodes Affect the Biosphere?
V. How Many Species of Nemata?
VI. Molecular Diversity in the Nemata
VII. Relationships to Other Animal Groups
VIII. Future Knowledge of Nematodes

GLOSSARY

anhydrobiosis A state of dormancy in various invertebrates due to low humidity or desiccation.
cuticle The noncellular external layer of the body wall of various invertebrates.
gubernaculum A sclerotized trough-shaped structure of the dorsal wall of the spicular pouch, near the distal portion of the spicules; functions in guiding the spicules.
hypodermis The cellular, subcuticular layer that secretes the cuticle of annelids, nematodes, arthropods (see epidermis), and various other invertebrates.
stichosome A longitudinal series of cells (stichocytes) that form the anterior esophageal glands Trichuris.
stoma The buccal cavity, just posterior to the oval opening or mouth; usually includes the anterior end of the esophagus (pharynx).
pseudocoelom A body cavity not lined with a mesodermal epithelium.
spicule Blade-like, sclerotized male copulatory organ, usually paired, located immediately dorsal to the cloaca.
synlophe In numerous Trichostrongylidae, an enlarged longitudinal or oblique cuticular ridge on the body surface that serves to hold the nematodes in place on the gut wall.
vermiform Worm-shaped with tapering form both posteriorly and anteriorly.

NEMATODES are the most speciose phylum of metazoa on earth. Not only do they occur in huge numbers as parasites of all known animal groups, but also they are found in the soils, as parasites of plants, and in large numbers in the most extreme environments, from the Antarctic dry valleys to the benthos of the ocean. They are extremely variable in their morphological characteristics, with each group showing morphological adaptations to the environment that they inhabit. Soil-dwelling forms are extremely small; many marine species have long and complex setae; and parasitic species manifest amazingly great reproductive potential and large body size. Nematodes are one of the major synanthropic metazoa, with some species such as pinworms having coevolved with humans and their relatives since the beginning of the lineage of the primates. While estimates of the numbers of known species hover around 20,000 actual numbers of taxonomists/systematists with expertise in this group are decreasing yearly. This is despite the fact that the Nemata are probably the last great group of Meta-
zoa to be well-documented and described. Estimates of the actual number of species of nematodes that remain to be described include several thousand from insects and millipedes, several thousand from vertebrates, and perhaps millions from marine habitats.

I. WHAT IS A NEMATODE? DIVERSITY IN MORPHOLOGY

A. General Characteristics and Synapomorphies

Despite numerous assertions that appear in the literature stating that nematodes are morphologically conservative, the contrary is actually true: species of the phylum Nemata are extremely variable in their morphological characteristics. Because of this diversity, almost any broad statement regarding their anatomy probably should be tempered or qualified. Nevertheless, nematodes are nonsegmented worms that generally lack external appendages. Most are vermiform, with tapering anterior (Figure 1a) and posterior (Figure 1b) ends, cylindrical in cross-section, and covered with a usually translucent, flexible, acellular cuticle (Figure 1c) secreted by an underlying cellular hypodermis. The cuticle may be smooth (Figure 2) or ornamented with rings (Figures 3a-3c), longitudinal striations, spines (Figure 3b), or spikes, or it may have well-developed wing-like structures called lateral alae that are very common on the externo-lateral surfaces (Figure 4). Some marine species have long setae (genus Draconema) (Figures 5a, 5b, and 6), modified sensory papillae that are probably used in movement and in detecting their environment. In contrast to all other nematodes, some marine species have eye spots that enable them to detect light in their environment (e.g., genus Draconema) (Figure 7).

The fine structure of the external body-cuticle is complex, acting to protect the animal from the external environment and allowing it to remain homeostatic inside. The cuticle can be extremely resistant, and depending on the nematode species and its life-history attributes. The cuticle of the nematode may be able to resist digestion in the most inhospitable stomachs in the vertebrate world. On the other hand, nematodes may be extremely delicate, able to exist intact only within the osmotically balanced tissues of other animals (e.g., members of the order Filaroidea), and if moved from the isosmotic solution to one with fewer salts, they may explode and die in a most amazing display.

Nematodes are called “pseudocoelomates” because in most forms, their coelom is not completely lined with mesodermally derived cells and they are triploblastic. Possessing no circular body muscles, movement is accomplished by contraction and relaxation of longitudinal muscles in apposition to a hydrostatic skeleton. The body wall is flexible and very strong. All nematodes maintain their form because their body fluids (in the hydrocoel) are under a positive pressure relative to their environment, analogous to the way a water balloon maintains its shape. The cross-section in Figure 8 shows Vexillata and the round shape of the body under the cuticle that supports spines or aretes (the whole structure is called the synlophe). Nematodes have a complete digestive system with an anterior stoma just behind the mouth and usually a triradiate or triple muscle-pumping type of esophagus (Figures 1a, and 1c) that can be muscular or glandular in structure (or both). The intestine, tubular in form (Figure 1c), is usually a single cell in thickness lined on the peritoneal side with a thin collagen-like material, internally lined with microvilli (Grassé, 1965; Maggenti, 1981, 1991a). The tube extends from the esophagus straight to the anus or cloaca, sometimes showing out pouches ceca or diverticulae near the esophageal end.

Most nematodes are sexually dimorphic with separate sexes (dieicous or amphigonus) and are oviparous; however, some are ovoviviparous and some are viviparous. Males usually have a cuticularized spicular or pair of spicles that are used to assist in the transfer of sperm to the females. Many species also have a gubernaculum (seen extended from the cloaca of a species of an aspidoderid in Figure 23) that guides the spicule during copulation and spicular eversion. Some are hermaphroditic; in these cases the nematode produces both sperm and ova from the ovotestis of the same individual at different times during ontogeny (Maggenti, 1991a; Malakhov, 1994).

