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a b s t r a c t

Latent class models with crossed subject-specific and test(rater)-specific random effects
have been proposed to estimate the diagnostic accuracy (sensitivity and specificity) of a
group of binary tests or binary ratings. However, the computation of these models are hin-
dered by their complicated Monte Carlo Expectation–Maximization (MCEM) algorithm. In
this article, a class of pseudo-likelihood functions is developed for conducting statistical in-
ference with crossed random-effects latent class models in diagnostic medicine. Theoret-
ically, the maximum pseudo-likelihood estimation is still consistent and has asymptotic
normality. Numerically, our results show that not only the pseudo-likelihood approach
significantly reduces the computational time, but it has comparable efficiency relative to
the MCEM algorithm. In addition, dimension-wise likelihood, one of the proposed pseudo-
likelihoods, demonstrates its superior performance in estimating sensitivity and specificity.

Published by Elsevier B.V.

1. Introduction

Pharmaceutical and regulatory statisticians whowork in the fields of developing state-of-the-art medical devices and ra-
diology diagnostic tests have shown tremendous interests in the strategies for accurately estimating diagnostic accuracy of
multiple binary medical tests or raters. It has been widely recognized that sensitivity and specificity are two primary mea-
sures that characterize the diagnostic accuracy of binary tests. Statistical methodologies have been proposed to estimate
sensitivity and specificity of binary tests (Zhou et al., 2002; Pepe, 2003). When investigators are committed to estimating
the average sensitivity and specificity of a group of tests or raters, latent class models (Qu et al., 1996; Hui and Zhou, 1998;
Qu and Hadgu, 1998; Albert et al., 2001; Albert and Dodd, 2008), in which the true disease status is considered as a latent
variable, have been proved to be an effective and strategic approach. Qu et al. (1996) and Qu and Hadgu (1998) proposed a
random-effects latent class model that characterized conditional dependence between tests through random effects. Albert
et al. (2001) proposed a latent class model with a finite mixture structure to account for dependence between tests. Albert
and Dodd (2008) extended latent class models in Qu and Hadgu (1998) and Albert et al. (2001) to incorporate information
from both the verified and nonverified subjects during estimation. More recently, Zhang et al. (2012) introduced a latent
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class model with crossed random effects (with both subject-specific and test-specific random effects) for estimating sensi-
tivity and specificity of a group of binary tests or raters. Despite the success of these random-effects latent class models in
diagnostic statistics, computational complexity has been the major flaw of the latent class models with crossed random ef-
fects. This article is devoted to proposing a competitive pseudo-likelihood approach that reduces the computational burden
of crossed random effects latent class models in estimating diagnostic accuracy.

Statistical inference in random-effects models (or mixed-effects models) (Laird and Ware, 1982; McCulloch and Searle,
2001) starts from parameter estimation step, in which maximum likelihood estimation (MLE) is achieved via numerical op-
timization methods, such as Newton–Raphson algorithm and its variants. However, these optimization procedures require
numerical approximation of the likelihoods of random-effects models that may involve evaluating high-dimensional inte-
grals. In the latent class models with crossed random effects, as we show in Section 2, this computational issue becomes the
major obstacle because the high-dimensional integral in the full likelihood of a crossed random effects latent class model is
intractable. Computational strategies have been proposed to overcome the numerical difficulties posed by high-dimensional
integrations in random-effects models. Breslow and Clayton (1993) proposed a pseudo quasi-likelihood method that seeks
the parameter estimation by maximizing the joint distribution of the observed data and the random effects. Approximate
MLE computation using the Laplace approximation also proposed by Steele (1996) and Lee and Nelder (2001). Yet, these
methods cannot provide generally consistent estimation (Lin and Breslow, 1996). Another option is to develop simulation-
basedMonte Carlo algorithms for obtaining theMLE,which includeMonte CarloMarkov chain (MCMC) algorithms proposed
by Zeger and Karim (1991) andMcCulloch (1997) and Monte Carlo Expectation–Maximization (MCEM) algorithm proposed
by Booth and Hobert (1999) and Booth et al. (2001). These algorithms have drawbacks that include the computational du-
ration and MCEM convergence assessment, so that they cannot provide instant statistical inference results to practitioners.
Statistical inference turns to be even harder in the latent class models with crossed random effects. Unlike the conventional
random-effects models with independent between-subject observations, the full likelihood of a crossed random effects la-
tent class model is an integral whose dimension increases with the number of subjects and the number of tests. In a crossed
diagnostic design with I subjects and J tests, the full likelihood appears to be a (I × J)-dimensional integral embedded in an
I-dimensional summation, which particularly deteriorates the statistical inference procedure when using crossed random
effects latent class models.

