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Abstract The K-theory of a polynomial ring R[t] contains the K-theory
of R as a summand. For R commutative and containing Q, we describe
K∗(R[t])/K∗(R) in terms of Hochschild homology and the cohomology of
Kähler differentials for the cdh topology.

We use this to address Bass’ question, whether Kn(R) = Kn(R[t]) implies
Kn(R) = Kn(R[t1, t2]). The answer to this question is affirmative when R is
essentially of finite type over the complex numbers, but negative in general.
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In 1972, H. Bass posed the following question (see [4], question (VI)n):

Does Kn(R) = Kn(R[t]) imply that Kn(R) = Kn(R[t1, t2])?
One can rephrase the question in terms of Bass’ groups NKn, introduced
in [3]:

Does NKn(R) = 0 imply that N2Kn(R) = 0?

More generally, for any functor F from rings to an abelian category,
Bass defines NF(R) as the kernel of the map F(R[t]) → F(R) induced
by evaluation at t = 0, and N2F = N(NF). Bass’ question was inspired by
Traverso’s theorem [26], from which it follows that N Pic(R) = 0 implies
N2 Pic(R) = 0.

In this paper, we give a new interpretation of the groups NKn(R) in terms
of Hochschild homology and the cohomology of Kähler differentials for the
cdh topology, for commutative Q-algebras. This allows us to give a coun-
terexample to Bass’ question in the companion paper [8] (see Theorem 0.2
below).

To state our main structural theorem, recall from [30] that each NKn(R)

has the structure of a module over the ring of big Witt vectors W(R). It is
convenient to use the countably infinite-dimensional Q-vector spaces tQ[t]
and �1

Q[t]. If M is any R-module, then M ⊗ tQ[t] and M ⊗�1
Q[t] are naturally

W(R)-modules by [12].

Theorem 0.1 Let R be a commutative ring containing Q. Then there is a
W(R)-module isomorphism

N2Kn(R) ∼= (NKn(R) ⊗ tQ[t]) ⊕ (
NKn−1(R) ⊗ �1

Q[t]
)
.

Thus Kn(R) = Kn(R[t1, t2]) iff NKn(R) = NKn−1(R) = 0 iff
N2Kn(R) = 0.

In addition, the following are equivalent for all p > 0:

(a) Kn(R) = Kn(R[t1, . . . , tp]).
(b) NKn(R) = 0 and Kn−1(R) = Kn−1(R[t1, . . . , tp−1]).
(c) NKq(R) = 0 for all q such that n − p < q ≤ n.

The equivalence of (a), (b) and (c) is immediate by induction, using the
formula for N2Kn, and is included for its historical importance; see [27].
Theorem 0.1 also holds for the K-theory of schemes of finite type over a
field; see Theorem 4.2 below.

Theorem 0.1 allows us to reformulate Bass’ question as follows:

Does NKn(R) = 0 imply that NKn−1(R) = 0?
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Theorem 0.2 (a) For any field F algebraic over Q, the 2-dimensional normal
algebra

R = F [x, y, z]/(z2 + y3 + x10 + x7y)

has K0(R) = K0(R[t]) but K0(R) �= K0(R[t1, t2]).
(b) Suppose R is essentially of finite type over a field of infinite transcen-

dence degree over Q. Then NKn(R) = 0 implies that R is Kn-regular and, in
particular, that Kn(R) = Kn(R[t1, t2]).

Part (a) is proven in the companion paper [8], using Theorem 0.1, while
part (b) is proven below as Corollary 6.7.

The proof of Theorem 0.1 relies on methods developed in [7] and [9],
which allow us to compute the groups NKn and NpKn in terms of the
Hochschild homology of R, and of the cdh-cohomology of the higher Käh-
ler differentials �p , both relative to Q. The groups NKn(R) have a natural
bigraded structure when Q ⊂ R, and it is convenient to take advantage of this
bigrading in stating our results. The bigrading comes from the eigenspaces
NK

(i)
n (R) of the Adams operations ψk (arising from the λ-filtration) and the

eigenspaces of the homothety operations [r] (i.e. base change for t 
→ rt).
This bigrading will be explained in Sects. 1 and 5; the general decomposition
for Adams weight i has the form:

NK(i)
n (R) ∼= T K(i)

n (R) ⊗Q tQ[t]. (0.3)

Here T K
(i)
n denotes the typical piece of NK

(i)
n (R), defined as the simultane-

ous eigenspace {x ∈ NK
(i)
n (R) : [r]x = rx, r ∈ R}. (See Example 1.6.) We

provide a concrete description of the typical pieces in Theorem 5.1, repro-
duced here:

Theorem 0.4 If R is a commutative Q-algebra, then NK
(i)
n (R) is determined

by its typical pieces T K
(i)
n (R) and (0.3). For i �= n,n + 1 we have:

T K(i)
n (R) ∼=

{
HH

(i−1)
n−1 (R) if i < n,

H i−n−1
cdh (R,�i−1) if i ≥ n + 2.

For i = n,n + 1, we have an exact sequence:

0 → T K
(n+1)
n+1 (R) → �n

R → H 0
cdh(R,�n) → T K(n+1)

n (R) → 0.
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Table 1 The groups T K
(i)
n (R) for n ≤ 3, dim(R) = 2

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

T K
(i)
3 (R) 0 HH

(1)
2 (R) tors�2

R
�3

cdh(R)/�3
R

H 1
cdh�4 0

T K
(i)
2 (R) 0 tors�1

R
�2

cdh(R)/�2
R

H 1
cdh�3 0

T K
(i)
1 (R) nil(R) �1

cdh(R)/�1
R

H 1
cdh�2 0

T K
(i)
0 (R) R+/R H 1

cdh�1 0

T K
(i)
−1(R) H 1

cdh O 0

T K−2(R) 0

The special case NK0 = ⊕
NK

(i)
0 of Theorem 0.4 is that for R essentially

of finite type over a field of characteristic zero, with d = dim(R),

NK0(R) ∼=
(

(R+/Rred) ⊕
d−1⊕

p=1

H
p

cdh(R,�p)

)

⊗Q tQ[t]. (0.5)

Here R+ is the seminormalization of Rred; we show in Proposition 2.5 that
R+ = H 0

cdh(R, O). The dimension zero case of Theorem 0.4 is also revealing:

Example 0.6 If dim(R) = 0 then we get NKn(R) ∼= HHn−1(R, I ) ⊗Q tQ[t]
for all n, where I is the nilradical of R. It is illuminating to compare this with
Goodwillie’s Theorem [14], which implies that NKn(R) ∼= NKn(R, I) ∼=
NHCn−1(R, I ). The identification comes from the standard observation (1.2)
that the map HH∗ → HC∗ induces NHC∗(R, I ) ∼= HH∗(R, I ) ⊗Q tQ[t].

The calculations of Theorem 0.4 for small n are summarized in Table 1
when dim(R) = 2. We will need the following cases of 0.4 in [8], to prove
Theorem 0.2(a).

Theorem 0.7 Let R be normal domain of dimension 2 which is essentially of
finite type over an algebraic extension of Q. Then

(a) NK0(R) = NK
(2)
0 (R) ∼= H 1

cdh(R,�1) ⊗Q tQ[t] and

(b) NK−1(R) = NK
(1)
−1(R) ∼= H 1

cdh(R, O) ⊗Q tQ[t].

Here is an overview of this paper: Sect. 1 reviews the bigrading on the
Hochschild and cyclic homology of R[t] (and X × A1), and Sect. 2 re-
views the cdh-fibrant analogue. Section 3 describes the sheaf cohomology
of the fibers FHH(X), FHC(X), etc. of HH(X) → Hcdh(X,HH), etc. In
Sect. 4 we use these fibers to prove Theorem 0.1, by relating NKn+1(X) to
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H−nFHH(X). We also show that Bass’ question is negative for schemes in
Lemma 4.5.

In Sect. 5, we give the detailed computations of the typical pieces
T K

(i)
n (R) needed to establish (0.5) and Table 1; these computations em-

ploy the main result of [10]. In Sect. 6, we prove Theorem 0.2(b), that
the answer to Bass’ question is positive provided we are working over a
sufficiently large base field. Finally, Sect. 7 describes how Theorem 0.7
changes if R is of finite type over an arbitrary field of characteristic 0: the
map NK0(R) → H 1

cdh(R,�1
/F ) ⊗Q tQ[t] is onto, and an isomorphism if

NK−1(R) = 0.