A synapomorphy of the Nemata is the presence of noncontractile axon-like myoneural processes or extensions that run from the contractile or body portion of muscle cells to the neural junctions of the nerve cords. The width of nematodes is usually less than 2 mm, even when extremely long. However, even here there are exceptions, with the giant kidney worm, Dioctophyme renale, of canids attaining a size of 15 mm x 1,000 mm. The eggs of nematodes are also very similar in size, with most ranging from 50 to 100 μm long by 20 to 50 μm wide, with an exception being the antarctic marine nematode Deontostoma timmerchioi (40 mm in length of body) that has eggs that range from 870 to 1,100 μm long by 240 to 350 μm wide (huge by nematode standards).
As mentioned previously, nematodes are extremely diverse in size, shape, and structure. The following will only briefly touch on the expansive subject of nematode morphological diversity. For additional reading and exploration see the essential works and references therein of Nickle (1991), Maggenti (1981), and Grassé (1965).

B. External Covering: The Cuticle

An example of diversity in shape is that of the complex cuticular arêtes found in species of the O. Strongylida: Trichostrongyloidea (parasitic in vertebrates) in which the exocuticle is modified into a series of cuticular arêtes called the synlophe. In these forms, it is thought that the ridges running down the length of the body of the nematode are used in maintaining their position in the intestine of their hosts (Figure 8). Other forms have an exocuticle composed of serrated ridges (Figures 3a, 3b, 9, 10, 11), bumps, or may be very smooth (Figure 2). Some groups (Heterakoidea) possess large cuticularized suckers just anterior to the cloaca that are surrounded by sensory papillae that evidently allow the male to find the female in the intestinal tract of the host as in *Paraspidodera* (Figures 2, 12, 13) and other aspidoderids (Figure 23). Marine nematodes of the genus *Draconema* (Figures 5a, and 6) and *Desmoscolex* (Figure 3c) have a wildly modified cuticle relative to most nematodes and very large hair-like and segmented cuticular setae that the nematodes use for both movement and detecting its environment (Figures 5a and 6). One curious structure that occurs in all Nemata is the amphid, a highly vari

Figure 1 (a) Anterior end of *Didelphoxyuris*, the pinworm of South American marsupials, showing the small anterior stoma at the narrow end, followed by the well-developed muscular esophagus with a large posterior bulb. The esophagus is tripartite and serves as a muscular pumping organ, pumping food into the intestine. (b) Whole drawing of a predatory nematode of the genus *Mononchus* showing the general structures of a nematode including the tapering anterior and posterior ends and the ventral vulval opening just posterior to midbody. The stoma is heavily cuticularized and bears a spike or spine that is used to puncture the cuticle of the prey (modified from Cobb, 1914). (c) Confocal microscopic image of the esophageal bulb and posterior part of the esophagus of a species of *Pratylenchus*. The cuticle can be seen as the outer light outline of the nematode with an underlying brighter layer showing the cellular hypodermis. The bulb-shaped posterior part of the esophagus attaches via a valve to the single cell thick-tubular-intestine, shown here as an optical section just posterior to the esophageal bulb.
able sensory organ that can be very obvious as in *Desmodera* (Figure 10) or very inconspicuous as in *Chambersiella* (Figure 18).

C. The Alimentary Canal

The mouth of the nematode (Figure 14 a) provides the anterior opening to the external environment that connects to the stoma leading posteriad to the muscular esophagus (Figures 15, 16, 17, 18). The stoma may be quite reduced or absent as in the case of members of the Trichostrongyloidea (O. Strongylida) or they may be well developed such as that found in *Clarkus* (Figure 16) and *Mononchus* (Figure 1b) and capable of inflicting damage on their prey, or it may be modified into horny tooth-like structures that are used to attach to the intestinal villi of the host animal (*e.g.*, *Ancylostoma*) (Figure 19). In mammalian gut parasites of the genus *Trichuris* (Adenophorea: Trichuridae), the stoma is lacking and the esophagus is formed of stichocytes comprising a stichosome that is glandular in function, but many other plant parasites such as the Adenophorean ectoparasitic, below-ground root-feeders (capable of transmitting viruses between and among plants *Xiphinema*, *Longidorus*, or *Dorylaimus*: O. Dorylamida: Longidoridae) have a tubular stoma with the posterior parts of the stoma modified into a spear that is used to penetrate plant cell walls as in *Dorylaimus stagnalis* (Figure 20). The Secernentean plant endoparasitic nematode of the genus *Pratylenchus* (Figure 21a) also has a modified stomatal spear (much more delicate than those found in *Dorylaimus* sp.) with which it penetrates plant cells as the nematode moves through the tissues and cells of the plant (usually below-ground).

D. The Reproductive System

The reproductive system of most animal parasitic nematodes is adapted to produce extremely large
numbers of eggs (e.g., *Ascaris*). Some characteristics of larger animal parasitic nematodes include very large body, very two large ovaries, and an equally large uterus. Free-living nematodes generally have much smaller bodies and are therefore individually less prolific. However, the reproductive systems of most nematodes have the following basic structural similarities: Most females have two ovaries, one anterior (as in *Pratylenchus*, Figure 21b) and one posterior, each connected to an oviduct and uterus with the uteri connecting to the vagina, terminating in the vulva. Males usually have one testes as in the Secernentea or two as in the Adenophorea, a seminal vesicle, and a vas deferens (see Maggenti, 1991a) connecting to the outside via the cloaca (Figure 13) which is a joining of the reproductive system and the rectum. Secondary sexual organs in male nematodes are usually much more pronounced and variable than that of the female (Figures 2, 6, 11, 12, 13, 22, 23, 24, 25) and most males have one or two spicules (Figure 22), a spicular pouch, sometimes with a spicular sheath (Figure 24), and a gubernaculum (Figure 23). Some males of the O. Strongyliida have a well-developed copulatory bursa (Figure 22).

Some plant parasitic nemas produce eggs directly into the plant where the nematode lives (in the case of species of the genus *Pratylenchus*, the female produces eggs that hatch within the tissues of the plant and the juveniles begin feeding), whereas in others such as *Heterodera* (which are ectoparasites) the body of the female fills with eggs, forming a sac that eventually dries and transforms into a resistant cyst, with the juveniles within capable of resisting environmental extremes.

II. THE UBIQUITOUS NATURE OF NEMATODES

There are few habitats on earth unoccupied by nematodes. More than a century of both biological surveys and informal collecting has led many biologists to believe that the phylum Nemata is probably the most ubiquitous of all animal groups. Early in the history of scientifically based biological investigations, pioneers of microscopy opened a new window into the previously unseen microscopic world of the soils.
Figure 6 Drawing of a male of *Draconema* sp. illustrating the large setae, spicules, testis, and large expanded stoma and head (after Cobb, 1914).