In this article, we propose a pseudo-likelihood approach as a competitive statistical analysis strategy for the crossed
random effects latent class models that estimate the sensitivity and specificity of a group of binary medical tests or raters.
A class of pseudo-likelihood functions is created in Section 2, including pairwise likelihood (Bellio and Varin, 2005), triple-
wise likelihood, hybrid likelihoods, and dimension-wise likelihood. The benefits of using the proposed pseudo-likelihood
approach are enormous. The proposed pseudo-likelihood functions contain the integrations with a reduced dimension and
possess more succinct integrands than the full likelihood. The implementation of the pseudo-likelihood approach is rather
simple with the aid of a numerical optimization package. Parameter estimates obtained from maximizing the proposed
pseudo-likelihoods are consistent and asymptotically follownormal distributions (Lindsay, 1988;Molenberghs andVerbeke,
2005; Varin et al., 2011). The parameter variance estimation can be achieved by bootstrapping. Estimation efficiency of the
estimators obtained from maximizing dimension-wise likelihoods is comparable to the full likelihood maximized by the
MCEM algorithm. Yet, the efficiency of pairwise and hybrid likelihoods may not be satisfactory especially when imperfect
reference standards do not exist. In Section 5, we analyze a colon cancer detection data published by Zhou et al. (2002), for
the purpose of demonstrating the pseudo-likelihood approach.

2. Methodology

2.1. Crossed random effects models for estimating diagnostic accuracy

Let Yij denote the binary diagnostic result of a disease (Yij = 1 for having the disease and Yij = 0 for not having the disease)
for the ith subject from the jth test (rater), i = 1, 2, . . . , I and j = 1, 2, . . . , J . We denote Di, a binary latent variable, as the
true disease status of the ith subject. Under the circumstances that there is no gold or imperfect reference standard, we
consider the following model with two crossed random effects for Yij:

P(Yij = 1|Di = di, bi, cj) = h̄−1


βdi + σdibi + τdicj


, σdi , τdi > 0, (1)

where h̄−1(·) denotes the inverse of a general link function (such as a probit link function or a logit link function), bi is
the subject-specific random effect with probability density distribution (p.d.f.) g1(x), and cj is the test-specific random ef-
fect with p.d.f. g2(x). The three unobserved latent variables Di, bi, and cj are assumed to be independent of each other. Let
πdi = P(Di = di), and π1 is consequently the prevalence of disease among the subjects. Under the probit link and the nor-
mality assumption of bi and cj, (1) can be used to estimate the average sensitivity and specificity of the rater (test) population:

Se = Φ(β1/


1 + σ 2

1 + τ 2
1 ) and Sp = Φ(−β0/


1 + σ 2

0 + τ 2
0 ), whereΦ(·) denotes the standard normal cumulative density

function. Contrast to the latent class models in Qu et al. (1996) and Albert et al. (2001) with a single subject-specific ran-
dom effect, (1) describes test-specific variation through an additional random effect cj. Investigators usually assume bi and
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cj follow a standard normal distribution. Yet, one may also consider the case where g1(x) and g2(x) are two-group mixture
normal distributions with p.d.f.: gm(x) = λmφ(x; µ1m, ν2

1m)+ (1−λm)φ(x; µ2m, ν2
2m),m = 1, 2, where λm is the proportion

of the first group, 0 ≤ λm ≤ 1, and φ(x; µ, ν2) is the p.d.f. of a normal distribution with mean µ and variance ν2. For model
identification, we assumeµ1m < µ2m, λmµ1m+(1−λm)µ2m = 0, and λmν2

1m+(1−λm)ν2
2m+λm(1−λm)(µ1m−µ2m)2 = 1.

Then, themodel-based estimates of average sensitivity and specificity can be obtained bymarginalizing over the two-group
mixture models.