Notation

All rings considered in this paper should be assumed to be commutative and
noetherian, unless otherwise stated. Throughout this paper, k denotes a field
of characteristic 0 and F is a field containing k as a subfield. We write Sch/k

for the category of separated schemes essentially of finite type over k. If F is
a presheaf on Sch/k, we write Fcdh for the associated cdh sheaf, and often
simply write H ∗

cdh(X, F ) in place of the more formal H ∗
cdh(X, Fcdh).

If H is a functor on Sch/k and R is an algebra essentially of finite type, we
occasionally write H(R) for H(SpecR). For example, H ∗

cdh(R,�i) is used
for H ∗

cdh(SpecR,�i). Note that, because the cdh site is noetherian (every
cover has a finite subcovering) H ∗

cdh sends inverse limits of schemes over
diagrams with affine transition morphisms to direct limits.

If H is a contravariant functor from Sch/k to spectra, (co)chain com-
plexes, or abelian groups that takes filtered inverse limits of schemes over
diagrams with affine transition morphisms to colimits (as for example K ,
HH , Hcdh(−,HH), and FHH ), then for any k-algebra R, we abuse nota-
tion and write H(R) for the direct limit of the H(Rα) taken over all subrings
Rα of R of finite type over k. (If R is essentially of finite type, the two def-
initions of H(R) agree up to canonical isomorphism.) In particular, we will
use expressions like Hcdh(R,HH) for general commutative Q-algebras even
though we do not define the cdh-topology for arbitrary Q-schemes.

We use cohomological indexing for all chain complexes in this paper; for
a complex C, C[p]q = Cp+q . For example, the Hochschild, cyclic, periodic,
and negative cyclic homology of schemes over a field k can be defined us-
ing the Zariski hypercohomology of certain presheaves of complexes; see
[34] and [7, 2.7] for precise definitions. We shall write these presheaves as
HH(/k), HC(/k), HP(/k) and HN(/k), respectively, omitting k from the
notation if it is clear from the context.

It is well known (see [33, 10.9.19]) that there is an Eilenberg-Mac Lane
functor C 
→ |C| from chain complexes of abelian groups to spectra, and
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from presheaves of chain complexes of abelian groups to presheaves of spec-
tra. This functor sends quasi-isomorphisms of complexes to weak homo-
topy equivalences of spectra, and satisfies πn(|C|) = H−n(C). For exam-
ple, applying πn to the Chern character K → |HN | yields maps Kn(R) →
H−nHN(R) = HNn(R). In this spirit, we will use descent terminology for
presheaves of complexes.

1 The bigrading on NHH and NHC

Recall that k denotes a field of characteristic 0. In this section, we consider the
Hochschild and cyclic homology of polynomial extensions of commutative k-
algebras. No great originality is claimed. Throughout, we will use the chain
level Hodge decompositions HH = ∏

i≥0 HH(i) and HC = ∏
i≥0 HC(i).

The Künneth formula for Hochschild homology yields

NHH(i)
n (R) ∼= (

HH(i)
n (R) ⊗ tQ[t]) ⊕ (

HH
(i−1)
n−1 (R) ⊗ �1

Q[t]
)
. (1.1)

From the exact SBI sequence 0 → NHCn−1
B−→NHHn

I−→NHCn → 0 (see
[33, 9.9.1]), and induction on n, the map I induces canonical isomorphisms
for each i:

NHC(i)
n (R) ∼= HH(i)

n (R) ⊗ tQ[t]. (1.2)

Remark 1.3 Both (1.1) and (1.2) generalize to non-affine quasi-compact
schemes X over k. Indeed, NHH and NHC satisfy Zariski descent because
HH and HC do and because, for any open cover {Ui → X}, the collection
{Ui × A1 → X × A1} is also a cover. Thus we have

NHH(i)(X) ∼= HZar(X,NHH(i))

∼= HZar(X,HH(i)) ⊗ tQ[t] ⊕ HZar(X,HH(i−1))[1] ⊗ �1
Q[t]

∼= HH(i)(X) ⊗ tQ[t] ⊕ HH(i−1)(X)[1] ⊗ �1
Q[t],

and NHC(i)(X) = HZar(X,NHC(i)) ∼= HZar(X,HH(i)) ⊗ tQ[t] ∼=
HH(i)(X) ⊗ tQ[t].

It is easy to iterate the construction F 
→ NF . For example, we see from
(1.1) and (1.2) that

N2HC(i)
n (R) ∼= (

HH(i)
n (R) ⊗ tQ[t] ⊗ tQ[t])

⊕ (
HH

(i−1)
n−1 (R) ⊗ tQ[t] ⊗ �1

Q[t]
)
. (1.4)
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By induction, we see that HH
(i−j)
n−j (R)⊗ (tQ[t])⊗(p−j) ⊗ (�1

Q[t])⊗j will oc-

cur
(
p−1

j

)
times as a summand of NpHC

(i)
n (R) for all j ≥ 0. We may write

this as the formula:

NpHC(i)
n (R) ∼=

p−1⊕

j=0

HH
(i−j)
n−j (R) ⊗k ∧j kp−1 ⊗ (tQ[t])⊗(p−j) ⊗ (

�1
Q[t]

)⊗j
.

(1.5)

Cartier operations on NHH and NHC

Let W(R) denote the ring of big Witt vectors over R; it is well known that
in characteristic 0 we have W(R) ∼= ∏∞

1 R. (See [30, p. 468] for example.)
Cartier showed in [5] that the endomorphism ring Cart(R) of the additive
functor underlying W consists of column-finite sums

∑
Vm[rmn]Fn, using the

homotheties [r] (for r ∈ R), and the Verschiebung and Frobenius operators
Vm and Fm. Restricting the sum to m ≥ m0 yields a descending sequence
of ideals of Cart(R), making it complete as a topological ring; W(R) is the
complete topological subring of all sums

∑
Vm[rm]Fm; see [5].

We will be interested in the intermediate (topological) subring Carf(R)

of all row and column-finite sums
∑

Vm[rmn]Fn. As observed in [12, 2.14],
there is an equivalence between the category of R-modules and the category
of continuous Carf(R)-modules given by the constructions in the following
example. (A left module M is continuous if the annihilator ideal of each ele-
ment is an open left ideal.)

Example 1.6 If M is any R-module, N = M⊗ tQ[t] is a continuous Carf(R)-
module (and hence a W(R)-module) via the formulas:

[r]t i = ri t i , Vm(t i) = tmi, Fm(ti) =
{

mti/m if m|i,
0 else.

The ring W(R) = ∏∞
1 R acts on M ⊗ tQ[t] by (r1, . . . , rn, . . .) ∗ ∑

mit
i =∑

(rimi)t
i . Conversely, every continuous Carf(R)-module N has a “typi-

cal piece” M , defined as the simultaneous eigenspace {x ∈ N : [r]x = rx,

r ∈ R}, and N ∼= M ⊗ tQ[t].
Recall that we can define operators [r] on NHHn(R) and NHCn(R),

associated to the endomorphisms t 
→ rt of R[t]. There are also operators
Vm and Fm, defined via the ring inclusions R[tm] ⊂ R[t] and their transfers.
These operations commute with the Hodge decomposition. The following re-
sult follows immediately from [12, 4.11] using the observation that everything
commutes with Adams operations.
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Proposition 1.7 The operators [r], Vm and Fm make each NHC
(i)
n (R) into

a continuous Carf(R)-module, and hence a W(R)-module. The R-module
HH

(i)
n (R) is its typical piece, and the canonical isomorphism NHC

(i)
n (R) ∼=

HH
(i)
n (R) ⊗ tQ[t] of (1.2) is an isomorphism of Carf(R)-modules, the mod-

ule structure on the right being given in Example 1.6.

A similar structure theorem holds for NHHn(R) and its Hodge compo-
nents, using (1.1). However, it uses a non-standard R-module structure on the
typical piece HHn(R) ⊕ HHn−1(R); see [12, 3.3] for details.

