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Magnetic materials for finite-temperature quantum computing

R. Skomski, J. Zhou, A. Y. Istomin, A. F. Starace, and D. J. Sellmyer
Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

(Presented on 9 November 2004; published online 17 May 2005

The potential use of interacting magnetic nanodots for quantum comp{dfirmt) operations is
investigated by model calculations. The quantum entanglement of the low-lying ferromagnetic
states, as quantified by the concurrence, exhibits a resonant peak whose position and width depend
on parameters such as dot anisotropy, interdot exchange, and external field gradient. The maximum
operation temperature is proportional to the magnetocrystalline anisotropy of the dot material. A
specific condition is that the dots are sufficiently small so that the interatomic exchange ensures a
coherent magnetization state and quantum coherence at finite temperatures. From a material point of
view, there is a quite rigid upper limit of about 100 K, but to avoid decoherence it will be necessary

to sacrifice a substantial fraction of this temperature, probably at least one order of magnitude.
© 2005 American Institute of PhysidDOI: 10.1063/1.1860832

I. INTRODUCTION dot. The main reason for considering nonequivalent dots is

. oy . that real nanomagnets tend to have imperfections.
The use of quantum bitgubity is a promising way to 9 b

. . . . The single-dot spin Hamiltonians are of the typk
meet the ever-increasing needs of information technology, A . )
with various advantages over classical information process- a~9 MousHS, where H=H, is the external magnetic
ing in areas such as factorization and cryptographyn  field and
principle, any quantum-mechanical two-level system can be
used as a qubit, and various physical realizations have been
considered so far, such as electronic quantum wells and KN -, =

i i in Ha=- oS8 -9), (1)
nuclear spins. Among the systems of current interest are spin  "a~= " 5
chains and spin clusters, whose quantum states can be tuned,
for example, by an external magnetic fiéd.

Most systems considered at present operate at very 1oy y,o magnetic anisotropy. In this equation, the uniaxial an-
temperatures, typically much smaller than 1 K. The smalligoyqny constank reflects the chemical composition and

ness of Bohr’s magnetoms/ks=0.672 K/T, makes it diffi- 5401 structure of the dofsThe energy differencélevel
cult to exploit magnetic fieldsat temperatures significantly acing between the lowest two eigenvalues of H@)

above 1 K. Superconducting magnets are able to create fiel (25-1)/, determines the maximum operation tempera-

much Iarger than 1 Tl%I!(Ohe’ but t_he{ a}re very culgnb(:]r— ture. Since we consider two different dots, we must use two
some and may not establish a practical alternative. Exchan isotropy constants andK’. Note that the anisotropy leads

anisotropy, as advocated in Refs. 4 and 5, is a conceivab unequal level spacings, which simplify the addressing of

allenative, bgt Iowe;t-order exchange is isotropic, and the yefineq quantum states, for example, in resonance ex-
exchange anisotropied,,—J,, and J,,—J,, are small and periments

SLﬁlcuI;So-rfilli%rellzg|V|st|c corrections to the isotropic ex- We assume that the two dots are coupled by a
angeJyt Jyy+J;) /3. Heisenberg-type exchangé realized, for example, by

_Here we consider the use of Coqpled an'SOt.rOp'C.m"?‘gRuderman—KitteI—Kasuya—Yosida (RKKY) interaction
netic nanodots for quantum information processing signifi-

cantly above 4.2 K. Emphasis is on the entanglement of th%ﬁ[joeurgho?;l;b?]tiﬁ?eolr‘o?qiiﬂm I(;anb bi%’;‘:ei?\ O\Iﬁre rg;ngis_
dots, which reflects the quantum-theoretical aspect of th g ' pie, by ging

problem, and the selection and development of optimized dofanieé,gand roughly scal_es_ as some power _Of the dot dize,
materials. ~ N«.”” However, the origin of the coupling is of secondary

interest in the present context; it may also be realized by a
nanojunction or, with some modification of E@), by mag-
Il. NANODOT ENTANGLEMENT netostatic interactions.
A key aspect of quantum computing is the entanglement