Figure 7 Cuticularized “eye spots” in the marine nematode *Thoracostoma*. Located at about the mid-part of the esophagus, this nematode can detect light in its environment.

Figure 8 Cross-section at midbody of *Vexillata armandae*, a species of nematode parasitic in rodents of the genus *Perognathus* in New Mexico. This photograph shows the spines (aretes) in the cuticle, called the synlophe in Trichostrongyloidea. Inside is the hypodermis lining the body of the nematode. The reproductive tract and the intestine are not visible in this photograph.

Descriptions of the “invisible” life seen by pioneers of microscopy such as Antony van Leeuwenhoek evoked images of a wonderfully diverse and dynamic community of worms and other organisms. Subsequent investigations by other early researchers began to open up the unseen world of the nematodes.

Figure 9 Anterior end of a species of *Criconemoides*, an external root feeding plant parasite. The rings of the cuticle can be seen from the head end posteriad. The strong cuticularized stomatal spear is clearly visible in this photograph.
A. Early Views of Nematode Diversity: The Human Perspective

Humans have been parasitized by nematodes from the earliest times. Eggs of the pinworm *Enterobius vermicularis* and the whipworm *Trichuris trichuria* occur in coprolites dated to about 7,000 years old (y.o.) from dry areas of Peru, and eggs of the hookworm *Ancylostoma duodenale* have been reported from coprolites dated to around 7,230 y.o. In eastern Brazil, *Ascaris lumbricoides* has been positively identified from human coprolites dated to about 28,000 y.o. from caves in France, but this is the only occurrence of a

record this old. The seeming dearth of other nematodes from human remains older than about 7,000 y.o. appears to be due to the fact that organic material comprising the coprolites themselves do not preserve well enough to last that long (K. J. Reinhard, personal communication).

In what is thought to be the oldest surviving written account of *Ascaris* in humans (dated to approximately 4,700 y.o.) (in China), foods to avoid and a description of the symptoms of humans infected with these worms was accurately given (Maggenti, 1981). In the area of the Nile River Valley, early Egyptian physicians recorded the presence of both *Ascaris* and *Dracunculus* (the “Guinea worm”) in an ancient papyrus manuscript (written by Egyptian physicians around 3,552-3,550 years ago) that was
obtained and translated by the Egyptologist “Ebers” in 1872 (see Chitwood and Chitwood, 1977; Maggenti, 1981). In the extant literature, the first mention of a nematode from a nonhuman animal was by Hippocrates about 2,430 years ago; he described the occurrence of pinworm nematodes of horses and human females. From that time, little more was discovered until Albertus Magnus and Demetrios Pepagomenos (in the 13th century, cited...
Figure 18 Delicate but well-cuticularized stoma of Chamber-siella.

Figure 19 Scanning electron micrograph looking into the mouth of a species of mammalian parasite of the genus Ancylostoma. The teeth are used to attach to the villi of the host mammal.

Figure 20 Anterior end of Dorylaimus stagnalis, a plant root ectoparasite showing the well-developed stomatal spear that is used to penetrate plant root cells.

Figure 21 (a) Confocal image of Pratylenchus sp. showing the well-developed spear that the nematode uses to penetrate plant cells while moving through the roots of the plant. The muscles and glandular part of the esophagus are also visible. (b) Confocal image of Pratylenchus showing the anteriorly directed ovary with individual ovocytes and their nuclei visible.

Figure 22 Posterior end of a male trichostrongyloid showing the well-developed copulatory bursa, bursal rays, and the long thin paired spicules.

from Rausch, 1983) recorded nematodes from falcons (also see Chitwood and Chitwood 1977). With the development of the microscope and the emergence of Europe from the dark ages, knowledge of nematodes as parasites of plants and animals and of free-living forms expanded rapidly. It was found
that nematodes occurred everywhere people looked; in fact, Anton van Leeuwenhoek first recorded the presence of vinegar eels (*Anguillula aceti*) in his vinegar stored for personal use in a letter dated April 21, 1676, although he was not aware that others had reported finding nematodes some time earlier (Dobell, 1932).

Estimates of infections of people with common human parasitic nematodes give the following numbers (from Crompton, 1999): of a total human population of about 6 billion individuals (in the year 2000) the strongylid hookworms *Ancylostoma duodenale* and *Necator americanus* infect about 1,298,000,000 (22%), and the large intestinal nematode *Ascaris lumbricoides* occurs in about 1,472,000,000 (25%) people at anyone time in the world. Obviously, many people harbor more than one species of nematode at a time, and it is common for people to sport *Ascaris*, *Necator*, *Trichuris*, and *Enterobius* simultaneously. I provide the following estimate to indicate just how important these organisms are in the web of life on Earth. To put the number of infections of humans in perspective, I made the following extrapolations: An adult female *Ascaris* produces approximately 200,000 eggs per day at an average rate of about 5 grams of eggs per year. Actual data for *Ascaris* in humans that are infected show an average of 18 worms per infected person. Given that half of these are females, I calculate that 9 worms/person will produce about 45 grams of eggs in the feces of the host per year. In one year the total population of *Ascaris* in humans worldwide is conservatively estimated to produce 66,240,000 kg or 66,240 metric tons (72,864 tons [English]) of eggs; this is equal in weight to about 348 large adult blue whales, 8,832 adult male elephants, or 364 fully loaded railroad coal cars.

Estimates of the number of human infections in the year 2000 by other species of parasitic nematodes are shown in Table I. At the present time, it is estimated that approximately 138 species of nematodes have been reported from humans (Crompton, 1999) with from 32 to 36 being host-specific.

B. The Science of Nematode Diversity

Nathan A. Cobb, often considered the father of nematology in North America, was a student of the renowned German zoologist Ernst Haeckel. After just
a few years of research spanning the globe from Europe, Australia, and North America, Cobb amassed a huge amount of knowledge and came to have a deep appreciation for the immense number of species that existed. With scientific knowledge based on keen observational skills, he understood the nature of both the great numerical density and species diversity of nematodes in all habitats of the globe that he examined. Thus armed, he wrote the following:

In short, if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes. The location of towns would be decipherable, since for every massing of human beings there would be a corresponding massing of certain nematodes. Trees would still stand in ghostly rows representing our streets and highways. The location of the various plants and animals would still be decipherable, and, had we sufficient knowledge, in many cases even their species could be determined by an examination of their erstwhile nematode parasites.