Remark 1.7.1 The conclusions of Proposition 1.7 still hold for NHC
(i)
n (X)

and HH
(i)
n (X) when X is any scheme, where W(R) and Carf(R) refer to the

ring R = H 0(X, O). That is, HH
(i)
n (X) is an R-module and NHC

(i)
n (X) is a

continuous Carf(R)-module, isomorphic to HH
(i)
n (X) ⊗ tQ[t].

This scheme version of Proposition 1.7 is not stated in [12], which was
written before the cyclic homology of schemes was developed in [34]. How-
ever, the proof in [12] is easily adapted. Since the operators Vm, Fm and [r]
are defined on the underlying chain complexes in [12, 4.1], they extend to
operations on the Hochschild and cyclic homology of schemes. The identi-
ties required to obtain continuous Carf(R)-module structures all come from
the Künneth formula for the shuffle product on the chain complexes (see [12,
4.3]), so they also hold for the homology of schemes.

2 cdh-fibrant HH and NHC

Now fix a field F containing k; all schemes will lie in the category Sch/F

(essentially of finite type over F ), in order to use the cdh topology on Sch/F

of [24]. All rings will be commutative F -algebras; because they are filtered
direct limits of finitely generated F -algebras, we can consider their cdh-
cohomology.

If C is any (pre-)sheaf of cochain complexes on Sch/F , we can form the
cdh-fibrant replacement X 
→ Hcdh(X,C) and write Hn

cdh(X,C) for the nth
cohomology of this complex. (The fibrant replacement is taken with respect
to the local injective model structure, as in [7, 3.3].) For example, the cdh-
fibrant replacement of a cdh sheaf C (concentrated in degree zero) is just
an injective resolution, and Hn

cdh(X,C) is the usual cohomology of the cdh

sheaf associated to C.
Hochschild and cyclic homology, as well as differential forms, will be

taken relative to k. For C = HH(i), it was shown in [9, Theorem 2.4] that

Hcdh(X,HH(i)) ∼= Hcdh(X,�i)[i]. (2.1)

This has the following consequence for C = NHH(i) and NHC(i).
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Lemma 2.2 Let H(i) denote either HH(i) or HC(i), taken relative to a sub-
field k of F . Then Hcdh(X × A1,H (i)) = Hcdh(X,H(i)) ⊕ Hcdh(X,NH(i)),
and:

Hcdh(X,NHH(i)) ∼= (
Hcdh(X,�i)[i] ⊗ tQ[t])

⊕ (
Hcdh(X,�i−1)[i] ⊗ �1

Q[t]
);

Hcdh(X,NHC(i)) ∼= Hcdh(X,�i)[i] ⊗ tQ[t].
Proof The displayed formulas follow from (1.1), (1.2) and (2.1), using the
fact that − ⊗ tQ[t] commutes with Hcdh. Thus it suffices to verify the first
assertion. By resolution of singularities, we may assume that X is smooth.

Recall from [7, 3.2.2] that the restriction of the cdh topology to Sm/k is
called the scdh-topology. The product of any scdh cover of X with A1 is an
scdh cover of X × A1, and both HH(i) and HC(i) satisfy scdh-descent by
[9, Theorem 2.4]. Now by Thomason’s Cartan-Leray Theorem [25, 1.56] we
have

Hcdh(X × A1,H (i)) ∼= Hcdh(X,H(i)(− × A1))

∼= Hcdh(X,H(i)) ⊕ Hcdh(X,NH(i)).

This gives the first assertion. Alternatively, we may prove the first assertion
by induction on dim(X), using the definition of scdh descent to see that for
smooth X we have H(i)(X) = Hcdh(X,H(i)) and

Hcdh(X × A1,H (i)) = H(i)(X × A1) = H(i)(X) ⊕ NH(i)(X).

In particular, the first assertion holds when dim(X) = 0. �

Remark 2.2.1 If R is any commutative F -algebra, the formulas of Lem-
ma 2.2 hold for X = Spec(R) by naturality. This is because we may write
R = lim−→Rα , where Rα ranges over subrings of finite type over F , and
Hcdh(X,−) = lim−→Hcdh(Spec(Rα),−).

Corollary 2.3 If X = Spec(R) is in Sch/F , the modules Hn
cdh(X,HH(i))

and Hn
cdh(X,NHC(i)) are zero unless 0 ≤ n + i < dim(X) and i ≥ 0.

If n ≥ dim(X) and n > 0 then Hn
cdh(X,HH) = 0.

Proof Because Hn
cdh(X,�i)[i] = Hi+n

cdh (X,�i), this follows from (2.1),
Lemma 2.2 and the fact that Hn

cdh(X,�i) = 0 for n ≥ dim(X), n > 0. This
bound is given in [7, 6.1] for i = 0, and in [9, 2.6] for general i. �

Here is a useful bound on the cohomology groups appearing in Lemma 2.2.
Given X, let Q denote the total ring of fractions of Xred; it is a finite product
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of fields Qj , and we let e denote the maximum of the transcendence degrees
tr.deg(Qj/k).

Lemma 2.4 Let X be in Sch/F . If i > e then Hn
cdh(X,�i) = 0 for all n.

Proof By [21, 12.24], we may assume X reduced. Since we may write X as
an inverse limit of a sequence of affine morphisms of schemes of finite type
with the same ring of total fractions Q, and cdh-cohomology sends such an
inverse limit to a direct limit, we may also assume that X is of finite type over
F . This implies that e = dim(X) + tr.deg(F/k).

The result is clear if dim(X) = 0, since Hn
cdh(X,−) = Hn

Zar(X,−) in that
case. Proceeding by induction on dim(X), choose a resolution of singularities
X′ → X and observe that the singular locus Y and Y ×X X′ have smaller
dimension. The hypothesis implies that �i = 0 on X′

Zar, so Hn
cdh(X

′,�i) = 0
by [9, 2.5]. The result now follows by induction from the Mayer-Vietoris
sequence of [24, 12.1]. �

If R is a commutative ring, we write Rred and R+ for the associated re-
duced ring and the seminormalization of Rred, respectively. These construc-
tions are natural with respect to localization, so that we may form the semi-
normalization X+ of Xred for any scheme X. Because X+ → X is a uni-
versal homeomorphism, we have H ∗

cdh(X,−) ∼= H ∗
cdh(X

+,−) for every X in
Sch/k, for any field k of arbitrary characteristic. The case n = 0 with co-
efficients Ocdh is of special interest; recall our convention that H 0

cdh(X, O)

denotes H 0
cdh(X, Ocdh).

Proposition 2.5 For any algebra R, we have H 0
cdh(SpecR, O) = R+. More-

over, for every X in Sch/F we have H 0
cdh(X, O) = O(X+).

Proof We may assume R and X are reduced. Writing R = lim−→Rα as in Re-

mark 2.2.1, we have R+ = lim−→R+
α and H 0

cdh(R, O) = lim−→H 0
cdh(Rα, O), so

we may assume that R is of finite type. Thus the second assertion implies the
first. Since H 0

cdh(−, O) and O(−+) are Zariski sheaves, it suffices to consider
the case when X is affine.

Let X = SpecR be in Sch/F , with R reduced. There is an injection
R → Q with Q regular (for example, Q could be the total quotient ring of R).
By [7, 6.3], H 0

cdh(SpecQ, O) = Q, so R injects into H 0
cdh(SpecR, O). This

implies that Ored is a separated presheaf for the cdh topology on Sch/F .
Thus, the ring H 0

cdh(X, O) is the direct limit over all cdh-covers p : U → X

of the Čech H 0. (See [1, 3.2.3].)
Fix an element b ∈ H 0

cdh(SpecR, O) and represent it by b ∈ O(U) for some
cdh cover U → X. Now recall from [21, 12.28] or [24, 5.9] that we may
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assume, by refining the cdh cover U → X, that it factors as U → X′ → X

where X′ → X is proper birational cdh cover and U → X′ is a Nisnevich
cover. If the images of b ∈ O(U) agree in U ×X U , i.e. b is a Čech cycle for
U/X, then its images agree in U ×X′ U , i.e. it is a Čech cycle for U/X′. But
by faithfully flat descent, b descends to an element of O(X′). Thus we can
assume that U is proper and birational over X.