Under the circumstances that there is an imperfect reference standard (Qu and Hadgu, 1998; Valenstein, 1990; Whiting
et al., 2004; Albert, 2009), let us denote the binary rating Ti as the test result for the ith subject from the imperfect reference
standard. Then, STti|di = P(Ti = ti|Di = di) characterizes the diagnostic accuracy of the imperfect reference standard. In
practice, the results from previous studies are used to obtain estimates of STti|di (including sensitivity ST1|1 = P(Ti = 1|Di = 1)
and specificity ST0|0 = P(Ti = 0|Di = 0) of the imperfect reference standard), which subsequently are used to estimate
P(Yij|Di), the diagnostic accuracy of the tests or raters. To incorporate the information of the imperfect reference standard,
we consider the following model for Yij:

P(Yij = 1|Ti = ti,Di = di, bi, cj) = h̄−1


βditi + σditibi + τditicj


, σditi , τditi > 0. (2)

Note that the model flexibility of (2) can be reduced. Investigators can assume that, given Di = di, βditi is not related to ti
(i.e., βditi = βdi ), or σditi and τditi are not related to ti (i.e., σditi = σdi , τditi = τdi ). The two assumptions combined leads to
P(Yij = 1|Ti = ti,Di = di) = P(Yij = 1|Di = di) in Zhang et al. (2012) and Albert (2009). Investigators can further assume
that the variation is identical in both disease and non-disease groups, which implies σditi = σ and τditi = τ .

The full likelihood of (1) and (2) is complicated by the two crossed random effects bi and cj. Let Yi = (Yi1, Yi2, . . . , YiJ)
′

be the J dichotomous test results on the ith subject. Let Y = (Y ′

1, Y
′

2, . . . , Y
′

I ), D = (D1,D2, . . . ,DI), T = (T1, T2, . . . , TI),
and θ be the vector containing unknown parameters βditi , σditi , τditi , πdi and the unknown parameters in g1(x) and g2(x).
Define a function ℓ∗(·) such that ℓ∗(1) = 1, ℓ∗(0) = −1. Because the observed data consist of both the test results Y and
the imperfect reference standard results T , the full likelihood of model (2) is given by

L(θ; y, t) =


d1=0,1

· · ·


dI=0,1


P(Y = y|T = t,D = d)

I
i=1

STti|di

I
i=1

πdi


=


d1=0,1

· · ·


dI=0,1


· · ·

 
I

i=1

J
j=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


×

I
i=1

STti|diπdig1(bi)dbi
J

j=1

g2(cj)dcj. (3)

The full likelihood of model (1) can be similarly derived as in (3):

L(θ; y) =


d1=0,1

· · ·


dI=0,1


· · ·

 
I

i=1

J
j=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


I
i=1

πdig1(bi)dbi
J

j=1

g2(cj)dcj. (4)

Because of the built-in high-dimensional integration and summation, it is difficult to precisely evaluate (3) and (4) by nu-
merical approximation. Thus, we propose in Section 2.2 a class of pseudo-likelihoods for parameter estimation.

2.2. Maximum pseudo-likelihood estimation

In this section, we propose a class of pseudo-likelihoods for estimating diagnostic accuracy with or without an imperfect
reference standard. For the fixed positive integers s1 and s2 satisfying 2 ≤ s1 ≤ I and 2 ≤ s2 ≤ J , the proposed pseudo-
likelihood for (1) is

PLs1,s2(θ; y) =

I
i=1

J
j1<j2<···<js2

P(Yij1 = yij1 , Yij2 = yij2 , . . . , Yijs2
= yijs2 ; θ)

×

J
j=1

I
i1<i2<···<is1

P(Yi1j = yi1j, Yi2j = yi2j, . . . , Yis1 j
= yis1 j; θ). (5)

In (5), the notation
J

j1<j2<···<js2
is a variant of


1≤j1<j2<···<js2≤J , representing the product of all such terms satisfying

1 ≤ j1 < j2 < · · · < js2 ≤ J . In (5),
P(Yij1 = yij1 , Yij2 = yij2 , . . . , Yijs2

= yijs2 ; θ)

=


di=0,1

πdi


bi

 
j=j1,...,js2


cj
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g2(cj)dcj

 g1(bi)dbi, (6)
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and

P(Yi1j = yi1j, Yi2j = yi2j, . . . , Yis1 j
= yis1 j; θ)