We must therefore conceive of nematodes and their eggs as almost omnipresent, as being carried by the wind and by flying birds and running animals; as floating from place to place in nearly all the waters of the earth; and as shipped from point to point throughout the civilized world in vehicles of traffic.

Cobb (1914)

As if challenged by this assertion, scientists have tested Cobb’s hypotheses by examining the extremes of the biosphere on Earth to evaluate the limits of nematode life. Through these investigations, biologists have now shown that nematodes are living and reproducing everywhere on Earth that water exists in a liquid state even for short periods of time annually.

III. DIVERSITY OF HABITATS
AND DISTRIBUTION

A. General Distribution

The most obvious ecological characteristic that defines habitats for members of the phylum Nemata is that they all are aquatic animals-to move, live, eat, and reproduce, nematodes must exist in an aqueous environment. This environment includes soils, muds, sands, plants, and animals. They can be found living in soils with moisture contents as low as 5 to 10%, but in the majority of these cases, the nemas are associated with the roots of plants. It is evident that the environment in which nematodes live constrains their ultimate size. Soil-dwelling species live in the water film of the interstices of soil particles. Nematodes must live and carry out all functions of life in these spaces, thus free-living or plant-parasitic soil-dwelling forms are usually extremely small. Morphological diversification of nematodes can operate only within the constraints of their life history parameters, and evolutionary pathways for nematodes living in an interstitial-soil or sediment/sand environment are limited. Thus these forms have limited abilities to diversify into the nonaquatic regions of the Earth, and their size

<table>
<thead>
<tr>
<th>Species of nematode</th>
<th>Numbers infected</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancylostoma duodenale and N. americanus</td>
<td>1,298,000,000</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>1,472,000,000</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Brugia malayi and B. timori</td>
<td>13,000,000</td>
<td>South Pacific, SE Asia, India</td>
</tr>
<tr>
<td>Dracunculus medinensis</td>
<td>80,000</td>
<td>Sub-Saharan Africa and Yemen</td>
</tr>
<tr>
<td>Loa loa</td>
<td>13,000,000</td>
<td>West and Central Sub-Saharan Africa and Yemen</td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>17,660,000</td>
<td>Central and South America and Sub-Saharan Africa</td>
</tr>
<tr>
<td>Strongyloides stercoralis</td>
<td>70,000,000</td>
<td>Temperate regions</td>
</tr>
<tr>
<td>Trichuris trichuria</td>
<td>1,049,000,000</td>
<td>Worldwide</td>
</tr>
<tr>
<td>Enterobius vermicularis</td>
<td>400,000,000</td>
<td>Temperate regions</td>
</tr>
</tbody>
</table>

Data from Crompton (1999).
is constrained by this fact. A lingering question remains, why do we not see extremely large marine nematodes? Perhaps it is because we have not yet looked carefully in the marine environment.

In contrast to the small sizes of plant-parasitic, free-living marine, freshwater, or soil nematodes (some adults can be as small as Criconemoides with an adult length of around 250 µm), species that occur as parasites of animals are free from many of the physical constraints on their size, so the bodies of species in mammals are, therefore, relatively large. In fact, the largest nematode thus far recorded is Placentonema gigantissima from the blue whale with a length of more than 8 m (Maggenti, 1981). The ratio between the smallest adult nematode to the largest can be calculated as 0.250 mm (Criconemoides)/8,000 mm (Placentonema) = 0.000031, compared to the ratio between a shrew and a blue whale (50 mm/24,400 mm = 0.12), indicating that the size differences in nematodes are three orders of magnitude greater than the mammals.

In the marine-benthic environment, Lambshead (1993) has estimated (based on transect data from deep sea benthic samples) that there may be as many as 100 million species of marine infaunal nematodes. As exorbitant as that estimate seems, deep-sea nematodes have been shown to be extremely rich in species diversity. For example, one marine sediment sample from the east Pacific benthos was reported to contain 148 species from a total of only 216 individual specimens examined (Lambshead, 1993). At the present time the true extent of species diversity in the marine benthos can only be imagined, because fewer than 20 studies of nematode community structure from marine benthic habitats have been reported (Boucher and Lambshead, 1995). Data from Boucher and Lambshead (1995) shows that in marine environments the highest diversity in nematodes occurs in abyssal benthic sediments.

We know that great numbers of individuals and species of nematodes live in sediments on the ocean floor distributed from the intertidal continental margins to the benthos of the abyssal zones, even though these marine habitats remain mostly unexplored. Nematodes occur in tissues and organs of all species of vertebrates that have been studied, and some, such as Physaloptera spp. live, feed, and reproduce in the strongest stomach acids of mammals, birds, and reptiles. Desiccated specimens from both the Arctic and Antarctic have been rehydrated to form viable colonies, and living nematodes have been found in the limited meltwater in some of the dry valleys of Antarctica, an area that is probably one of the most extreme biotopes on the Earth.

B. Extreme Biotopes

Some of the most extreme soil habitats on the Earth exist in the dry valleys of the Antarctic, where the annual mean air temperature is -20°C, and soil temperatures at a 5-cm depth for the two “summer months” range from -2.7 to 15.9°C. In this area, no vascular plants grow and mosses and lichens are rare; this is the only terrestrial soil system known where nematodes are the final consumers and are at the apex of the food chain (in this case it seems more of a chain than a web). Three nematode species exist in these dry soils: Scottnema lindsayae, a microbivore (feeding on bacteria and yeast), Plectus antarcticus (a bacterial feeder), and Eudorylaimus antarcticus, an omnivorous predator that presumably feeds on individuals of the other two species (Powers et al., 1998). Another biological extreme, Death Valley in California, has recorded some of the highest temperatures in North America, and the soils of the valley are teeming with nematodes, many of which have been discovered to possess similar adaptive traits to those found in the cold deserts of Antarctica.