Next, we can assume that the Nisnevich cover p : U → X is finite, sur-
jective and birational. Indeed, since p is proper and birational we may con-

sider the Stein factorization U
q−→Y

r−→X. By [2, 4.3] or [18, III.11.5 &
proof], q∗(OU) = OY and r is finite surjective and birational. By [24, 5.8],
r is also a cdh cover. Because q∗(OU) = OY , the canonical map OY (Y ) →
q∗(OU)(Y ) = OU(U) is an isomorphism. Hence b descends to an element of
O(Y ). By Lemma 2.6, b lies in the seminormalization of R. �

Lemma 2.6 Let A be a seminormal ring and B a ring between A and its
normalization. Then the Čech complex A → B → B ⊗A B is exact.

Proof We use Traverso’s description of the seminormalization (see [26,
p. 585]): the seminormalization of a ring A inside a ring B is

A+ = {b ∈ B | (∀P ∈ SpecA) b ∈ AP + rad(BP )}.
Let b ∈ B such that 1 ⊗ b = b ⊗ 1. We have to show that b ∈ AP + rad(BP ),
for all primes P of A. Let J = rad(BP ); since BP /J is faithfully flat over the
field AP /P , the image of b in BP /J lies in AP /P by flat descent. That is,
b ∈ AP + J , as required. �

Remark 2.7 Even if X is affine seminormal, it can happen that
Hi

cdh(X, O) �= 0 for some i > 0. For example, if R denotes the subring
F [x, g, yg] of F [x, y] for g = x3 − y2 then it is easy to show that R is semi-
normal and that H 1

cdh(Spec(R), O) = F , because the normalization of R is
F [x, y] and the conductor ideal is gF [x, y]. For another example, the normal
ring of Theorem 0.2 has H 1

cdh(X, O) �= 0, by Theorems 0.1 and 0.7(b).

3 The fibers FHH and FHC

If C is a presheaf of complexes on Sch/F , we write FC for the shifted map-
ping cone of C → Hcdh(−,C), so that we have a distinguished triangle:

Hcdh(X,C)[−1] → FC(X) → C(X) → Hcdh(X,C). (3.1)

Example 3.1.1 When C is concentrated in degree 0 we have HnFC = 0 for
all n < 0. For C = O and X = Spec(R), we see from Proposition 2.5 that
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H 0F O(X) = nil(R), H 1F O(X) = R+/R, and HnF O(X) = Hn−1
cdh (X, O)

for n ≥ 2. Note that, if X = SpecR ∈ Sch/F , then HnF O(X) = 0 for
n > dim(X) by [7, 6.1].

We now consider the Hochschild and cyclic homology complexes, taken
relative to a subfield k of F . For legibility, we write F (i)

HH for FHH(i) , etc. By

the usual homological yoga, FHH is the direct sum of the F (i)
HH , i ≥ 0, and

similarly for FHC .

Example 3.1.2 If X is smooth over F then FHH(X) � 0 by [9, 2.4].

Lemma 2.2 and Remarks 2.2.1 and 1.3 imply the following analogue for
N F .

Lemma 3.2 If X is in Sch/F , or if X = Spec(R) for an F -algebra R, we
have quasi-isomorphisms:

N F (i)
HH (X) ∼= (

F (i)
HH (X) ⊗ tQ[t]) ⊕ (

F (i−1)
HH (X)[1] ⊗ �1

Q[t]
);

N F (i)
HC(X) ∼= F (i)

HH (X) ⊗ tQ[t].
Mimicking the argument that establishes (1.4) and (1.5) yields:

Corollary 3.3 If X is in Sch/F , or if X = Spec(R) for an F -algebra R,

N2F (i)
HC(X) ∼= (

F (i)
HH (X)⊗ tQ[t]⊗ tQ[t])⊕ (

F (i−1)
HH (X)[1]⊗ tQ[t]⊗�1

Q[t]
)

and

Np F (i)
HC(X) ∼=

p−1⊕

j=0

F (i−j)
HH (X)[j ] ⊗k ∧j kp−1 ⊗ tQ[t]⊗(p−j) ⊗ (

�1
Q[t]

)⊗j
.

The cohomology of the typical pieces F (i)
HH (R) is given as follows.

Lemma 3.4 If R is an F -algebra and i ≥ 0, then there is an exact sequence:

0 → H−i F (i)
HH (R) → �i

R → H 0
cdh(R,�i) → H 1−i F (i)

HH (R) → 0.

For n �= i, i − 1 we have:

H−nF (i)
HH (R) ∼=

{
HH

(i)
n (R) if i < n,

H i−n−1
cdh (R,�i) if i ≥ n + 2.
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Proof As in Remark 2.2.1, we may assume R is of finite type. Since
HH

(i)
i (R) = �i

R for all i ≥ 0, and HH
(i)
n (R) = 0 when i > n (see

[33, 9.4.15] or [19, 4.5.10]), it suffices to use (2.1) and to observe that
H−n

cdh(R,HH(i)) = Hi−n
cdh (R,�i) vanishes when n > i. �

Example 3.5 Let X = Spec(R) be in Sch/F . Since HH(0) = O, F (0)
HH (R)

is described in Example 3.1.1. Applying Corollary 2.3 and Lemma 3.4 for
i > 0, and using [9, 2.6] to bound the terms, we see that if d = dim(R) then
HnFHH(X) = 0 for n > d . If d = 1, then the only nonzero positive coho-
mology of FHH is H 1FHH(R) = R+/R; if d > 1, we have:

H 1FHH(R) ∼= (R+/R) ⊕ H 1
cdh(X,�1) ⊕ · · · ⊕ Hd−1

cdh (X,�d−1),

H 2FHH(R) ∼= H 1
cdh(X, O) ⊕ H 2

cdh(X,�1) ⊕ · · · ⊕ Hd−1
cdh (X,�d−2),

...

Hd FHH(R) ∼= Hd−1
cdh (X, O).

Example 3.6 When R is essentially of finite type over F and
tr.deg(F/k) < ∞, HmFHH(R) is Hochschild homology for large nega-
tive m. To see this, observe that e = tr.deg(R/k), the maximum transcen-
dence degree of the residue fields of R at its minimal primes, is finite. Using
Lemmas 2.4 and 3.4, we get H−nF (i)

HH (R) = 0 and H−nF (n)
HH (R) = �n

R for
i > n > e, and hence

H−nFHH(R) ∼= HHn(R) for all n > e.

If R = k ⊕ R1 ⊕ R2 ⊕ · · · is graded, and H̃C∗(R) = HC∗(R)/HC∗(k), it

is well known that the map H̃C∗(R)
S−→H̃C∗−2(R) is zero. (See [33, 9.9.1]

for example.) In Lemma 3.8 below, we prove a similar property for FHH and
FHC , which we derive from Lemma 3.2 using the following trick.

Standard Trick 3.7 If R is a non-negatively graded algebra, there is an
algebra map ν : R → R[t] sending r ∈ Rn to rtn. The composition of
ν with evaluation at t = 0 factors as R → R0 → R, and so if H is a
functor on algebras taking values in abelian groups, then the composition

H(R)
ν−→H(R[t]) t=0−→H(R) is zero on the kernel H̃ (R) of H(R) → H(R0).

Similarly, the composition of ν with evaluation at t = 1 is the identity. That
is, ν maps H̃ (R) isomorphically onto a summand of NH(R), and H̃ (R) is in
the image of (t = 1) : NH(R) → H(R).

Lemma 3.8 If R = k ⊕ R1 ⊕ · · · is a graded algebra, then for each m the

map πmFHC(R)
S−→πm−2FHC(R) is zero and there is a split short exact
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sequence:

0 → πm−1FHC(R)
B−→πmFHH(R)

I−→πmFHC(R) → 0.

Similarly, there are split short exact sequences:

0 → H̃m+1
cdh (R,HC)

B−→ H̃m
cdh(R,HH)

I−→ H̃m
cdh(R,HC) → 0

and

0 → H̃m−1
cdh (R,�<i)

B−→ H̃m−i
cdh (R,�i)

I−→ H̃m
cdh(R,�≤i) → 0.

