2-25-2016

Student-Teacher Affect in STEM College Course Transformation

Matthew T. Patton
University of Nebraska-Lincoln, mpatton@unomaha.edu

Leilani Arthurs
University of Nebraska-Lincoln, larthurs2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/dberspeakers
Part of the [Higher Education Commons](http://digitalcommons.unl.edu/dberspeakers), and the [Science and Mathematics Education Commons](http://digitalcommons.unl.edu/dberspeakers)

http://digitalcommons.unl.edu/dberspeakers/90

This Presentation is brought to you for free and open access by the Discipline-Based Education Research Group at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in DBER Speaker Series by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Abstract for DBER Group Discussion on 2016-02-25

Authors and Affiliations:
Matt Patton¹
Leilani Arthurs²
¹Postdoctoral Research Associate
²Assistant Professor
Department of Earth & Atmospheric Sciences
University of Nebraska-Lincoln

Title
Student-Teacher Affect in STEM College Course Transformation

Abstract
Despite federal efforts to support the propagation of active-learning strategies in introductory college science, technology, engineering, and mathematics (STEM) courses, instructor adoption of these strategies lags behind the published research that touts their efficacy for students’ learning. Possible reasons for this lag are varied and, herein, we investigate the potential role that students play in STEM instructors’ decisions on whether and how to adopt active-learning strategies. Our study was conducted at a large public university in the Midwest. Grounded in social cognitive theory, we use a mixed methods approach that combines 34 classroom observations, one-on-one interviews with students (n=57) and instructors (n=12), and online surveys of students (n=301) and instructors (n=12). We find that students pose impediments to adopting active-learning strategies, but faculty-perceived impediments related to time and reward outweigh them. In addition, we find that students also provide the motivation behind instructors’ decisions to adopt active-learning strategies. The majority of students in this study indicate that they want more active-learning experiences in the classroom, and the instructors indicate that they want to provide students with more active-learning experiences, engage with them, and see their growth as learners, yet find it difficult to motivate students. Given the instructional support and time needed to develop and implement courses based on active-learning strategies, we present implications and recommendations to support the transformation of introductory college STEM courses that can inform departmental, college, and university efforts to enhance students’ learning and academic experience.
Student-Teacher Affect in STEM College Course Transformation

Matthew T. Patton & Leilani Arthurs
University of Nebraska-Lincoln
DBER STEM Education Seminar
February 25, 2016
Introduction
Across STEM disciplines, active learning increases exam scores and raises average grades by a half letter grade.

Freeman et al, 2014

Research-based instruction, including active engagement, increases student learning.

Deslauriers et al, 2011

Instructors consistently interacting with students results in increased student academic engagement.

Gasiewski et al, 2012
Research Questions

1. To what extent does student behavior related to the course influence instructional decisions and/or changes?

2. To what extent does student thinking about teaching influence instructional decisions and/or changes?
Methods

Key:
- B = start of the semester
- M = mid semester
- E = end of semester

<table>
<thead>
<tr>
<th></th>
<th>Online Surveys</th>
<th>Individual Interviews</th>
<th>Classroom Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty</td>
<td>B (n=12)</td>
<td>B, M, E (n=12)</td>
<td>--</td>
</tr>
<tr>
<td>Student</td>
<td>E (n=401)</td>
<td>E (n=57)</td>
<td>--</td>
</tr>
<tr>
<td>Class observations</td>
<td>--</td>
<td>--</td>
<td>B, M, E (n=34)</td>
</tr>
</tbody>
</table>

University of Nebraska-Lincoln
Students expect large introductory-level STEM courses to serve them in some way.

- Support Major: 11%
- Career Preparation: 11%
- Pursue Interest: 77%
- Improve Abilities: 6%
- Earn Passing Grade: 10%
- Master Topic: 9%

n=294 student surveyed
Students recommend improving the learning experience in large introductory STEM courses.

