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PACS. 71.20.Lp – Intermetallic compounds.
PACS. 73.20.At – Surface states, band structure, electron density of states.
PACS. 75.25.+z – Spin arrangements in magnetically ordered materials (including neutron

and spin-polarized electron studies, synchrotron-source X-ray scattering,
etc.).

Abstract. – A unitary spinor transformation is used to show that the spin-down density
of states (DOS) of half-metallic ferromagnets becomes nonzero at finite temperatures. In a
strict sense, this thermally activated spin mixing means that half-metallic ferromagnetism is
limited to zero temperature. Similar effects are created by crystal imperfections, interfaces, and
surfaces. The calculations, which imply that the finite-temperature resistivity of an individual
spin channel is never infinite, are used to discuss recent experimental work on half-metallic
oxides and Heusler-type alloys.

Half-metallic ferromagnets have only one spin channel for conduction. Because the resis-
tance of the spin-down channel goes to infinity for D ↓ (EF) = 0, they are of great importance
in spin electronics. Recently, the existence of half-metallic behavior at finite temperatures has
been questioned on experimental grounds [1,2], and in spite of several claims of experimental
proof of half-metallic character [3–9] there is no compelling experimental proof of half-metallic
character for any system. This letter provides a likely explanation of these findings.

Far below Tc, the densities of states (DOS) of typical ferromagnets are only weakly modi-
fied, because kBT is much smaller than the Fermi energy and band-structure distortions are
small. However, we will see that half-metallic ferromagnets are an exception, with qualitatively
new temperature-dependent effects.

To describe the effect of finite temperatures on the band structure, we use the tight-binding
Hamiltonian

Hµνikσσ′ = Tµνikδαβ − Vµδµνδikδαβ − I0δµνδikei · σαβ . (1)

Here Tµνik = 〈φµ(r − Ri)|T |φν(r − Rk)〉 is the hopping integral between a µ-type orbital
at Ri and a ν-type orbital at Rk, Vµ is the crystal-field energy for the µ-type orbital, I0 is
the intra-atomic d-electron exchange, and ei is the local magnetization direction. In terms
of eq. (1), ferromagnetism results from the I0 Stoner term, which reduces and enhances the
energies of ↑ and ↓ electrons, respectively. In the absence of spin disorder, the spin structure
c© EDP Sciences
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of a ferromagnet is described by the Pauli matrix σz whose ↑ and ↓ eigenfunctions are (1, 0)T

and (0, 1)T , respectively, and yields an exchange-energy difference of 2I0 between spin-up and
spin-down electrons. The starting point for describing finite-temperature spin disorder is the
standard spin-(1/2) rotation matrix

Û(φ, θ) =




cos
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θ

2

)
eiθ/2 sin

(
θ

2

)
e−iφ/2

− sin
(
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2

)
eiφ/2 cos

(
θ

2

)
e−iφ/2


 , (2)

which rotates a ↑ spin by the angles θ and φ [10]. Note that expressions of the type (1) and (2)
apply not only to thermal disorder but also to structural disorder [10–12]; we will exploit this
analogy in our discussion of recent experimental work.

The ei ·σαβ exchange term in eq. (1) is diagonalized by the inverse matrix Û− = Û+(φi, θi).
Applying the transformation Ût = Û+(φ1, θ1) · · · Û+(φiθi)Û+(φi+1, θi+1) · · · Û+(φN , θN ) to
eq. (1) yields

Ht
µνikαβ = TµνikΣγUαγ(φi, θi)U+

γβ(φk, θk) − (Vµδαβ + I0σzαβ)δµνδik, (3)

where the thermal spin disorder has been mapped onto random hopping integrals.
In the low-temperature regime, dominated by long-wavelength spin waves, neighboring

spins remain nearly parallel. Using Û(φk, θk) ≈ Û(φi, θi) and exploiting the identity
Û(φi, θi)Û+(φi, θi) = Î, we find that Û(φi, θi)Û+(φk, θk) ≈ Î. This means that the trans-
formed hopping integrals are very similar to those at zero temperature, and the total wave
function obtained via Ût is a good approximation. Figure 1a shows typical finite-temperature
↑ and ↓ densities of state. The ↑ DOS exhibits, in general, minor distortions (dark region
I), but in the ↓ gap the DOS changes qualitatively, from zero to nonzero (dark region II).
This means that resistance of the ↓ channel changes from infinity to a finite value. A crude
estimate for the magnitude of this spin-mixing contribution to the DOS is

D↓(E) ≈ M0 − Ms(T )
M0 + Ms(T )

D↑(E), (4)

where Ms(T ) is the spontaneous magnetization and M0 = Ms(0). Note that Ms(T ) reflects
both Bloch-type spin-wave excitations and specific features such as many-sublattice effects.