Proof It suffices to show that I is onto and split. By [9, 2.4], FHH(k) =
FHC(k) = 0, so F̃HH = FHH and F̃HC = FHC . By the Standard Trick 3.7,
it suffices to show that the maps NπmFHH(R) → NπmFHC(R) and
NHm

cdh(R,HH) → NHm
cdh(R,HC) are split surjections. But this is evident

from the decompositions of N F (i)
HC(R) and Hcdh(R,NHC(i)) in Lemmas 3.2

and 2.2.
The third sequence is obtained from the second one by taking the ith com-

ponent in the Hodge decomposition, described in Lemma 2.2. �

Example 3.9 Splicing the final sequences of Lemma 3.8 together, we see that
the de Rham complexes are exact:

0 → k → R
d−→ H̃ 0

cdh(R,�1)
d−→H̃ 0

cdh(R,�2) → ·· · (3.9a)

0 → Hn
cdh(R, O)

d−→ Hn
cdh(R,�1)

d−→Hn
cdh(R,�2) → ·· · , n > 0. (3.9b)

An analogous exact sequence

· · · → πm−1FHH(R)
d−→πmFHH(R)

d−→πm+1FHH(R) → ·· ·
is obtained by splicing the other sequences in Lemma 3.8. Using the inter-
pretation of their Hodge components, described in Lemma 3.4, produces two
more exact sequences:

0 → nil(R) → tors�1
R → tors�2

R → tors�3
R → ·· · (3.9c)

0 → (R+/R) → �1
cdh(R)/�1

R → �2
cdh(R)/�2

R → ·· · . (3.9d)

Here we have written �i
cdh(R) for H 0

cdh(R,�i), and tors�i
R is defined as the

kernel of �i
R → �i

cdh(R); the notation reflects the fact that if R is reduced
then tors�i

R is the torsion submodule of �i
R (see Remark 5.3.1 below).
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4 Bass’ groups NK∗(X)

In this section, we relate algebraic K-theory to our Hochschild and cyclic
homology calculations relative to the ground field k = Q. Consider the trace
map

NKn+1(X) → NHCn(X) = NHCn(X/Q)

induced by the Chern character. In the affine case, it is defined in [29];
for schemes it is defined using Zariski descent. As explained in [29],
it arises from the Chern character from the spectrum NK(X) to the
Eilenberg-Mac Lane spectrum |NHC(X)[1]| associated to the cochain com-
plex NHC(X)[1]. Note that our indexing conventions are such that
πn+1|NHC(X)[1]| = H−nNHC(X) = NHCn(X).

Proposition 4.1 Suppose that R = �(X, O) for X in Sch/F , or that X =
Spec(R) for an F -algebra R. Then for all n, the Chern character induces a
natural isomorphism

NKn+1(X) ∼= H−nFHH(X) ⊗ tQ[t].
This is an isomorphism of graded R-modules, and even Carf(R)-modules,
identifying the operations [r], Vm and Fm on NK∗(X) with the operations on
the right side described in Example 1.6.

Proof By Remark 2.2.1, we may suppose X ∈ Sch/F . By [9, 1.6], the Chern
character K → HN induces weak equivalences FK(X) � |FHC(X)[1]| and
FK(X × A1) � |FHC(X × A1)[1]|. Since for any presheaf of spectra E we
have a natural objectwise equivalence E(− × A1) � E × NE, we obtain a
natural weak equivalence from NK(X) to |N FHC(X)[1]|. Now take homo-
topy groups and apply Lemma 3.2.

As observed in [12, 4.12], the Chern character also commutes with the
ring maps used to define the operators [r], Vm, and with the transfer for
R[tn] → R[t] defining Fm. That is, it is a homomorphism of Carf(R)-
modules. Since the transfer is defined via the ring map R[t] → Mn(R[tn]),
followed by Morita invariance, there is no trouble in passing to schemes. �

We now come to one of our main results, which implies Corollary 0.1.

Theorem 4.2 For all n, N2Kn(X) ∼= (NKn(X) ⊗ tQ[t]) ⊕ (NKn−1(X) ⊗
�1

Q[t]), and

Np+1Kn(X) ∼=
p⊕

j=0

NKn−j (X) ⊗ ∧jQp ⊗ (tQ[t])⊗(p−j) ⊗ (
�1

Q[t]
)⊗j

.
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This holds for every X in Sch/F , as well as for Spec(R) where R is an arbi-
trary commutative F -algebra.

Proof As in Proposition 4.1 it follows that the Chern character induces a
natural weak equivalence N2K(X) � |N2FHC(X)[1]|. Now take homotopy
groups and apply Corollary 3.3. �

Remark 4.2.1 Jim Davis has pointed out (see [11]) that a computation equiva-
lent to 4.2 can also be derived—for arbitrary rings R—from the Farrell-Jones
conjecture for the groups Zr . This particular case is covered by F. Quinn’s
proof of hyperelementary assembly for virtually abelian groups; see [22].

As an immediate consequence of 4.2 and [3, XII(7.3)], we deduce:

Corollary 4.3 Suppose that X is in Sch/F , or that X = Spec(R) for an F -
algebra R. Then:

(a) If NKn(X) = NKn−1(X) = 0 then N2Kn(X) = 0.
(b) If NKn(X) = 0 and Kn−1(X) = Kn−1(X × Ap) then Kn(X) = Kn(X ×

Ap+1).
(c) Kn(X) = Kn(X × Ap) if and only if NKq(X) = 0 for all q such that

n − p < q ≤ n.

Recall that X is called Kn-regular if Kn(X) = Kn(X × Ap) for all p.

Corollary 4.4 Suppose that X is in Sch/F , or that X = Spec(R) for an F -
algebra R. Then the following conditions are equivalent:

(a) X is Kn-regular.
(b) NKn(X) = 0 and X is Kn−1-regular.
(c) NKq(X) = 0 for all q ≤ n.

Remark 4.4.1 This gives another proof of Vorst’s Theorem [27, 2.1] (in char-
acteristic 0) that Kn-regularity implies Kn−1-regularity, and extends it to
schemes.

The assumption that the scheme be affine is essential in Bass’ question—
here is a non-affine example where the answer is negative.

Negative answer to Bass’ question for non-affine curves

Let X be a smooth projective elliptic curve over a number field k and let L

be a nontrivial degree zero line bundle with L⊗3 trivial. For example, if X is
the Fermat cubic x3 + y3 = z3, we may take the line bundle associated to the
divisor P − Q, where P = (1 : 0 : 1) and Q = (0 : 1 : 1).
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Lemma 4.5 Write Y for the nonreduced scheme with the same underlying
space as X but with structure sheaf OY = OX ⊕ L = Sym(L)/(L2), that is,
L is regarded as a square-zero ideal.

Then NK7(Y ) = 0 but N2K7(Y ) ∼= NK6(Y ) ⊗ �1
Q[t] is nonzero.

Proof In this setting, the relative Hochschild homology presheaf HHn(Y,L)

is the kernel of HHn(Y ) → HHn(X); sheafifying, H Hn(Y,L) is the kernel
of H Hn(Y ) → H Hn(X). Since �1

X
∼= OX we see from Lemma 5.3 of [9]

that H Hn(Y,L) is: L⊗3 ⊕L⊗5 if n = 4; L⊗5 ⊕L⊗5 if n = 5; and L⊗5 ⊕L⊗7

if n = 6. By Serre duality, H ∗(X,L⊗i) = 0 if 3 � i (cf. [9, 5.1]). By Zariski
descent, this implies that HH5(Y,L) ∼= H 1(X, H H4) ∼= H 1(X,L⊗3) ∼= k and
HH6(Y,L) = 0. Since FHH(Y ) ∼= HH(Y,L), it follows from 4.1 and 4.2
that NK7(Y ) = 0 but NK6(Y ) ∼= tQ[t] and N2K7(Y ) ∼= NK6(Y ) ⊗ �1

Q[t] ∼=
tQ[t] ⊗ �1

Q[t]. �

We conclude this section by refining Proposition 4.1 and Corollary 4.3
to take account of the Adams/Hodge/λ-decompositions on K-theory and
Hochschild homology, and by establishing the triviality of K

(i)∗ (X) for i ≤ 0.
Recall that by definition, K

(i)
n (X) = {x ∈ Kn(X) ⊗ Q : ψk(x) = kix}. For

n < 0, the Adams operations cannot be defined integrally. However, it is pos-
sible to define the operations ψk on Kn(X) ⊗ Q for n < 0 using descending
induction on n and the formula ψk{x, t} = k{ψk(x), t} in Kn+1(X×(A1 −0))

for x ∈ Kn(X) and O(A1 − 0) = F [t,1/t]. This definition was pointed out in
[32, 8.4].