=


cj

 
i=i1,...,is1


di=0,1

πdi


bi
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g1(bi)dbi

 g2(cj)dcj. (7)

The numerical evaluation process of (6) is composed of conducting s2 one-dimensional integrations inside for the cj’s and
a one-dimensional integration outside for bi. Thus, the computational complexity of (6) is O(s2N 2), in which N is the size
of this computation problem and it is equal to the number of operations in a one-dimensional integration. Similarly, the
numerical evaluation process of (7) is composed of conducting 2s1 one-dimensional integrations inside for the bj’s and a
one-dimensional integration outside for cj, which implies its computational complexity is O(s1N 2). When the probit link is
used and the two random effects bi and cj follow standard normal distributions, the one-dimensional integrals inside (6) and

(7) have analytical forms. That is, when h̄−1
= Φ and g1(bi) ∼ N(0, 1) and g2(cj) ∼ N(0, 1), we have


bi

Φ


ℓ∗(yij)(βdi +

σdibi+τdicj)

g1(bi)dbi = Φ


ℓ∗(yij)(βdi+τdicj)/


1 + σ 2

di


and


cj

Φ


ℓ∗(yij)(βdi+σdibi+τdicj)


g2(cj)dcj = Φ


ℓ∗(yij)(βdi+

σdibi)/

1 + τ 2

di


, which reduces the computational complexity of (6) and (7) to be O(s2N ) and O(s1N ), respectively. How-

ever, this bonus will disappear if the random effects are not specified to follow standard normal distributions or the probit
link is not employed.

Noticeably, PLs1,s2(θ; y) represents a pseudo-likelihood class {PLs1,s2(θ; y) | s1 ∈ Z+, s2 ∈ Z+, 2 ≤ s1 ≤ I, 2 ≤ s2 ≤ J},
where Z+ denotes the set of positive integers. When s1 = s2 = 2, pseudo-likelihood (5) becomes the pairwise likelihood in
Bellio and Varin (2005):

PL2,2(θ; y) =

I
i=1

J
j1<j2

P(Yij1 = yij1 , Yij2 = yij2; θ)

J
j=1

I
i1<i2

P(Yi1j = yi1j, Yi2j = yi2j; θ), (8)

in which

P(Yij1 = yij1 , Yij2 = yij2; θ)

=


di=0,1

πdi


bi

 
j=j1,j2


cj
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g2(cj)dcj


g1(bi)dbi, (9)

and

P(Yi1j = yi1j, Yi2j = yi2j; θ) =


cj

 
i=i1,i2


di=0,1

πdi


bi
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g1(bi)dbi


g2(cj)dcj. (10)

When s1 = s2 = 3, pseudo-likelihood (5) extends (Bellio and Varin, 2005) to the triple-wise likelihood:

PL3,3(θ; y) =

I
i=1

J
j1<j2<j3

P(Yij1 = yij1 , Yij2 = yij2 , Yij3 = yij3; θ)

×

J
j=1

I
i1<i2<i3

P(Yi1j = yi1j, Yi2j = yi2j, Yi3j = yi3j; θ), (11)

forwhich the probability terms can be similarly derived as in (9) and (10). Somemembers in the proposed pseudo-likelihood
class, such as (8) and (11), suffer from the curse of dimensionality. For example, (8) is the product of I


J
2


+J


I
2


probability

terms, which implies the computational complexity of (8) is O(max{IJ2N 2, JI2N 2
}). Likewise, (11) consists of I


J
3


+ J


I
3


probability terms, which implies the computational complexity of (8) is O(max{IJ3N 2, JI3N 2

}). When either I or J is a
large number, the total number of probability terms in (5) becomes unacceptably large and the computational complexity
increases exponentially. This makes it not feasible to seek parameter estimates from maximizing such a pseudo-likelihood
using the Newton–Raphson algorithm.

