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AN ANALYSIS OF MCMC SAMPLING METHODS FOR
ESTIMATING WEIGHTED SUMS IN WINNOW

QINGPING TAO AND STEPHEN D. SCOTT
Department of Computer Science & Engineering
University of Nebraska
Lincoln, Nebraska

ABSTRACT
Chawla et al. introduced a way to use the Markov chain Monte Carlo method
to estimate weighted sums in multiplicative weight update algorithms when the
number of inputs is exponential. But their algorithm still required extensive sim-
ulation of the Markov chain in order to get accurate estimates of the weighted
sums. We propose an optimized version of Chawla et al.’s algorithm, which
produces exactly the same classifications while often using fewer Markov chain
simulations. We also apply two other sampling techniques and empirically com-
pare them with Chawla et al.’s Metropolis sampler to determine how effective
each is in drawing good samples in terms of accuracy of weighted sum estimates
and total time. We perform our analyses in the context of learning DNF formulas
using littlestone’s Winnow algorithm.

INTRODUCTION
In this paper, we consider as our application area the problem of learning general DNF

formulas, which has been heavily studied in a learning-theoretic framework (e.g. Bshouty
et al. (1999); Khardon et al. (2001)). Let f = P1 ∨ P2 ∨ . . . ∨ PK be the target function,
where Pi = ci1 ∧ ci2 ∧ . . . ∧ cin is a term and cij is a constraint on the value of attribute
j. If attribute j takes on values from {1, . . . , kj}, then cij = ` ∈ {1, . . . , kj} means that
for an example x to satisfy constraint cij , xj = `. If cij = 0, then xj can be any value
from {1, . . . , kj} and still satisfy the constraint. If xj = 0, then this attribute value is
unspecified and only satisfies when cij = 0. In other words, x satisfies Pi iff for all j,
either xj = cij or cij = 0. The set of terms available for f and the instance space are both
Ω =

∏n−1

j=0
{0, . . . , kj}. If example x has nx specified values, then there are exactly 2nx

terms satisfied by it.
One useful method for solving this problem is using multiplicative weight update

(MWU) algorithms such as Winnow (Littlestone, 1988). The learning of Winnow proceeds
in trials. At trial t, Winnow receives an input vector x

′
t and makes a prediction ŷt = 1 if

Wt = wt · x
′
t ≥ θ and 0 otherwise, where wt is its weight vector and θ is the threshold.

Then Winnow updates its weight vector as follows: wt+1,i = wt,iα
x′

t,i
(yt−ŷt) for some

learning rate α > 1, where yt is the true label. We call it a promotion if wt+1,i > wt,i,
and demotion if wt+1,i < wt,i. Winnow can be used to learn DNF formulas by using all
possible terms as its inputs: e.g. if ki = 2 for all i, there will be N = |Ω| = 3n possible
terms. Input x′

i to Winnow is 1 if x satisfies term i and 0 otherwise.
The advantage of using Winnow is that the number of mistakes that Winnow will make

on any sequence of examples is at most O(K log N) = O(Kn), where K is the number
of terms in the target disjunction (Littlestone, 1988). But the disadvantage is that brute-
force computation of Wt = wt · x

′
t is takes time Ω(N), which is exponential in n. Thus

another approach is needed. One possibility is to use kernels, as illustrated by Khardon
et al. (2001) for the Perceptron algorithm (i.e. using additive weight updates). However,
while they showed that it is possible to efficiently compute the weighted sum for Perceptron
when learning DNF, in the worst case, their kernel-based algorithm makes 2Ω(n) prediction
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mistakes. They also argued that unless P = #P, it is impossible to efficiently exactly simulate
Winnow for learning DNF. Thus we look to Chawla et al. (2003), who use MCMC methods
to estimate Wt for Winnow with high probability, as opposed to Khardon et al.’s hardness
result that says no deterministic simulation of Winnow is possible for DNF.

Although Chawla et al.’s preliminary empirical results are much stronger than what
their theoretical results imply, they still required extensive simulation of the Markov chain
in order to get accurate estimates of the weighted sums. This significantly slowed their
algorithm. Here we propose an optimized version of Chawla et al.’s algorithm, which often
uses less computation time without any loss in classification accuracy. We also empiri-
cally compare two MCMC techniques (Gibbs and Metropolized Gibbs) to Chawla et al.’s
Metropolis sampler in terms of accuracy of weighted sum estimates.

