9-1-1996

LORENTZ MICROSCOPY OBSERVATION OF MAGNETIC GRAINS IN Co-Sm // Cr FILMS

Yi Liu
University of Nebraska-Lincoln, yliu@unl.edu

Z.S. Shan
University of Nebraska - Lincoln

David J. Sellmyer
University of Nebraska-Lincoln, dsellmyer@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicssellmyer

Part of the Physics Commons

Liu, Yi; Shan, Z.S.; and Sellmyer, David J., "LORENTZ MICROSCOPY OBSERVATION OF MAGNETIC GRAINS IN Co-Sm // Cr FILMS" (1996). David Sellmyer Publications. 87.
http://digitalcommons.unl.edu/physicssellmyer/87

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in David Sellmyer Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
LORENTZ MICROSCOPY OBSERVATION OF MAGNETIC GRAINS IN Co-Sm // Cr FILMS

Y. Liu 1, Z. S. Shan 2, and D. J. Sellmyer 2

1 Center for Materials Research and Analysis, and Department of Mechanical Engineering, University of Nebraska, Lincoln, NE 68588.
2 Center for Materials Research and Analysis, and Behlen Laboratory of Physics, University of Nebraska, Lincoln, NE 68588.

Abstract: This paper presents our recent Lorentz microscopy study of magnetic domain structure and its relation to the nanostructure of Co-Sm films. The magnetic domains were imaged by Foucault Lorentz mode and the corresponding nanostructure was revealed by bright field and high resolution images. The nanostructure is composed of clusters of 20 nm grown on Cr grains. Each cluster is formed by the amorphous matrix and about 5 nm crystallites distributed in the matrix. It is found that each cluster forms a magnetic grain. Such magnetic grains show uniform contrast near the magnetic domain wall, and correspond to the switching volume in magnetic reversal. The magnetic grain (about 20 nm) is much larger than the size of the crystallites (5 nm) distributed in the amorphous matrix. It is the magnetic grain size that affects the noise response when the film is used as a high density recording medium.

I INTRODUCTION

Co-Sm films have been shown to be a promising candidate for future longitudinal recording media [1,2]. Recent microstructure characterization of Co-Sm films has shown that the microstructure is composed of the amorphous matrix and crystallites with a grain size of about 5 nm [3]. The Co-Sm films deposited on Cr underlayers form about 20 nm cluster structure on each Cr grain [4]. The crystal structure of the crystallites in Co-Sm was found to have the close-packed structure [5]. The anisotropy was explained by the (110) [001] // Cr (112) [101] epitaxy [6]. The switching volume for magnetization reversal was measured by the time dependence of magnetization of the film [7]. This paper presents our recent Lorentz microscopy study of magnetic domain structure and its relation to the nanostructure of the Co-Sm films.

II EXPERIMENTAL PROCEDURE

The Co-Sm target used for deposition has a nominal composition of Co4.2Sm. The films were deposited by DC magnetron sputtering under an Ar pressure of 12 mTorr at room temperature. The film configuration from substrate to film is 220 μm glass, 80 nm Cr, 96 nm Co-Sm and 10 nm Cr. 3 millimeter plan view TEM samples were dimpled to 5 microns at the center and then ion milled until perforation. The Lorentz microscopy was performed using a JEOL 2010 transmission electron microscope operating at 200 kV.

III RESULTS AND DISCUSSION

In order to describe our result succinctly, we clarify the following terminology. A crystallite is identified by the similar lattice fringes observed in the HREM image. A cluster, which is grown on a single Cr grain, is composed of amorphous matrix in which about 5 nm crystallites are distributed. A magnetic grain (or switching volume) is the smallest volume which flip coherently in magnetization reversal. A magnetic domain, which could be composed of many magnetic grains, is a region in which magnetization is in one direction. Figure 1 is a Foucault mode Lorentz image of the domain structure in an as-deposited Co-Sm film. The domain size is from 50 nm to 200 nm. Figure 2 shows the detail of a domain consisting of many magnetic grains. Figure 2 (a) is a normal bright field TEM image in which little contrast is observed exempt the brightness change corresponding to the thickness change of the
specimen. Foucault mode Lorentz images reveal a half-moon shape domain with bright and dark contrasts as shown in Figure 2 (b) and (c), respectively. Further optical enlargement of Figure 2 (a), (b) and (c) reveals the cluster structure of about 20 nm in Figure 3 (a), (b) and (c). In Figure 3 (b) and (c) each cluster shows uniform contrast as indicated by the arrows, suggesting that the magnetization in each cluster is in one direction and forms a magnetic grain.

Figure 4 is a HREM image showing the detailed structure within a cluster. Each crystallite, which is about 3 to 5 nm, is recognized by the lattice fringes as indicated by a capital letter C. Each cluster is separated from the adjacent clusters by the gap (indicated by the letter G), inherited from the Cr underlayer. Such clusters are well revealed by TEM bright field imaging as shown in Figure 3 (a).

The switching volume V^* was measured by the field-sweep rate dH/dt dependence of coercivity H_c according to the equation:

$$H_c = k + \frac{kT}{V^* M_s} \ln \frac{dH}{dt}$$

(1)

The magnetic grain size D was deduced from the switching volume assuming a cubic domain for 24 and 96 nm thick films. For 6 nm thick film, the D is deduced by $D=(V^*/6)^{1/2}$ for comparison. The result is listed in table 1.

Figure 2. Cluster structure and a magnetic domain in the Co-Sm film. (a) is bright field image, (b), (c) are Lorentz images. A magnetic domain appearing dark at (b) and white at (c) is indicated by the arrows.

Figure 3. Enlarged images shown in Figure 2.
IV CONCLUSION

In this Lorentz and high resolution transmission electron microscopy study we have shown that the magnetic grains and physical grains are different for Co-Sm films. A magnetic grain is formed by a cluster grown on a Cr grain and has the size of about 20 nm. The physical grains are embedded in the amorphous matrix and are about 5 nm in diameter. Switching volume measurement by magnetization reversal indicates the magnetic grain size is in the range of 17 to 23 nm, and is consistent with the Lorentz microscopy result.

Acknowledgments

The Authors wish to thank X. Zhao for TEM specimen preparation, G. Krichau for effort in maintenance of the CMRA CFEM, Professor B.W. Robertson and professor S.H. Liou for discussions. Research supported by ARPA/NSIC under Grant MDA 972-93-1-0009, and NSF under grants DMR 9222976 and OSR 9255225.

References