- **Active Engagement Strategies**
 - Make Engaging: 14%
 - Use Clickers: 12%
 - Increase Demonstrations: 17%
 - Increase Interaction: 59%
 - Use Group Activities: 36%

- **Presentation Strategies**
 - Revise Powerpoint: 21%
 - Work Practice Problems: 19%
 - Increase Lecture: 12%

- **Student Strategies**
 - Take Ownership of Learning: 24%
 - Balance School & Work: 29%

n=57 students interviewed
Students find active learning strategies helpful to their learning experience.

University of Nebraska-Lincoln

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percent (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clickers</td>
<td>94</td>
<td>234</td>
</tr>
<tr>
<td>Demonstrations</td>
<td>94</td>
<td>301</td>
</tr>
<tr>
<td>Small Group Activities</td>
<td>80</td>
<td>133</td>
</tr>
</tbody>
</table>
Faculty use active learning strategies to help meet student expectations of what they want to get out of the course ...

University of Nebraska-Lincoln
... and 75% (9/12) of them use student feedback to inform instructional decision-making.

Instructor A:	When the bulk of students don't get it, I will try to find another way to help get the content across and/or send them out with advice to read book, work problems, and ask questions.
Instructor B:	We just read some clicker [answers] and it was immediately clear that they had misunderstood a key concept so we went back and went over it again.
Instructor C:	I often use student feedback (questions) to guide me in strategy selection [lecture, group exercises, examples].
Instructor D:	Just by answering someone's question or bringing up an example or something, you can easily turn that into... what I just call a flash lecture.
Although 75% regularly use student feedback to inform instructional decision-making, the courses remain largely instructor-centered.
However, one instructor stood out in terms of the nature of the student experience in the classroom.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listening</td>
<td>13%</td>
</tr>
<tr>
<td>Individual Work</td>
<td>16%</td>
</tr>
<tr>
<td>Other Group Work</td>
<td>30%</td>
</tr>
<tr>
<td>Answer Question</td>
<td>2%</td>
</tr>
<tr>
<td>Student Question</td>
<td>2%</td>
</tr>
<tr>
<td>Whole Class Discussion</td>
<td>6%</td>
</tr>
<tr>
<td>Waiting</td>
<td>28%</td>
</tr>
<tr>
<td>Other</td>
<td>16%</td>
</tr>
</tbody>
</table>

University of Nebraska-Lincoln
Although half from Spring ‘15 regularly use student feedback to inform instructional decision-making, the courses remain largely instructor-centered.

n=12 instructors

Student-Centered: 48%
Instructor-Centered: 52%
A lack of time to design and manage courses hinders faculty from using active engagement strategies.

Instructor A: “TIME. I have tons of ideas for things I would like to do and **try with the large lecture courses**, but I only have **limited time to develop** new curriculum and investigate new ideas.”

Instructor B: “**Time management** [to try implementing active learning strategies without overloading students].”

Instructor C: *Lecture is effective for quickly presenting information.*

Instructor D: *Time is a limitation, the motivation to incorporate it [formative assessment], I’m getting tired.*
Key Findings

1. Students want learner-centered classroom experiences.

2. Instructors want to provide learner-centered experiences.
The potential implications of these findings on transforming large STEM courses at this institution include ...

- Students may be able to help promulgate course transformation, from a more grassroots level
The potential implications of these findings on transforming large STEM courses at this institution include ...

• Students may be able to help promulgate course transformation, from a more grassroots level.

• If student demand for learner-centered classrooms grows, then faculty need more time to design and manage courses that incorporate more active learning strategies.

• Faculty will need departmental and institutional support to achieve course transformation.
Thank you for listening!

Any questions?
Although half regularly use student feedback to inform instructional decision-making, the courses remain largely instructor-centered.

Spring 2015, n=6 instructors

- 22% Student-Centered, 78% Instructor-Centered
- 32% Student-Centered, 68% Instructor-Centered
- 20% Student-Centered, 80% Instructor-Centered
- 17% Student-Centered, 83% Instructor-Centered
- 31% Student-Centered, 69% Instructor-Centered
- 32% Student-Centered, 68% Instructor-Centered

University of Nebraska-Lincoln
Although half regularly use student feedback to inform instructional decision-making, the courses remain largely instructor-centered.