By [13, 2.3] or [10, 7.2], the Chern character NKn+1(X) → NHCn(X)

commutes with the Adams operations ψk in the sense that it sends
NK

(i+1)
n+1 (X) to NHC

(i)
n (X) for all i ≤ n (and to 0 if i > n). Here is the

λ-decomposition of the isomorphism in Proposition 4.1:

Proposition 4.6 Suppose that X ∈ Sch/F , or that X = Spec(R) for an
F -algebra R. Then for all n and i, the Chern character induces a natural
isomorphism:

NK
(i)
n+1(X) ∼= H−nF (i−1)

HH (X) ⊗ tQ[t].
In particular, if i ≤ 0 then NK

(i)
n (X) = 0 for all n.

Proof By [10], the Chern character K → HN sends K(i)(X) to HN(i)(X).
The proof in [10] shows that the lift FK(X) → FHN(X), shown to be a weak
equivalence in [9, 1.6], may be taken to send F (i)

K (X) to F (i)
HN(X). Since

HC → HN sends HC(i−1) to HN(i), the weak equivalence FHC[1] � FHN

identifies F (i−1)
HC [1] and F (i)

HN . Finally F (i−1)
HH = 0 for i ≤ 0. �
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Corollary 4.7 Suppose that R is essentially of finite type over F and has
dimension d . If n < 0 then NK

(i)
n (R) = 0 unless 1 ≤ i ≤ d +n, in which case

NK(i)
n (R) = Hi−n−1

cdh (R,�i−1) ⊗ tQ[t].
In particular, NKn(R) = 0 for all n ≤ −d .

If d ≥ 2 then:

NK0(R) ∼= [
(R+/R) ⊕ H 1

cdh(R,�1) ⊕ · · · ⊕ Hd−1
cdh (R,�d−1)

] ⊗ tQ[t],
NK−1(R) ∼= [

H 1
cdh(R, O) ⊕ H 2

cdh(R,�1)

⊕ · · · ⊕ Hd−1
cdh (R,�d−2)

] ⊗ tQ[t],
...

NK1−d(R) ∼= Hd−1
cdh (R, O) ⊗ tQ[t].

If d = 1 then NK0(R) = (R+/R) ⊗ tQ[t] and NKn(R) = 0 for n < 0.

Proof This is straightforward from Proposition 4.6 and Lemma 3.4. �

Remark 4.7.1 The d = 1 part of Corollary 4.7 holds for any 1-dimensional
noetherian ring by [28, 2.8].

Corollary 4.8 K
(i)
n (X) ∼= K

(i)
n (X × Ap) if and only if NK

(i−j)
n−j (X) = 0 for

all j = 0, . . . , p − 1.

Theorem 4.9 For X in Sch/F or X = Spec(R), and all integers n, we have:

(1) For i < 0, K
(i)
n (X) = 0.

(2) For i = 0, K
(0)
n (X) ∼= KH

(0)
n (X) ∼= H−n

cdh(X,Q).

Here KH denotes the homotopy K-theory of [31]. Theorem 4.9 answers
Question 8.2 of [32].

Proof We first show that K
(i)
n (X) ∼= KH

(i)
n (X) when i ≤ 0. Covering X with

affine opens and using the Mayer-Vietoris sequences of [31, 5.1], it suffices
to consider the case X = Spec(R).

Since K(R)Q is the product of the eigen-components, the descent spectral
sequence E1

p,q = NpKq(R)Q ⇒ KHp+q(R)Q (see [31, 1.3]) breaks up into
one for each eigen-component. If i ≤ 0, the spectral sequence collapses by
Proposition 4.6 to yield K

(i)
n (R) ∼= KH

(i)
n (R) for all n.

To determine the groups KH
(i)
n (R) when i ≤ 0, we use the cdh descent

spectral sequence of [17, 1.1]. If i < 0, then the cdh sheaf K
(i)
cdh is trivial as
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X is locally smooth, so we have KH
(i)
n (R) = 0 for all n. If i = 0 then the

cdh sheaf K
(0)
cdh is the sheaf Qcdh; see [23, 2.8]. Hence we have K

(0)
n (R) =

KH
(0)
n (R) = H−n

cdh(X,Q). �

5 The typical pieces T K
(i)
n (R)

In this section, R will be a commutative F -algebra. The default ground field
k for Kähler differentials and Hochschild homology will be Q.

As stated in (0.3), the Adams summands NK
(i)
n (R) of NKn(R) decom-

pose as NK
(i)
n (R) = T K

(i)
n (R) ⊗ tQ[t] for each n and i; the decomposition

is obtained from an action of finite Cartier operators precisely as the corre-
sponding one for NHC and NHH , explained in Sect. 1. The typical pieces
T K

(i)
n (R) are described by the following formulas.

Theorem 5.1 Let R be a commutative F -algebra. For i �= n,n + 1 we have:

T K(i)
n (R) ∼=

{
HH

(i−1)
n−1 (R), if i < n,

H i−n−1
cdh (R,�i−1) if i ≥ n + 2.

For i = n,n+1, the typical piece T K
(i)
n (R) is given by the exact sequence:

0 → T K
(n+1)
n+1 (R) → �n

R → H 0
cdh(R,�n) → T K(n+1)

n (R) → 0.

Proof By Proposition 4.6, T K
(i)
n = H 1−nF (i−1)

HH . The rest is a restatement of
Lemma 3.4. �

Remark 5.1.1 If R is essentially of finite type over a field F whose tran-
scendence degree is finite over Q, then the T K

(i)
n (R) are finitely generated

R-modules. This fails if tr.deg(F/Q) = ∞ because then �i
F/Q

is infinite di-

mensional. For instance, Example 0.6 implies that, for R = F [x]/(x2), we
have T K

(2)
2 (R) = HH1(R, x) = F ⊕ �1

F/Q
.

Remark 5.1.2 Observe that Corollaries 4.7 and 4.4 imply that R is K−d -
regular. This recovers the affine case of one of the main results in [7].

Here is a special case of the calculations in Theorem 5.1, which proves
Theorem 0.7. We will use it to construct the counterexample to Bass’ question
in the companion paper [8].

Theorem 5.2 Let F be a field of characteristic 0 and R a normal domain of
dimension 2, essentially of finite type over F . Then
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(a) H 1FHH(R/F) ∼= H 1
cdh(R,�1

/F ),

(b) H 2FHH(R/F) ∼= H 1
cdh(R, O),

(c) NK0(R) ∼= H 1
cdh(R,�1) ⊗ tQ[t], and

(d) NK−1(R) ∼= H 1
cdh(R, O) ⊗ tQ[t].

Proof Parts (a) and (b) are immediate from Example 3.5 and the fact that R

is reduced and seminormal. Parts (c) and (d) follow from (a) and (b) using
Proposition 4.1; cf. Corollary 4.7. �

In order to compare the torsion submodules tors�∗
R with the typical pieces

of NK∗(R), we need the affine case of the following lemma. Following tra-
dition, we write F(X) for the total ring of fractions of Xred. That is, F(X)

is the product of the function fields of the irreducible components of Xred.
When X = Spec(R) is affine, we write Q instead of F(X).

Lemma 5.3 Let X ∈ Sch/F ; for F(X) as above, the map �i
cdh(X) → �i

F(X)

is an injection.

Proof We may assume X reduced, and proceed by induction on d = dim(X),
the case d = 0 being trivial. Choose a resolution of singularities X′ → X and
let Y be the singular locus of X, with Y ′ = Y ×X X′. By [24, 12.1], there is a
Mayer-Vietoris exact sequence

0 → �i
cdh(X) → �i

cdh(X
′) ⊕ �i

cdh(Y ) → �i
cdh(Y

′) ∂−→H 1
cdh(X,�i) → ·· · .