Individuals of some species of Nemata are capable of resisting extended periods of dessication, for example, 3rd stage juveniles of Anguina tritici have been dried for more than 20 years in a state of anhydrobiosis in which all metabolic activities are shut down (Maggenti, 1981). These nematodes have been shown to have specialized proteins that fold into stable/preserved structures as the organism dries. In this state of cryptoor anhydrobiosis, individual nematodes can remain viable through incredible extremes of temperature, desiccation, hypoxia, and even synthetic nematicides designed to kill nematodes (of course the regular biochemical processes that nematicides interfere with are not operational, so the nematode does not notice this particular assault). When water again becomes available, the animal comes back to life when the molecular structures rehydrate and the proteins and enzymes spring back into normal operation.

C. Habitat Diversity

Nematodes occupy every conceivable life history niche. There are benthic deepwater marine forms that appear to consume mostly diatoms and others such as species of the genus Draconema (Figures 5a and 6) that are mostly associated with marine algae, but it is still unclear what they actually eat. Nematodes of the genus Dirofilaria live in the aorta and left ventricles of canids and are transmitted by mosquitoes from dog to dog. Species of nematodes live in the hearts of sharks,
and other species can occur by the thousands in the stomachs of pilot whales (S. L. Gardner, personal observation). As the human consumption of raw marine fish (ceviche and sashimi) has increased, transfer of juvenile *Anasakis, Terranova,* and other anasakines from the fish intermediate host to humans is occurring more commonly, and these nematodes are turning up as parasites in the stomachs of humans.

Some species feed on fungi in the soil while others are trapped and are themselves consumed by different species of fungi. Still other nematodes such as *Mononchus* (Figure 1b) and *Clarkus* (Figure 16) are predatory and hunt and eat other nematodes in the soil environment. Free-living bacterial feeding nematodes have been shown to be integral parts in the carbon and nitrogen cycles in healthy soils (Ferris *et al.*, 1998), and recent survey work has shown that undisturbed or natural soils in noncultivated habitats can have as many as 20 times more species than soil from similar areas that have been under cultivation (Al-Banna and Gardner, 1996).

D. Abundance: Estimates and Facts

In addition to the large numbers of species that may occur in any given habitat, nematodes also occur in very great densities. For instance, in sheer numerical density of individuals in any given environment, nematodes exceed even the mites and beetles combined. More than 90,000 nematodes were recorded from a single decomposing apple, and one report showed that 1 cc of marine mud contained 45 nematodes representing 19 species. Nematodes in marine estuaries occur at high numerical densities with reports of 4,420,000/m² in surface mud and 527,000,000/acre in the top 3 inches of sand on the Massachusetts coast. Counts and extrapolations for relatively moist soils (10 to 70% moisture content) worldwide show that in the uppermost levels, nematodes occur in mind-boggling abundance: 7 to 9 billion/acre in undisturbed sod in North China; from 800,000,000 to > 1 billion/acre (representing just 35 species) in Utah and Idaho, and around 3 billion/acre in low-lying alluvial soils of Europe and other areas of North America.

IV. HOW DO NEMATODES AFFECT THE BIOSPHERE?

Because of the huge numbers of nematodes that have been shown to occur in plants, animals, soils, and the benthos, there has been much speculation about the role of nematodes in basic biological processes occurring in the soils of the Earth. Cobb (1914) speculated that some nematodes “are beneficial;” however, he also noted that this area of study was still in its infancy. In fact, in the year 2000, this area of study is still just developing, and recent work has shown that nematodes can be good indicators of biodiversity (Bongers and Ferris, 1999). Gardner and Campbell (1989) showed that mammalian parasites with complex life cycles may serve as excellent indicators of areas of high biological diversity. Because of the multifarious nature of parasitic nematodes in mammals, it is expected that these kinds of species may provide biologists with additional tools for identification of areas of high biological diversity.

The fact that parasitic nematodes occur in such high prevalences and numerical densities in mammals should give us pause. There is obviously a huge energy drain on any population of mammal that we should care to analyze, and this energy drain probably causes significant decreases in the number of offspring in any given population over long periods of time.

A. Soils and Plants

Studies have indicated that nematodes play a substantial role in the cycling of carbon and nitrogen in the soil environment (Bongers and Ferris, 1999), and it has been shown that the number of bacterial-feeding nematodes increases as the bacteria increase with annual warming of the soils. In the rainforest of Cameroon, average nematode abundances of 2.04 x 10^6/m² of rainforest soil were found, indicating that these nematodes play a significant role in carbon flux (CO₂ and CH₄) in this rain forest site (Lawton *et al.*, 1996).

Nematodes occur in, on, and around the roots, bulbs, rhizomes, stems, and leaves of plants. They can cause galls in both the somatic and germinal tissues of the plants, where the nematodes can encyst and dry, waiting for the next stage in their life cycle. There are species that are almost fully endoparasitic, exiting the plant root or stem only as juveniles. Others are fully ectoparasitic, such as species of *Xiphinema* (the vector of grape fanleaf virus). Some species spend part of their life cycle in a plant and part of it in the soil. As mentioned earlier, seed parasites of the genus *Anguina* may spend most of their existence as juveniles in a dried state, with the nematodes rehydrating, molting, and then as adults crawling up the outside of the plant during periods of high relative humidity, then laying eggs in the seed head. The seeds are consumed by the developing juveniles, and when they dry, the seed coats protect the also dried nematodes within and are distributed through the
environment as are normal seeds (Maggenti, 1981). Nematodes of the genus *Pratylenchus* use their spear to move through the roots of the plants that they infect, penetrating the plant cells with repeated jabs of their stomatal armature.