Spin-resolved photoemission measurements [3, 4] that claim to provide evidence of half-
metallic behavior, in fact, do not. Finite-temperature effects leading to the population of spin
minority states near EF, just described, would be most significant at wave vectors away from Γ,
the surface Brillouin zone center, and may not, therefore, be observed in these measurements
at normal emission [3, 4], even for stoichiometric surfaces. Similarly, spin minority surface
states leading to a loss of half-metallic character, now well described for the half-metallic
Heusler alloy NiMnSb [13,14], would not be observed if measurements are only undertaken at
the Γk‖ = 0 point.

The negligible DOS at the Fermi level in the spin-polarized photoemission spectra of
La2/3Sr1/3MnO3 [3] and CrO2 [4] suggests that either the surface is not the correct stoichiom-
etry in those studies (see [15] for La2/3Sr1/3MnO3 and [16, 17] for CrO2) or that the Fermi
level crossings are well away from Γ (or some combination of both effects). To a small ex-
tent, final-state effects in photoemission can also contribute [18]. A band structure like that
illustrated schematically in fig. 1b, with a simplified ferromagnetic band, dispersing towards
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Fig. 1 – Some aspects of the band structure of half-metallic ferromagnets: (a) schematic ↑ and ↓ DOS
(dark shadowing denotes regions occupied at finite temperature only); (b) a schematic “metallic”
ferromagnet band with ↑ and ↓ components, indicating that the region sampled at normal emission in
photoemission is close to k‖ = 0, and (c) schematic C2v surface Brillouin zone, applicable to the (001)
surfaces of the perovskites and Heusler alloys and illustrating that crystalline texture may rotate the
Brillouin zone but leaves the zone center unperturbed.

EF with increasing wave vectors away from Γ, is not conclusively eliminated in such mea-
surements. The region probed with normal emission in spin-polarized photoemission is the
“shaded” region in fig. 1b. Crystalline disorder that might occur [3, 15] cannot be used as an
argument for “complete” sampling of the Brillouin zone. In such strongly textured thin films,
disorder would result in some cylindrical averaging of k-points away from Γ but leave the Γ
point unperturbed, as indicated in fig. 1c.

The onset of “normal” ferromagnetism, with clear evidence of a spin minority population
(spin minority scattering) above 80 to 100K in the semi-Heusler alloy NiMnSb [2, 19] and
in CrO2 above 50 to 100K [20], is an interesting feature of half-metallic ferromagnets [21].
It is consistent with moment misalignments of the type described by eq. (3). The dramatic
decrease in the observed moment of both Mn and Ni in NiMnSb, with increasing temperature
at about 80 to 100K [2,22], suggests that spin alignment is indeed essential to preserve half-
metallic character in NiMnSb. The increase in spin-wave population may also be linked to a
“metamagnetic” phase transition between two types of ferromagnetism at about 80 to 100K.

An increase in spin-wave–induced misalignment is anticipated if the excitation of a static
transverse optical mode leads to a lattice distortion that is coupled with the spins in NiMnSb.
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It is already known [23] that a nearly dispersionless transverse optical mode occurs at about
28meV in NiMnSb. In terms of 3kBT , this corresponds to 103K —very close to the tem-
perature at which there is a dramatic loss in Ni and Mn moments in NiMnSb [2]. Spin-wave
arguments have already been used to discuss the lower-than-expected Curie temperature of
half-metallic materials [24], but an exhausting analysis of the spontaneous magnetization of
Heusler alloys and oxides remains a challenge to future research, and full-scale first-principle
investigations will be necessary to quantitatively reproduce the observed behavior.

In the case of La2/3Sr1/3MnO3, the appreciable spin minority population at 1.5K is prob-
ably a band-structure effect [1], involving structural features such as interfaces [13, 14], de-
fects [25], and substitutional disorder. An appreciable spin-wave population is unlikely at
such low temperatures, even though the spin-wave population is, strictly speaking, nonzero.
While a nanocrystalline material with a substantial number of defects will lead to a loss of
half-metallic character [25], it will also tend to suppress long-wavelength spin waves.

Unfortunately, indirect proof of half-metallic character from the magnetic moment mea-
sured at high fields is likely to be very insensitive to a small spin minority density of states.
Even though tunnel junctions include contributions from the spin-dependent Fermi veloc-
ity [26], which could effectively enhance the tunnel magneto-resistance [1, 26], no tunnel
magneto-resistive junctions measurement has provided a strong indication of half-metallic
character. The highest tunnel-magnetoresistance values reached have been as high as 450% [27]
to 500% [28], this only at very low temperatures and still well below the values expected for
a half-metal. Transport spin-polarization measurements, using point-contact Andreev reflec-
tion, have provided the highest measured polarizations to date [1, 5, 29–32]. In spite of one
claim of proof of half-metallic character [5], these measurements also miss the mark of 100%
polarization for the postulated half-metallic systems [1,5,29–32], even at temperatures of 1.6K
(and lower). So “proof” of half-metallic character must necessarily remain elusive.

In conclusion, our analysis has shown that finite-temperature spin disorder destroys the
complete spin polarization characteristic of half-metallic ferromagnets. This mechanism is
modified and, in general, enhanced by crystal imperfections, by surface and interface effects,
and by specific features of the crystal structure.
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