Figure 1 shows the considered two-dot model. There aref the involved wave function&™® Schrddinger’s ver-
two generally nonequivalent magnetic nanodots or clusterschrankungor entanglement is a quantum effect without
with total spinsSandS'. The spinsSandS' are proportional classical analog, a two-particle state being entangled if it
to the dot size and can be written 8 NS, andS'=N'S',.  cannot be expressed as a product state. In the Schmidt de-
In a simple interpretationg, and S, are the numbers of composition, the two-particle wave function can be written
spins per atom anl andN’ are the numbers of atoms per as
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1Y S?

FIG. 1. Two interacting magnetic dofschematit. The dots can be pro-
duced by a variety of deposition and fabrication methods, and the coupling
may be realized by the net RKKY interaction through a nonmagnetic sub-
strate or by a nanojunction.

23

100 200
|¥) = «|00) + B|01) + ¥|10) + 8|11). (2) K’ (kelvin)

For example, the four maximally entangled Bell states aré!G. 3. Entanglement as a function of the anisotrégyof the second dot.
: The solid and dashed lines denote FM and AFM couplings, respectively. The
+ +
propqrtlonal t0|00>_.|11> and|0].'>_|10>' parameters ar&,=S,’=1, N=1000, N’=1100,K=50 K, andJ=0.005 K.
Since we are interested in low-temperature entanglero simplicity, H=0 andH’=0. The FM maximum is a resonance effect

ment, we construct a Schmidt bagds and|1) from single-  involving|01) and|10) states; there is no similar resonance in the AFM case.
dot states havindS,|=S and |S,|=S-1, respectively. We

consider only two states per dot: The ground-s@tand the i rise to mixing(and, hence, entanglemgmt the states
lowest-lying excited statél). As shown elsewhef'é,hlgher 01) and|10) (FM) and|00) and|11) (AFM).

excitations do not affect the entanglement of the low-lying Figure 3 shows the entanglement as a function of the

states.. Figure 2 illustrates the physical meaning _of the_ fo“énisotropy of the second dot. The entanglement of the low-
Schmidt states for the nanodot FM and AFM conﬁguranonsiying FM excitations exhibits a resonant peak whose width

For simplicity, we assume that the spin of the first dot iSjenends on the interaction strength. Since a local magnetic
positive, so that the stat¢@) and|1) have the quantum num- oy shifts the single-dot energies, a field gradient can be
bersS,=SandS,=S-1, respectively. For th? second dot, the se 15 tune the entanglement. The dashed line in Fig. 3
respective quantum numbers &¢=S andS',;=S' -1 (FM) g5 that there is no peak in the antiferromagnetic case.
andS;=-S' andS,=-S'+1. The matrix elements dfl i Note that the present calculation is time-independent and
terms of the Schmidt basis E@) are easily obtained by 505 not aim at quantifying issues such as information input
Elsing theAraising and lowering operatd8=S,+i S, and  gnd output and decoherence.

S§'=S,%i S,

A quantitative entanglement measure is the concurrence
C.2 For nonentangledseparable states,C=0, whereas the [II. NANODOT MATERIALS
maximally entangled Bell states exhib@=z1. In the
present case, the entanglement depends on whether the cou- Since the basic level splitting and the maximum opera-
pling is ferromagnetic(FM, J>0) or antiferromagnetic tion temperature are proportional kg it is necessary to ex-
(AFM, J<0). The ferromagnetic ground state and the firstPloit with high magnetocrystalline anisotropy. Dots with
two excited AFM states are separable, tha0is,0. Substan- Shape anisotropy and semihard dots, such as Co, cannot be
tial entanglement is encountered in the AFM ground staté/Sed, because they correspond to temperatures of only about
and between low-lying ferromagnetic excitatibhsPhysi- ~ one kelvin. Figure 4 illustrates the role of the temperature-