B. Predators, Entomopathogenic Forms, Fungal and Bacterial Feeder

Many nematodes that are found in the soil are either predaceous forms eating other nematodes or forms that prey on mites or other soil macroorganisms. The more spectacular predators such as *Mononchus* and *Clarkus* have specialized buccal structures with which to puncture the cuticles of other nematodes (Figures 1b and 16). Microbivorous fungal and bacterial feeding nematodes are also extremely abundant, with species specializing in their feeding habits on bacteria, fungi, diatoms, and other microscopic organisms. Some, such as juveniles of species of the genera *Heterorhabditis* and *Steinernema*, carry bacteria of the genus *Photorhabdus* in their digestive system. The 3rd stage juveniles wait in the soil until an unwary insect passes nearby. The nematode then homes in on and penetrates the hapless insect, making its way into the hemocoel where it releases the bacteria, which proliferate, killing the host. The nematode then feeds on the bacterial colony and reproduces in the insect, eventually again producing 3rd stage juveniles that leave the carcass of the insect and disperse into the soil, waiting there for another insect to invade (for more specific details of the life-cycle of these entomopathogenic nematodes, see Gaugler and Kaya, 1990).

Bacterial-feeding forms occur in the soil in extremely high numbers. In soils that have not been disturbed and that have a good layer of organic matter, large numbers of all kinds of nematodes occur. One of the most well-known groups is the Rhabditida, or the rhabditid nematodes. These forms feed on bacteria and yeasts growing in the soil and are typically found in high numbers in moist soils with high organic content. The most famous of these forms are members of the genus *Caenorhabditis*, of which the complete genome of *C. elegans* has been sequenced.

C. Aquatic and Marine Nematodes

This is an area that is wide open for future biologists. How do the trillions upon trillions of individuals and the millions of species that occur in the oceans really affect the biosphere? Nothing is known on the subject at the present time.

V. HOW MANY SPECIES OF NEMATA?

A. Estimates of Number Described

Estimates of the numbers of species of nematodes that are known (i.e., described species) vary widely. However, in 1819, Rudolphi summarized what was known of the nematodes, recording 11 genera and about 350 species. Just 115 years later, in 1934, Filipjev reported that 4,601 species of nematodes had been described, with about half free-living and the other half parasitic. By 1950, Libbie Hyman estimated that approximately 9,000 species were described (based on her analysis of the zoological record with descriptions being recorded at a rate of about 200 new species described per year). In 1981, Maggenti’s summary showed around 15,000 described species. My analysis from counting additions to the zoological record shows that in the 5-year period from 1992 through 1996, numbers of descriptions were relatively stable, with approximately 776 new species described (average of approximately 115 descriptions per year). From 1996 through 1998 the numbers of descriptions decreased to 118 per year, most likely due to the continued retirement and expiration of knowledgable taxonomists.

B. How Many Species of Vertebrate Parasitic Nematodes Exist?

All species of vertebrates examined thus far serve as hosts for at least one species of parasitic nematode. Some mammalian hosts harbor many species of nematodes that are distributed through several orders and families. Some of these nematodes are highly host-specific, surviving and reproducing successfully only in host individuals comprising a single species or perhaps a closely related group of species. Other nematodes show less specificity, being much more likely to jump from one suitable vertebrate host to another during opportune times during their life history (Brant and Gardner, 2000).

Within a host, many different types of habitats may be occupied by nematodes. As a species, *Homo sapiens* harbors approximately 35 species of host-specific parasitic nematodes (Chitwood and Chitwood, 1977). To illustrate the diversity of habitats in a single animal host, humans will be used as an example. In a human, nematodes can occur as juveniles in muscle tissues (usually smooth muscle such as the diaphragm or the tongue [Trichinella]) and in the mucosa of the intestine (*Strongyloides*); as migrating forms in blood and lungs (*Ascaris*); as microfilariae in blood or lymph (*filaroids of humans*);
and as adults in the small and large intestines (*Ancylostoma, Necator, Ascaris*), in mesenteries and subcutaneous tissues (*Onchocerca, Loa, Wuchereria*), and in the large intestine and cecum (*Enterobius*).

Cobb was well acquainted with animal parasitic nematodes, and his familiarity with host-specificity in the Nemata led him to estimate as early as 1914 that well over 80,000 species of nematodes would eventually be found parasitizing vertebrates alone. Similar estimates could be derived for parasites of invertebrates and plants, resulting in totals of free-living and parasitic species numbers far in excess of the approximately 20,000 species of nematodes known today. Cobb (1914) stated “There must be hundreds of thousands of species of nematodes. Of this vast number only a very few thousand have been investigated, and of these, comparatively few with any degree of thoroughness.”

Present estimates conclude that only about 14,000 species of parasitic nematodes have been described from all taxa of slightly more than 48,000 currently recognized species of vertebrates. If each of the approximately 4,450 known species of mammals were infected with only two species of host-specific nematodes, we would expect to find a minimum of 8,900 species of parasitic nematodes only in the class Mammalia. In addition, many species of wild mammals each harbor more than two host-specific species of nematode, so the above estimate of 8,900 species of nematodes only from mammals can be considered very low.

As of this writing, the natural history, development, and transmission parameters of only around 561 species are known (Anderson, 1992). For parasites of vertebrates, Anderson (1992) estimated that there were about 2,300 described genera distributed among 256 families comprising about 33% of all nematode genera known. This percentage is about equal to the percentage of genera of Nemata presently known in marine and freshwater habitats. It is agreed by most workers that this bias is due to the larger number of parasitologists working on selected groups of Nemata relative to the number of specialists working on the free-living marine and freshwater forms.

Pinworms, nematodes of the order Rhabditida, superfamly Oxyuroidea (Figure 1), show high levels of host specificity, and it is well-known that almost all species of rodents and primates have one or more speciesspecific pinworms (for instance, *Homo sapiens* harbors both *Enterobius vermicularis* and *E. gregorii*). Both recent and historical studies have shown that pinworm nematodes exhibit high levels of coevolution, *i.e.*, concomitant host-parasite speciation (and host specificity) with their primate and rodent hosts (Hugot, 1999). At the present time, slightly more than 716 species of Oxyuroidea have been described, with the vertebrates hosting about 496 species and invertebrates about 217 species. The greatest diversity in the Oxyuroidea to be found in the future is expected to come from examination of the Arthropoda, especially beetles, cockroaches (4,000 species described and more than 20,000-30,000 expected to be found), and millipedes (17,000 species described and more than 60,000 species expected to be found). This gives huge numbers of pinworms occurring just in the cockroaches and the millipedes if each species harbors its own species of pinworm. At least two species of pinworms (genus *Thylastoma*) occur in laboratory colonies of *Periplaneta americana* and more are expected to be found in free-living populations (J.-P. Hugot, personal communication).