Since F(Y ) ⊆ F(Y ′), �i
F(Y ) ⊆ �i

F(Y ′). Because dim(Y ′) < d , the induc-

tive hypothesis implies that �i
cdh(Y ) → �i

cdh(Y
′) is an injection. Hence

�i
cdh(X) → �i

cdh(X
′) is an injection. But X′ is smooth, so by scdh descent

for �i (see [9, 2.5]) we have �i
cdh(X

′) ∼= �i(X′) ⊂ �i
F(X′) = �i

F(X). �

Remark 5.3.1 Lemma 5.3 remains true if, instead of �i , we use �i
/k for

k ⊆ F . In particular, if X = Spec(R) is reduced affine, then �i
cdh(R/k) =

H 0
cdh(R,�i

/k) injects into �i
Q/k . Thus tors(�i

R/k), defined as the kernel of

�i
R/k → �i

cdh(R/k) in (3.9c), is the torsion submodule of �i
R/k .

Corollary 5.4 For all n ≥ 1, T K
(n)
n (R) ∼= ker(�n−1

R → �n−1
Q ). In particular

if R is reduced, then T K
(n)
n (R) is the torsion submodule of �n−1

R .

Proof By Theorem 5.1, T K
(n)
n (R) is the kernel of �n−1

R → �n−1
cdh (R), so

Lemma 5.3 applies. �
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We introduce some notation to make the statement of the next theorem
more readable. The letter e denotes the maximum transcendence degree of
the component fields in the total ring of fractions Q of Rred. For simplicity,
we write �i

cdh(X) for H 0
cdh(X,�i), and we have written �i

cdh(R)/�i
R for the

cokernel of �i
R → �i

cdh(R).

Definition 5.5 For any commutative ring R containing Q, we define:

En(R) = �n
cdh(R)/�n

R ⊕
∞⊕

p=1

H
p

cdh(R,�n+p);

H̃Hn(R) = ker
(
HHn(R) → �n

Q

) = ker
(
�n

R → �n
Q

) ⊕
n−1⊕

i=1

HH(i)
n (R).

Theorem 5.6 Let R be a commutative ring containing Q. Then for all n:

NKn(R) ∼= [
H̃Hn−1(R) ⊕ En(R)

] ⊗ tQ[t].
If furthermore R is essentially of finite type over a field, and n ≥ e + 2, then
NKn(R) ∼= HHn−1(R) ⊗ tQ[t].

Proof Assembling the descriptions of the T K
(i)
n (R) in Theorem 5.1 yields

the first assertion. The second part is immediate from this and Exam-
ple 3.6. �

Remark 5.6.1 The Chern character NKn(R) → NHCn−1(R) ∼= HHn−1(R)

⊗ tQ[t] is an isomorphism for n ≥ e + 2. If n ≤ e + 1, neither it nor the map
H 1−nFHH(R) → HHn−1(R) of Proposition 4.1 need be a surjection.

The typical pieces of NK
(2)
1 (R) and NK

(2)
2 (R) of Theorem 5.1 and Corol-

lary 5.4 may be described as follows.

Proposition 5.7 For all reduced F -algebras R, the typical pieces
T K

(2)
1 (R) = �1

cdh(R)/�1
R and T K

(2)
2 (R) = tors(�1

R) fit into an exact se-
quence:

0 → tors(�1
R) → tors(�1

R/F ) → �1
F ⊗ (R+/R) → �1

cdh(R)

�1
R

→ �1
cdh(R/F)

�1
R/F

→ 0.

Proof We may assume SpecR ∈ Sch/F . Recall from [9, 4.2] that there is a
bounded second quadrant homological spectral sequence for all p (0 ≤ i < p,
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j ≥ 0):

pE1−i,i+j = �i
F/k ⊗F HH

(p−i)
p−i+j (R/F) ⇒ HH

(p)
p+j (R/k).

When p = 1, this spectral sequence degenerates to yield exactness of the
bottom row in the following commutative diagram; the top row is the First
Fundamental Exact Sequence for �1 [33, 9.2.6].

�1
F ⊗ R �1

R
�1

R/F 0

0 �1
F ⊗ R+ �1

cdh(R) �1
cdh(R/F) 0.

The upper left horizontal map is an injection because the left vertical map is
an injection. Now apply the snake lemma, using Remark 5.3.1. �

6 Bass’ question for algebras over large fields

We will now show that the answer to Bass’ question is positive for algebras
R essentially of finite type over a field F of infinite transcendence degree
over Q.

Recall from Proposition 4.1 that NKn+1(R) ∼= H−nFHH(R/Q) ⊗ tQ[t].
In light of this identification, the version of Bass’ question stated before The-
orem 0.2 becomes the case k = Q of the following question:

Does HmFHH(R/k) = 0 imply that Hm+1FHH(R/k) = 0? (6.1)

In Theorem 6.6, we show that the answer to question (6.1) is positive pro-
vided R is of finite type over a field F that has infinite transcendence degree
over k. The proof is essentially a formal consequence of the Künneth formula
in Lemma 6.3.

Lemma 6.2 Let R be a commutative F -algebra, and suppose k is a subfield
of F . Then H−∗FHH(R/k) and H−∗

cdh(R,HH(/k)) are graded modules over
the graded ring �•

F/k .

Proof As in Remark 2.2.1, we may suppose that R is of finite type over F .
Consider the functor on F -algebras that associates to an F -algebra A the
Hochschild complex HH(A/k). The shuffle product makes this into a func-
tor to dg-HH(F/k)-modules. Since the cdh-site has a set of points (cor-
responding to valuations by [15, 2.1]), we can use a Godement resolution
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to find a model for the cdh-hypercohomology Hcdh(−,HH(/k)) which is
also a functor to dg-HH(F/k)-modules. It follows that there is a model for
FHH(R/k) that is a dg-HH(F/k)-module, functorially in R. This implies
the assertion, since �•

F/k = H−•HH(F/k). �

Lemma 6.3 (Künneth formula) Suppose that Q ⊆ k ⊆ F0 ⊆ F are fields. Let
R0 be an F0-algebra, and set R = F ⊗F0 R0.

(i) Let T = {ti} be transcendence basis of F/F0; writing F [dT ] for the ex-
terior algebra on the set {dti}, we have �•

F/F0
= F [dT ] and:

�•
F/k

∼= F [dT ] ⊗F0 �•
F0/k

In particular, the graded algebra homomorphism �•
F0/k → �•

F/k is flat.
(ii) HH∗(R/k) ∼= �•

F/k ⊗�•
F0/k

HH∗(R0/k) ∼= F [dT ] ⊗F0 HH∗(R0/k).

Proof It is classical that F [dT ] = �•
F/F0

. The tensor product decomposition
of part (i) follows from the fact that the fundamental sequence

0 → F ⊗F0 �1
F0/k → �1

F → �1
F/F0

→ 0

is split exact. This proves (i). To prove (ii), choose a free chain dg-F0-algebra


 and a surjective quasi-isomorphism of dg-algebras 

∼� R0. Then 
′ =

F ⊗F0 
 → F ⊗F0 R0 = R is a free chain model of R as a k-algebra. Write
�•


/k for differential forms; consider �•

/k as a chain dg-algebra with the

differential δ induced by that of 
. Note 
 and 
′ are homologically regular
in the sense of [6], so that Theorem 2.6 of [6] applies. Combining this with
part (i), we obtain

HH∗(R/k) = HH∗(
′/k) = H∗(�•

′/k)

= H∗(�•
F/k ⊗�•

F0/k
�•


/k) = �•
F/k ⊗�•

F0/k
H∗(�•


/k)

= �•
F/k ⊗�•

F0/k
HH∗(R0/k). �

Here is an easy consequence of Lemmas 6.2 and 6.3.

Proposition 6.4 Suppose Q ⊆ k ⊆ F0 ⊆ F are field extensions, that R0 is
an F0-algebra and R = F ⊗F0 R0. Then there is an isomorphism of graded
�•

F/k-modules

F [dT ] ⊗F0 H−∗FHH(R0/k) ∼= H−∗(FHH(R/k)).

We also need the following lemma to prove the main result of this section.
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Lemma 6.5 Let R be essentially of finite type over F ⊃ Q, and let Hn(R)

denote either HHn(R) or H−nFHH(R). Assume that Hni
(R) = 0 for some

finite set {n1, . . . , nr} of positive integers. Then there exist an F -algebra of
finite type R′, and a multiplicatively closed set S such that R ∼= S−1R′ and
Hni

(R′) = 0 for 1 ≤ i ≤ r .