cally, the transverse components of the interdot exchang@eépendent anisotropy. On a phenomenological level, the
maximum operating temperature is obtained graphically as

the temperature at which the “architecture” line of the system

o S Py AT X . . .
Y P P L T = (dashedl intersects the materials lingolid). The larger the
i o \ '.f \ ‘.I VAR slope of the architecture line, the lower the maximum appli-

cation temperature. The slope reflects, in particular, quantum

-
-

|00=- 01> 110> ILL> decoherence, reaching a minimum value of order 1 MK'm
(@) [line Il in Fig. 4(a)] for systems where single-ion crystal-field
1 4 g Gl excitations are the only consideration. For Co, the corre-
\ ;l 4 ;’ Y ,’l Y ,'& sponding temperature is smaller than 1 K, and similar values
IS ¥ e o T are encountered in othed3ystems, such as ferritin.

00> 01> (10> > Much higher design-dependent temperatures are ob-

(b) tained for SmCeg [Fig. 4(@)]. However, typical hard-
magnetic materials have temperature-dependent anisotropies
FIG. 2. Low-lying states(a) Ferromagnetic coupling ari®) antiferromag- ~ that are maximized at or above room temperafdfeThis
netiC_SOUPcljing-QSri]n Fig. 1, tvzjo coupled andl gznera"yinequi\éalené dots ardncludes not only rare-earth transition-metal alloys but also
e et ate conoted 19, andit) ressectely The o) siten have  Materials such Lg magnets, whose anisotropy originates
nonzero “cone angles’ due to the quantum-mechanical uncertainty of thfOM 4d and & atoms, such as Pd and Ptittle work has

perpendicular spin componerts andS,.) been done to optimize anisotropies at low temperatures, al-
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FIG. 4. Operating temperature and anisotrofs): Schematic theoretical
figure and(b) experimental anisotropy datéRef. 15. In (a), the slopes of
the dotted lines depend on the details of the coupling and georfusicp-
herencg The well-optimized architecture Il is more demanding than | but
yields higher operating temperatures. The “ldW-materials graph illus-

trates the effect of the Curie temperatike=0 atT,).

though it is known that some compounds with<300 K
have huge anisotropies of 100 to 1000 M3/h'*The low-

T line in Fig. 4@) is a typical example.

IV. DISCUSSIONS AND CONCLUSIONS
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ence during the realization of the qubit operations. A key
assumption of Secs. Il and Il is that the interatomic ex-
change yields well-defined good quantum numt&easdS'.
This ensures coherence during qubit operations and deter-
mines, together with the time necessary to conduct an opera-
tion, the slope of dashed architecture line in Figa)4
An upper limit to the temperature above which spin-
wave-like excitations and magnetic domains destroy quan-
tum coherence is given by the energies of the lowest-lying
spin-wave states. They scale As®/L?, whereA is the ex-
change or spin-wave stiffness of the dot matefialjs the
interatomic distance, and is the dot size. For typical mate-
rials at temperatures significantly higher than 1 K, this quan-
tity does not exceed a few nanometers. In bigger dots, low-
lying spin-wave excitations have energies comparabl& to
and decoherence occurs very fast.
In conclusion, our concurrence calculations indicate that
magnetocrystalline anisotropy can be used to realize qubit
entanglement in realistic magnetic nanostructures. Low-lying
ferromagnetic states exhibit a resonant quantum entangle-
ment that can be tuned by varying the involved parameters,
such as dot size, magnetocrystalline anisotropy, interdot cou-
pling, and local magnetic field. An upper limit for the achiev-
able operation temperature, significantly larger than 10 K, is
given by the anisotropy of the dots. A major condition for
avoiding decoherence is to suppress spin waves by making
the dots nanoscale rather than macroscopic.
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