When adequate surveys are completed, large numbers of species of Oxyuroidea are also expected to be described from Neotropical rodents of the family Muridae. Up to the present time, only around seven species of pinworms have been described from Neotropical murids, and these rodents potentially host from 400 to 800 undescribed species of Oxyuroidea (given that only one to two new species of oxyuroid nematodes are found in each species of rodent examined) (J.-P. Hugot, personal communication).

Recent comparative studies in the Oxyuroidea show that the larger the body size of the host, the larger the body size of oxyurid nematodes that it harbors (Morand et al., 1996).

C. Comparative Nematode Diversity of New World Subterranean Rodents: Geomyidae

Papers on nematode parasites from rodents of the Nearctic family Geomyidae covering the dates from 1857 to 1999 were reviewed. Combined with field-collected specimens from the early 1970s up to the present time, I discovered that six of the approximately 11 nematode parasites reported from pocket gophers in North America are host specific to only the Geomyidae (Table II).

Of members of the vertebrate class Mammalia, one of the most complete sets of nematode parasite data exists for rodents of the family Geomyidae. Of the approximately 35 known species of pocket gophers (Wilson and Reeder, 1993), only 15 species have been surveyed for parasitic nematodes. From those 15 species, six species of nematodes are known to be host-specific only to geomyids. Some nematodes such as the strongylid *Ransomus rodentorum*, the heligosomid
Table II

<table>
<thead>
<tr>
<th>Nematode species</th>
<th>Classification and location in host</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trichuris fessor</td>
<td>Sub-Phylum Adenophorea</td>
</tr>
<tr>
<td>Ransomus rodeniorum</td>
<td>Cecum/Small intestine</td>
</tr>
<tr>
<td>Vexillata vexillata</td>
<td>Duodenum</td>
</tr>
<tr>
<td>Vexillata convoluta</td>
<td>Duodenum</td>
</tr>
<tr>
<td>Heligmosomoides thomomyos</td>
<td>Duodenum</td>
</tr>
<tr>
<td>Litomosoides thomomydis</td>
<td>Mesentaries</td>
</tr>
<tr>
<td>Litomosoides westi</td>
<td>Mesentaries</td>
</tr>
</tbody>
</table>

Heligmosomoides thomomyos, and filarioids of the genus *Litomosoides* have been reported from more than one species of gopher; other nematode species such as *Vexillata vexillata* occur only in gophers of the tribe Thomomyini (genus *Thomomys*) but do not appear to be host species specific.

These mammals occur in an extremely wide and ecologically variable geographic area (from southern Manitoba and British Columbia south to extreme northern Colombia); therefore, there may be many more undescribed or undetected species of nematodes in these hosts than this analysis provides. In addition, no studies on genetic diversity of nematodes (or any endoparasites) in these rodents have been published; therefore, levels of genetic variation in these nematodes are unknown and the true genetic diversity that exists will probably result in an increase in the number of nematode species that are recognized.

There is little if any evidence of phylogenetic co-evolution of the nematode parasites and their pocket gopher hosts. However, all species listed in Table II are specific to species of the family Geomyidae, and both *Litomosoides* and *Vexillata* appear to exhibit some level of phylogenetic host specificity with two closely related North American species of *Litomosoides* being found only in geomyids (Brant and Gardner, 2000) and species of *Vexillata* occurring more generally in members of the Geomyoidea.

D. Nematodes of Tuco Tucos (Ctenomyidae)

A review of the nematode parasites occurring in Neotropical rodents of the genus *Ctenomys* (Table III) indicates a considerably more depauperate fauna of nematodes as compared with the Nearctic Geomyidae. Data collected from 1984 on indicate that nematodes of the genera *Trichuris* and *Paraspidodera* have cospeciated with their hosts and exhibit different levels of phylogenetic congruence relative to their hosts. In addition, nematodes of the trichostrongylid (O. Strongylida) genus *Pudica* were encountered only two times from the same species of *Ctenomys* in one locality (from a sample of more than 500 individuals and more than six species of hosts examined). The occurrence of *A. caninum* in *Ctenomys* appears to be a capture, as it only occurred in areas where dogs, humans, and ctenomyids lived in relatively close proximity (banana fields in lowland Santa Cruz, Bolivia).

Whereas most of the pocket gophers examined carefully generally harbor from one to several species of nematodes in the small intestine, very few nematodes are found in samples of tuco tucos. Even though the genus *Ctenomys* contains almost 40 species, comparatively few species of nematodes from them have been described or reported. This lack of parasites in a widespread group of mammals might be a result of rapid speciation in the mammal group, with parasites failing to keep up with the speciation rate of the mammals themselves and actually losing parasites through time; there is some evidence that the ctenomyids have speciated rapidly in the recent past. The lack of a diverse fauna of nematodes in these mammals could also be due to historical accident, whereby the ancestor of the ctenomyids had a low diversity of nematode parasites (for whatever reason) thus giving rise to a phylogenetic lineage of mammals lacking a diverse fauna of parasites. But why have they not picked up more parasitic nematodes from other syntopic species of mammals?

There is some evidence of host-switching in nema-
todes of the genus *Litomosoides*, in that two species occur in *Ctenomys* opimus in high altitude western Bolivia, but these nematodes have not been reported from any other species of *Ctenomys* from throughout the Neotropics. Superficially this indicates a host-capture event from some other lineage of mammals (Brant and Gardner, 2000). Another example is the fact that nematodes of the genus *Pu* *dica* found in *Ctenomys* have diverse relatives in other species of murroid rodents in South America but none in ctenomyids, leading to the conclusion that most are now found in the tucos because of host-switching events and not phylogenetic coevolution.

Nematodes of the genus *Paraspidodera* are found only in Hystricognath rodents in the Neotropical region and these nematodes appear to have had a long historical, coevolutionary association with ctenomyids (Gardner, 1991), showing varying levels of both cospeciation and host switching. The adenophorean whip worm genus *Trichuris* occurs in many diverse groups of rodents in the neotropics, but no analyses have yet been done to examine the levels of coevolution with ctenomyids.