MARKOV CHAIN MONTE CARLO METHODS
Markov chain Monte Carlo methods have been widely used to solve problems in e.g.

statistical physics and Bayesian statistical inference. They can provide approximations
to quantities by performing statistical sampling experiments. Generally, to apply MCMC
methods, a Markov chain M with state space Ω and stationary distribution π is designed
to be ergodic, that is, the probability distribution over Ω converges asymptotically to π
regardless of the initial state. Then M is repeatedly simulated for T steps and generates
S samples almost according to π. These S samples are then used to estimate the quantity
of interest. Usually we discard states met in the first T0 steps and assume there would
be a rapid convergence to π during these steps. This T0-step procedure is called burn-
in. After burn-in, M would be simulated for another S steps and each additional step
would generate a new sample. The most commonly used MCMC method is the Metropolis
sampler (Metropolis et al., 1953). In each step, the Metropolis sampler repeatedly considers
randomly generated changes to one of the components of the current state P and accepts
the new state Q with probability min{1, π(Q)

π(P )
}.

CHAWLA ET AL.’S MCMC SOLUTION FOR WINNOW
We now describe Chawla et al.’s solution for estimating Wt(α) =

∑

P∈Ωt
wt,P (α),

where wt,P (α) = α$t(P ) is term P ’s weight of training Winnow with learning rate α, and
$t(P ) = ut(P ) − vt(P ), where ut(P ) is the total number of promotions of term P at
time t and vt(P ) is the total number of demotions.

Let Ωt ⊂ Ω be the set of 2nt terms that are satisfied by example xt (nt ≤ n is the
number of non-zero values in xt). For each term P = (p1, . . . , pnt) ∈ Ωt, pi = 1 if
constraint cpi

> 0 and otherwise pi = 0. Then a set of Markov chains Mt is built on the
state space Ωt. Each chain Mt(α

′) ∈ Mt has a specific learning rate α′ and a stationary
distribution πα′,t(P ) = α′$t(P )/Wt(α

′).

Chawla et al. then define fi,t(P ) =
wt,P (αi−1,t)

wt,P (αi,t)
, where αi,t = (1 + 1

mt
)i−1 for

1 ≤ i < rt, αrt,t = α, rt is the smallest integer such that (1 + 1
mt

)rt−1 ≥ α, and mt =

ut(Pe)+vt(Pe) where Pe = (0, 0, . . . , 0). Because E[fi,t(P )] =
Wt(αi−1,t)

Wt(αi,t)
,

Wt(αi−1,t)

Wt(αi,t)

can be estimated by computing the sample mean of fi,t(P ), which allows Wt(α) to

be computed since Wt(α) =
(

Wt(αr,t)

Wt(αr−1,t)

)

· · ·
(

Wt(α2,t)

Wt(α1,t)

)

Wt(α1,t) and Wt(α1,t) =

W (1) = |Ωt| = 2nt . Therefore, for each value α2,t, . . . , αr,t, St samples are drawn
through Mt(αi,t). Let Xi,t be the sample mean of fi,t(P ) and |Mt| = rt − 1, then the
estimate of Wt(α) is Ŵt(α) = 2nt

∏rt

i=2
1/Xi,t.
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OUR OPTIMIZED MCMC SOLUTION
In Chawla et al.’s MCMC solution, rt − 1 Markov chains need to be simulated. Here

we give an optimized solution that is based on the idea that to exactly simulate Winnow,
we only need to know what Winnow’s prediction is going to be (i.e. on what side of the
threshold θ that W will fall on), not what the weighted sum exactly is. So it is possible that
we could stop computing our estimate after a subset of the chains in Mt have been run.

Let ℘max
t = maxP∈Ωt{ut(P ) − vt(P )}, ℘min

t = minP∈Ωt{ut(P ) − vt(P )}, i.e.
the maximum and minimum number of net promotions, and Ψt = {2, · · · , rt}. We define
the following two constraints:

C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

> θ, (1)

D
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘max
t

< θ, (2)

where C = 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘min
t

and D = 2nt
∏rt

i=2

(

αi,t

αi−1,t

)℘max
t

. Then we can

prove the following theorem.

Theorem 1 If ∃Ψ′ ⊆ Ψt that satisfies constraint (1) , then Wt(α) > θ; If ∃Ψ′ ⊆ Ψt

that satisfies constraint (2), then Wt(α) < θ.

Proof Sketch: Because αi,t > αi−1,t > 0 and $t(P ) − ℘min
t ≥ 0 for all P ∈ Ωt,

∑

P∈Ωt
α

$t(P )−℘min
t

i,t ≥
∑

P∈Ω′

t

α
$t(P )−℘min

t

i−1,t . So
Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

≥ 1. Then

Wt(α)=C
∏rt

i=2

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

≥ C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

> θ. Sim-

ilarly we can prove the second statement.

Theorem 1 tells us that it would not always be necessary to run all rt − 1 Markov
chains if we were only interested in Winnow’s predictions. Instead, we can sometimes
limit our simulations to a subset of Markov chains. So what we want is to find such a
subset with the smallest size.