Proof Because R is essentially of finite type, it is the localization R = S−1R′′
of some finite type F -algebra R′′. It is well known that HHn(S

−1R′′) ∼=
S−1HHn(R

′′) (see [33, 9.1.8]), and H−nFHH(S−1R′′) ∼= S−1H−nFHH(R′′)
by [9, 2.8–9].

Because R′′ is of finite type over F , we may write R′′ = F ⊗F0 R0 for some
finitely generated field extension F0 of Q and some finite type F0-algebra R0.
Note R0 is essentially of finite type over Q, whence Hp(R0) is a finitely gen-
erated R0-module (p ≥ 0). By Lemma 6.3 and/or Proposition 6.4, Hp(R′′) is
isomorphic, as an R′′-module, to a direct sum of copies of R′′ ⊗R0 Hq(R0)

with q ≤ p. In particular, M = ⊕r
i=1 Hni

(R′′) is a finite sum of R′′-modules,
each of which is a—possibly infinite—direct sum of copies of one finitely
generated module.

Given that M has this form, the hypothesis that S−1M = 0 implies that
there exists a nonzero element s ∈ Ann(M) ∩ S. Consider the finite type
F -algebra R′ = R′′[1/s]. Then R ∼= S−1R′ and we have

⊕
i Hni

(R′) =
M[1/s] = 0. �

Theorem 6.6 Suppose k ⊂ F is an extension with tr.deg(F/k) = ∞,
and R is essentially of finite type over F . If Hn(FHH(R/k)) = 0, then
Hm(FHH(R/k)) = 0 for all m ≥ n.

Proof By Lemma 6.5, we may assume that R is of finite type over F .
There is a finitely generated field extension F0 ⊂ F of k and a finite type
F0-algebra R0 such that R = R0 ⊗F0 F . Note that tr.deg(F/F0) = ∞. By
Lemma 6.3 and Proposition 6.4, �i

F/F0
⊗F0 Hn+i (FHH(R0/k)) is a direct

summand of Hn(FHH(R/k)) for each i ≥ 0. Since �i
F/F0

�= 0 for all i, all

the Hn+i (FHH(R0/k)) vanish as well. Similarly, Hm(FHH(R/k)) is a di-
rect sum of copies of the groups �

j
F/F0

⊗F0 Hm+j (FHH(R0/k)) for j ≥ 0,
all of which vanish when m ≥ n, as we just observed. �

Corollary 6.7 Let Q ⊂ F be a field extension of infinite transcendence de-
gree, and suppose R is essentially of finite type over F . Then NKn(R) = 0
implies that R is Kn-regular.

Proof Combine Theorem 6.6 with Proposition 4.1 and Corollary 4.4. �
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Here is another proof of Corollary 6.7, which is essentially due to Murthy
and Pedrini and given in their 1972 paper [20]; they stated the result only
for n ≤ 1 because transfer maps for higher K-theory and the W(R)-module
structure had not yet been discovered. We are grateful to Joseph Gubeladze
[16] for pointing this out to the authors.

Lemma 6.8 If R is an algebra over a field k of characteristic 0,
NpKn(R[t]) → NpKn(R ⊗k k(t)) is injective.

Proof The proof in [20, 1.3–1.6] goes through, taking into account that the
norm map and localization sequences used there for K0, K1 are now known
for all Kn. �

Lemma 6.9 Suppose that k is an algebraically closed field of infinite tran-
scendence degree over Q, and that R is a finitely generated k-algebra. If

NKn(R) is zero, then Kn(R)
�−→Kn(R[x1, . . . , xp]) for all p > 0.

Proof Muthy and Pedrini prove this in [20, 2.1.]; although their result is only
stated for i ≤ 1, their proof works in general. Note that since NKn(R) has
the form T Kn(R) ⊗ tQ[t] by (0.3) (a result which was not known in 1972),
NKn(R) is torsionfree, and has finite rank if and only if it is zero. �

Proof of Corollary 6.7 Let � denote the functor NpKn. If k ⊂ k1 is a finite
algebraic field extension and R is a k-algebra, then �(R) → �(R ⊗k k1) is
an injection because its composition with the transfer �(R ⊗k k1) → �(R)

is multiplication by [k1 : k], and �(R) is a torsionfree group. Since � com-
mutes with filtered colimits of rings, �(R) → �(R⊗k k̄) is an injection. Thus
Lemma 6.9 suffices to prove Corollary 6.7 when R is of finite type. �

7 NK0 of surfaces

We conclude with a general description for affine surfaces of the canonical
map �1

F ⊗F NK−1 → NK0. This sheds light on the difference between the
cases of small and large base fields, and also explains some results of [35].

If R is a 2-dimensional noetherian ring then NK0(R) is the direct sum of
NK

(1)
0 (R) = N Pic(R) and NK

(2)
0 (R).

Theorem 7.1 Let R be a 2-dimensional normal domain of finite type over a
field F of characteristic 0. There is an exact sequence:

0 → NK
(2)
1 (R) → (

H 0(R,�1
/F )/�1

R/F

) ⊗ tQ[t]
→ �1

F ⊗F NK−1(R) → NK0(R) → H 1
cdh

(
R,�1

/F

) ⊗ tQ[t] → 0.
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Proof Consider the following short exact sequence of sheaves in (Sch/F )cdh:

0 → �1
F ⊗F O → �1 → �1

/F → 0.

Applying Hcdh yields

0 → �1
F ⊗F R

ι→ H 0(R,�1) → H 0(R,�1
/F

)

∂→ �1
F ⊗F H 1

cdh(R, O) → H 1
cdh(R,�1) → H 1

cdh

(
R,�1

/F

) → 0.

Note that, because �1
R → �1

R/F is onto, the map ∂ kills the image of �1
R/F .

Similarly, the image of ι is contained in that of �1
R . Thus we obtain

0 → H 0(R,�1)/�1
R → H 0(R,�1

/F

)
/�1

R/F

→ �1
F ⊗F H 1

cdh(R, O) → H 1
cdh(R,�1) → H 1

cdh

(
R,�1

/F

) → 0.

Now apply ⊗tQ[t] and use Theorem 5.1 and parts (c) and (d) of Theo-
rem 5.2. �

Corollary 7.2 Let R be a 2-dimensional normal domain of finite type over a
field F of characteristic 0. If NK−1(R) = 0 then NK0(R) ∼= H 1

cdh(R,�1
/F )⊗

tQ[t].

Example 7.3 Let R be a 2-dimensional normal domain of finite type over Q,
and put RF = R ⊗ F . By Propositions 4.1 and 6.4,

NK∗(RF ) ∼= NK∗(R) ⊗ �∗
F/Q. (7.4)

Keeping track of the λ-decomposition, as in Theorem 5.1, we see from The-
orem 0.7 that

T K
(2)
1 (RF ) ∼= T K

(2)
1 (R) ⊗ F ∼= H 0(R,�1) ⊗ F/�1

R ⊗ F

∼= H 0(RF ,�1
/F

)
/�1

RF /F .

From Theorem 7.1 we get an exact sequence

0 → �1
F/Q ⊗F NK−1(RF ) → NK0(RF ) → H 1

cdh(RF ,�1
/F ) ⊗ tQ[t] → 0.

(7.5)
Using (7.4) and Theorem 0.7 again, we see that the sequence (7.5) is isomor-
phic to the sum
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(
0 → �1

F/Q
⊗ H 1

cdh(R, O) ⊗ tQ[t]
�−→�1

F/Q
⊗ H 1

cdh(R, O) ⊗ tQ[t] → 0 → 0
)

⊕
(
0 → 0 → F ⊗ H 1

cdh(R,�1) ⊗ tQ[t] �−→F ⊗ H 1
cdh(R,�1) ⊗ tQ[t] → 0

)
.

For example, for RF := F [x, y, z]/(z2 + y3 + x10 + x7y) the results of [8]
show that:

NK−1(RF ) = F ⊗ tQ[t],

NK0(RF ) = �1
F/Q ⊗ tQ[t] ∼=

tr.deg(F )⊕

p=1

F ⊗ tQ[t].

In other words, both typical pieces T K−1(RF ) and T K0(RF ) are F -
vectorspaces, but while dimF T K−1(RF ) = 1 for all F , any cardinal number
κ can be realized as dimF T K0(RF ) for an appropriate F .
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