The multifarious nature of nematode diversity in subterranean mammals in the Nearctic and Neotropical regions requires at the minimum that phylogenetic hypotheses for each group of mammals and their nematodes be developed so each host group can be compared with each parasite group. Much more detailed work must be paid to collecting parasites from some of the unknown species of *Cteno* *mys* throughout the Neotropics. The same can be said about the level of knowledge of parasitic nematodes in the Geomyidae in the northern Neotropics and southern Nearctic regions.

VI. MOLECULAR DIVERSITY IN THE NEMATA

Several molecules have been used to begin to assess phylogenetic and genetic diversity within the Nemata, and the number of investigations using molecular methods to try to quantify the diversity of the nematodes is rapidly increasing (see references in Dorris *et al.*, 1999; Blaxter *et al.*, 1998; Adams, 1998; Al-Banna *et al.*, 1997; Nielsen, 1996). However, because of the extremely large number of species that may exist, examination of levels of molecular or genetic diversity in representatives of the group as a whole is just beginning even though massive amounts of molecular data on nematodes are now pouring into the literature stream. The summary papers by Blaxter *et al.* (1998) and Dorris *et al.* (1999) indicate the utility and power of estimating the molecular-phylogenetic relationships among the Nemata using ribosomal DNA and other molecular sequence data. Initial studies of the molecular diversity within and among several lineages of the Strongylida show that the genetic diversity among these taxa is relatively low (Chilton *et al.*, 1997). From these works, it is clear that molecular phylogenies will provide robust tests of the hypotheses of morphological relationships among the Nemata. As more regions of DNA are used to examine the relationships among the nematodes, we expect a clarification of both the deep phylogenetic branches that are relatively obscure in the molecular phylogeny of the Nemata and the more rapidly evolving branch tips that represent extant species with valuable genetic information.

VII. RELATIONSHIPS TO OTHER ANIMAL GROUPS

An analysis grouped the nematodes, gastrotrichs, priapulids, kinorhynchs, and the loriciferans into a group (superphylum) called the Cycloneuralia (Figure 26) based on the circular shape of the brains in these groups (Nielsen *et al.*, 1996). The aforementioned study and at least one other (Zrzavy *et al.*, 1998) using 18s rDNA sequences showed that the Nemata share a common ancestor with members of the phylum Nematomorpha, but there was a shuf-
fling of the other groups out of the “Cycloneuralia.” (Figure 27).

As mentioned previously, nematodes are soft-bodied and mostly very small organisms. Any larger forms that existed were probably parasites of vertebrates; however, these left no fossil traces. The only fossil nematodes that are known are insect parasitic or plant parasitic forms that occur very rarely in amber inclusions. Because there are no fossil records of nematodes of Cambrian or Precambrian ages, estimates of the age of the Nemata have been only speculative, and without fossils, it is difficult to calibrate molecular clocks for the nematodes. However, through application of various models of molecular evolution and molecular clock theory, estimates of the time of divergence of the nematodes from the rest of the animal groups appears to be about 1,177 ± 79 million years (Wang et al., 1999) (this study showed a basal origin of the nematodes on a phylogenetic tree, in contrast to the relatively derived placement in the analyses shown in Figures 26 and 27).

Most authors consider the ultimate origin of nematodes to be from a marine ancestor (Maggenti, 1981; Malhakov, 1994). The tri-radiate esophagus and the tubular body indicate a possible primarily sedentary existence with the posterior end attached to the substrate and the anterior end freely encountering the marine environment from all sides, thus the secondarily derived, somewhat radial symmetry.

A. Groups of the Nemata

Above the level of the order, confusion reigns relative to the classification and systematic arrangement of the nematodes. Maggenti (1991a) is usually followed in this regard, and his analyses followed corroborated historical analyses in recognizing the two main subphyla: the Secernentea and the Adenophorea. Recent work shows that these groups are substantiated both in morphological and in molecular analyses, although competing phylogenetic hypotheses and associated classifications have also been proposed (Dorris et al., 1999; Blaxter et al., 1998; Brooks and McLennan, 1993; Adamson, 1989).

B. Classification

Since 1949, at least eight authors have provided classifications for members of the phylum Nemata (see references in Malakhov, 1994; Brooks and McLennan, 1993; Maggenti, 1991). Of these, the classifications of Maggenti (1981, 1991a) have proven to be the most useful summary of all nematodes (free-living and parasitic); however, phylogenetic hypotheses have been proposed based on both molecular and morphological characteristics. This does not necessarily mean that a classification will be developed from a proposed phylogenetic tree (see Maggenti, 1991a; Brooks and McLennan, 1993).

VIII. FUTURE KNOWLEDGE OF NEMATODES

I hope that this summary treatment provides readers with sufficient knowledge to allow more in-depth research on nematodes. The group is so large and so ecologically, morphologically, and phylogenetically diverse that to attempt to discuss the diversity of the group in such an abbreviated way is practically futile at best. N. A. Cobb (1914) stated this clearly on the last page of his famous Nematodes and Their Relationships (p. 490):

The foregoing fragmentary sketch may indicate to the student, as well as to the general reader, the vast number of nematodes that exist, the enormous variety of their forms, and the intricate and important relationships they bear to mankind and the rest of creation.

As more data on distribution and function of nematodes throughout the biosphere are obtained, the importance of this group of worms will surely be realized. We are just beginning to explore the oceans,
and we are probably losing more species of nematodes from rainforest clearing than will ever be ultimately found, described, and classified.

I hope that mankind will generate more interest in the microscopic world of the Nemata, and I hope that this article will provoke the reader into action and disprove what Van Leeuwenhoek stated about his fellow man on September 28, 1715: “And over and above all, most men are not curious to know: nay, some even make no bones about saying, What does it matter whether we know this or not?” (Dobell, 1932, pp. 324325).

See Also the Following Articles: Parasitism—Worms; Annelida—Worms; Platyhelminthes

Acknowledgments

Special thanks to Tom Powers for encouragement during this writing blitz and to the staff and students of the Manter Laboratory. Also thanks to Sue Ann, Teal, and Hudson for their help with reference materials and support.

Bibliography

habitats of soil invertebrates along an elevational gradient in Taylor Valley, Antarctica. *Arctic Alpine Res.* 30, 133-141.