There is a solution to the high-dimensional problem. In the empirical applications where there are a moderate number
of tests but a large number of subjects, the special case of pseudo-likelihood (5) with s1 = I and s2 = 2 can be considered:

PLI,2(θ; y) =

I
i=1

P(Yi1 = yi1, Yi2 = yi2, . . . , YiJ = yiJ; θ)

J
j=1

I
i1<i2

P(Yi1j = yi1j, Yi2j = yi2j; θ), (12)
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in which P(Yi1j = yi1j, Yi2j = yi2j; θ) remains as in (10) and

P(Yi1 = yi1, Yi2 = yi2, . . . , YiJ = yiJ; θ)

=


di=0,1

πdi


bi


J

j=1


cj
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g2(cj)dcj


g1(bi)dbi. (13)

Pseudo-likelihood (12) substitutes the density of an entire row in the data for the product of the pairwise or tripe-wise den-
sities of this row, which avoids evaluating the integrations for I


J
s2


times. In the cases where there are amoderate number

of subjects but a large number of tests, the special case of pseudo-likelihood (5) with s1 = 2 and s2 = J can be considered:

PL2,J(θ; y) =

I
i=1

J
j1<j2

P(Yij1 = yij1 , Yij2 = yij2; θ)

J
j=1

P(Y1j = y1j, Y2j = y2j, . . . , YIj = yIj; θ), (14)

in which P(Yij1 = yij1 , Yij2 = yij2; θ) remains as in (9) and

P(Y1j = y1j, Y2j = y2j, . . . , YIj = yIj; θ)

=


cj


I

i=1


di=0,1

πdi


bi
h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)


g1(bi)dbi


g2(cj)dcj. (15)

Further, we can take s1 = I and s2 = J to ultimately avoid the curse of dimensionality in (8) and (11):

PLI,J(θ; y) =

I
i=1

P(Yi1 = yi1, Yi2 = yi2, . . . , YiJ = yiJ; θ)

J
j=1

P(Y1j = y1j, Y2j = y2j, . . . , YIj = yIj; θ), (16)

for which the column-wise and row-wise joint densities are specified in (13) and (15), respectively. We name (16) as
‘‘dimension-wise likelihood’’ and (12) and (14) as ‘‘hybrid likelihoods’’. Note that the computational complexity of the joint
densities (13) and (15) in the dimension-wise likelihood and the hybrid likelihoods is O(JN 2) and O(IN 2), respectively, if
maximized by the Newton–Raphson algorithm. The dimension-wise likelihood, with totally (I + J) probability terms, is a
problem of O(max{JN 2, IN 2

}), which avoids increasing exponentially with I or J and therefore avoids the curse of dimen-
sionality. Of course, the pseudo-likelihood methods are expected to be less efficient than the MLE, so we investigated the
extent of efficiency loss in Section 3.

For estimating diagnostic accuracy with the imperfect reference standard Ti, we similarly propose a class of pseudo-
likelihoods that can incorporate Ti as follows:

PLs1,s2(θ; y, t) =

I
i=1

J
j1<j2<···<js2

P(Ti = ti, Yij1 = yij1 , Yij2 = yij2 , . . . , Yijs2
= yijs2 ; θ)

×

J
j=1

I
i1<i2<···<is1

P(Ti1 = ti1 , Ti2 = ti2 , . . . , Tis1 = tis1 , Yi1j = yi1j,

Yi2j = yi2j, . . . , Yis1 j
= yis1 j; θ). (17)

In (17),

P(Ti = ti, Yij1 = yij1 , Yij2 = yij2 , . . . , Yijs2
= yijs2 ; θ)

=


di=0,1

πdiS
T
ti|di


bi

 
j=j1,...,js2


cj
h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


g2(cj)dcj

 g1(bi)dbi,

and

P(Ti1 = ti1 , Ti2 = ti2 , . . . , Tis1 = tis1 , Yi1j = yi1j, Yi2j = yi2j, . . . , Yis1 j
= yis1 j; θ)

=


cj

 
i=i1,...,is1


di=0,1

πdiS
T
ti|di


bi
h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


g1(bi)dbi

 g2(cj)dcj.

The methodologies proposed above for PLs1,s2(θ; y) can be directly applied to (17) to resolve the high-dimensional problem
when the imperfect reference standard is used.
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2.3. Monte Carlo Expectation–Maximization algorithm

In this section, an MCEM algorithm is developed to obtain the MLE of the unknown parameters θ in (2). Although the
MCEM algorithm is developed based upon model (2), it can be easily extended to (1).