Let Γ1(Ψt) be the set of all Ψ′ that satisfy constraint (1), and Γ0(Ψt) be the set of all
Ψ′ that satisfy constraint (2). We define Ψmin

1 ∈ Γ1(Ψt) as a minimum 1-prediction set if
|Ψmin

1 | ≤ |Ψ′| for all Ψ′ ∈ Γ1(Ψt), and Ψmin
0 ∈ Γ0(Ψt) as a minimum 0-prediction set

if |Ψmin
0 | ≤ |Ψ′| for all Ψ′ ∈ Γ0(Ψt). Then we give Theorem 2.

Theorem 2 If Ψmin
1 exists, {rt, rt − 1, · · · , rt − |Ψmin

1 | + 1} is a minimum 1-prediction
set, and if Ψmin

0 exists, {2, 3, · · · , |Ψmin
0 | + 1} is a minimum 0-prediction set.

Proof Sketch: Using Cauchy’s inequality, we can prove that
Wt(αi+1,t)

Wt(αi,t)
≥

Wt(αi,t)

Wt(αi−1,t)
for

∀i, 2 ≤ i ≤ rt − 1. Then let Ψ
′

= {rt, rt − 1, · · · , rt − |Ψmin
1 | + 1},

C
∏

i∈Ψ′

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

≥ C
∏

i∈Ψmin
1

Wt(αi,t)

Wt(αi−1,t)

(

αi,t

αi−1,t

)−℘min
t

> θ.

So {rt, rt − 1, · · · , rt − |Ψmin
1 | + 1} is a minimum 1-prediction set. Similarly we can

prove {2, 3, · · · , |Ψmin
0 | + 1} is a minimum 0-prediction set.
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According to Theorem 2, if Wt(α) > θ and we simulate Markov chains in the order
of rt, rt −1, · · · , 2, and halt when constraint (1) is satisfied, we need no more computation
than any other sequence of Markov chains in Mt. Similarly we use no more chains than
any other sequence if Wt(α) < θ and we simulate them in the order of 2, 3, · · · , rt and
check if constraint (2) is satisfied. Then we get an optimized MCMC solution for Winnow,
which chooses one of the two orders ({rt, · · · , 2} or {2, · · · , rt}) by guessing the most
likely prediction y′

t. When we use Winnow to predict, we could just assume y′
t is 1. When

we are training Winnow, we can set y′
t as the class label of training example x. But a better

way is that at the t-th training iteration let y′
t = ŷt−1(x), where ŷt−1 is the prediction of

x at the (t − 1)-th iteration. The heuristic is that the weighted sum of x might not change
too much after the last time Winnow met x. At the beginning of training, all weights of
Winnow are 1. So W1(α) = 2nt for all examples. If 2nt ≥ θ, y′

1 = 1, otherwise 0.

SAMPLING FROM πα,t

In Chawla et al.’s MCMC solution, the computation time of estimating Wt(α) de-
pends on the number of chains rt − 1, the number of burn-in steps T0 and the sample size
S. Besides our optimized solution, another way to reduce the computation time is choos-
ing relatively small T0 and S. This could be achieved by using a good sampler that can
efficiently draw samples from the desired distribution. Chawla et al. (2003) applied the
Metropolis sampler to their MCMC solution. Here we adapt two other MCMC sampling
techniques, Gibbs sampler and Metropolized Gibbs sampler.

Gibbs Sampler for Winnow
The Gibbs sampler (Geman & Geman, 1984) has a number of distinct features. In

a single step of the Gibbs sampler, each component is replaced with a value picked from
its distribution conditional on the current values of all other components. The conditional
distributions are constructed on prior knowledge of π. Furthermore, the Gibbs sampler is,
by construction, multidimensional. It generates new values for all components and only
after that it outputs a sample.

For any state P ∈ Ωt, each variable pi only has two possible values, 0 and 1. If
P0 = (p1, · · · , pi = 0, · · · , pnt) and P1 = (p1, · · · , pi = 1, · · · , pnt), the conditional
distribution is πα,t(pi|P\{pi}) =

πα,t(P )

πα,t(P0)+πα,t(P1)
. Then we get the conditional distri-

bution of the Gibbs sampler for MDNF,t(α), that is,

πα,t(0|P\{pi}) = 1/(1 + α$t(P1)−$t(P0)) (3)

πα,t(1|P\{pi}) = 1/(1 + α$t(P0)−$t(P1)). (4)

Metropolized Gibbs Sampler for Winnow
The Metropolized Gibbs sampler (Liu, 1996) is a modification of the Gibbs sam-

pler, which has been proven to be statistically more efficient than the Gibbs sampler. The

sampler draws a new value p′
i with probability

πα,t(p
′

i
|P\{pi})

1−πα,t(pi|P\{pi})
, and accepted with the

Metropolis-Hasting acceptance probability min{1,
1−πα,t(pi|P\{pi})

1−πα,t(p
′

i
|P\{pi})

}.

As mentioned before, each component in state P only has two possible values. So
the Metropolized Gibbs sampler becomes a Metropolis sampler that repeatedly updates all
components in a fixed order. We then build the Metropolized Gibbs sampler for Mt(α)
that updates each component pi in P one by one with a value p′

i randomly drawn from 0
and 1, and accept it with the acceptance probability

min{1, α$t(P\{pi}∪{p′

i
})−$t(P )}. (5)
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EXPERIMENTAL RESULTS
In our experiments, we compared three MCMC sampling techniques (Metropolis,

Gibbs and Metropolized Gibbs) on two types of data (simulated data used by Chawla et al.
(2003) and UCI data sets). We then compared the computation costs of our optimized
solution with Chawla et al.’s algorithm in term of the total number of Markov chain simu-
lations. In all experiments, we set the burn-in time T0 = n2 because it takes about T 2 steps
to move to a state T steps away due to the random walk nature of MCMC samplers (Neal,
1995). Our experiments showed that this burn-in time worked well. In each experiment,
we also counted each update of a single component of current state as a single sampling
step. We used the same number of sampling steps Ts for all three samplers.

Comparisons on Estimating Weighted Sums
To evaluate how well the weight estimation procedures with different samplers guessed

the weighted sums, we compared them using the measure Guess Error given in Chawla
et al. (2003), which is the average error of the estimates (|Ŵ − W |/W ). We trained
Winnow for 20 rounds on 10 partitions of Voting data while varying the sampling time
Ts. Figure 1(a) shows averages over more than 70000 estimates obtained from the exper-
iment. For all Ts, Guess Errors of Gibbs and Metropolized Gibbs are always lower than
Metropolis. Although Metropolized Gibbs has a lower Guess Error than Gibbs, the differ-
ence between these two samplers is very small, especially when Ts = 9600, 12800, 16000.
To evaluate the effect of varying n, we measured Guess Error of all three samplers on the
simulated data. In Figure 1(b), Ts is fixed at 10000. Gibbs and Metropolized Gibbs are
still always better than Metropolis. The Guess Error of Metropolized Gibbs is lower than
Gibbs when n ≤ 25. But when n > 25, Gibbs becomes the best sampler. Considering
results in Figures 1, we can say that Gibbs sampler is the best choice on average in terms
of the accuracy of estimating weighted sums.
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Figure 1: Comparison on Guess Error.

Comparisons on Computation Cost
Here we report speedups of our optimized algorithm over Chawla et al.’s solution in

terms of the total numbers of Markov chains that are used. Table 3 summarizes average
results of 10-fold cross-validation on simulated data with 20 training rounds and five UCI
data sets with 100 training rounds. In Table 3, “MCMC” is the number of chains used by
Chawla et al.’s solution. “Opt MCMC” is the number of chains used by our algorithm.
“Savings” is the percentage of chains our algorithm saved. Results in Table 3 confirms that
we do not need to run all chains sometimes. However, for different data sets, our algorithm
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has different performance. A possible reason is that weighted sums of Winnow are much
less or greater than threshold for some data sets. Thus, there are probably more chances for
our algorithm to stop early.

Table 3: Comparisons on the total number of Markov chains (in thousands).
(a) Simulated data

n MCMC Opt MCMC Savings(%)

10 4.6 4.1 11.3

15 11.9 11.2 6.3

20 20.8 18.7 10.0

25 23.5 21.2 9.7

30 40.8 37.5 8.1

35 58.7 53.0 9.7

40 60.9 53.2 12.7

(b) UCI data sets

Data
Sets

MCMC Opt MCMC Savings(%)

iris 217.7 200.1 8.0

car 14272.7 14032.0 1.7

breast
cancer

45176.2 45111.5 0.2

voting 1185.5 1132.0 4.5

auto 13822.8 13751.7 0.5

CONCLUSIONS
We proposed an optimized MCMC solution for estimating weighted sums in Winnow,

which often uses less computation time than Chawla et al.’s solution without any loss of
classification accuracy. Our experimental results confirmed that our algorithm only needs
to use a subset of all Markov chains implied by the original solution. We showed how
to get such a subset with the smallest size. We also empirically applied two MCMC sam-
pling techniques: Gibbs and Metropolized Gibbs. They all showed better performance than
Chawla et al.’s Metropolis sampler in terms of accuracy of weighted sum estimates.
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