We take the latent true disease status D = (D1, . . . ,DI)
′, subject-specific random effects b = (b1, . . . , bI)′, and test-

specific random effects c = (c1, . . . , cJ)′ as missing variables in the EM algorithm. Denote X∗
= (Y ′

1, . . . , Y
′

I , T1, . . . , TI)
′

the observed data, Z∗
= (D ′, b ′, c ′) ′ the missing data, and Y ∗

= (X∗′, Z∗′)′ the complete data.
E-STEP. At the (r + 1)th iteration of EM algorithm, the E-step involves calculation of the Q -function

Q (θ |θ (r)) =

 
log f (y∗

|θ)


f (z∗

|x∗, θ (r))dz∗, (18)

where θ (r) denotes the parameter vector from the rth iteration in the EM algorithm, f (z∗
|x∗, θ (r)) is the conditional distri-

bution of missing data given the observed data and θ (r), and

f (y∗
|θ) =

I
i=1

J
j=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)
 I

i=1

STti|diπdig1(bi)dbi
J

j=1

g2(cj)dcj

is the complete-data likelihood. In the following, a Monte Carlo numerical integration algorithm is developed for (18) by
using Gibbs sampler.

Note that, the full conditional distributions of Di, bi, and cj are

P(Di = di|x∗, b, c, θ (r)) ∝ STti|diπdi

J
j=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


,

f (bi|x∗,D, c, θ (r)) ∝ g1(bi)
J

j=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


,

and

f (cj|x∗,D, b, θ (r)) ∝ g2(cj)
I

i=1

h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)


,

respectively. To draw a Markov chain {z∗(1), z∗(2), . . . , z∗(N)
} from the conditional distribution f (z∗

|x∗, θ (r)) using Gibbs
sampler, we start from the starting values z∗(0) with f (z∗(0)) > 0. At the nth step of the Gibbs sampling procedure, z∗(n) is
drawn by sequentially sampling from the conditional distributions. Specifically, if z∗(n)

= (d (n) ′, b (n) ′, c (n) ′)′, then we run
the following updating steps iteratively:

I. Update D(n)
i for i = 1, . . . , I simultaneously by

P(D(n)
i = 1|x∗, b(n−1), c(n−1), θ (r)) =

P(D(n)
i = 1|x∗, b(n−1), c(n−1), θ (r))

P(D(n)
i = 1|x∗, b(n−1), c(n−1), θ (r)) + P(D(n)

i = 0|x∗, b(n−1), c(n−1), θ (r))
.

II. Update b(n)
i for i = 1, . . . , I simultaneously using the Metropolis–Hasting algorithm. Sample b̃i from the proposal distri-

bution f̃ (b̃i|b
(n−1)
i ), which is conditional on b(n−1)

i . The sampled b̃i is accepted as b(n)
i with the probability

min


1,

f (b̃i|x∗,D(n), c(n−1), θ (r))f̃ (b(n−1)
i |b̃i)

f (b(n−1)
i |x∗,D(n), c(n−1), θ (r))f̃ (b̃i|b

(n−1)
i )


;

otherwise b(n)
i = b(n−1)

i .

III. Update c(n)
j for j = 1, . . . , J simultaneously using the Metropolis–Hasting algorithm. Sample c̃j from the proposal distri-

bution f̃ (c̃j|c
(n−1)
j ) that is conditional on c(n−1)

j . The sampled c̃j is accepted as c(n)
j with the probability

min


1,

f (c̃j|x∗,D(n), b(n), θ (r))f̃ (c(n−1)
j |c̃j)

f (c(n−1)
j |x∗,D(n), b(n), θ (r))f̃ (c̃j|c

(n−1)
j )


;

otherwise c(n)
j = c(n−1)

j .
The normal distributions conditional on the previous Gibbs sampler draws are suggested to be used as proposal distributions
of bi in Step (II) and cj in Step (III); that is, b̃(n)

i and c̃(n)
j are sampled from φ(b̃i; b

(n−1)
i , ν2

b ) and φ(c̃j; c
(n−1)
j , ν2

c ), respectively,
where ν2

b and ν2
c are the pre-specified variances for the proposal distributions. Through the three updating steps (I)–(III), the
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Markov chain {z∗(1), z∗(2), . . . , z∗(N)
} is produced. If the first N0 draws z∗(1), . . . , z∗(N0) are discarded as the burn-in period,

then the approximation of Q (θ |θ (r)) is then

Q̂ (θ |θ (r)) =
1

N − N0

N
n=N0+1


I

i=1

J
j=1

log h̄−1


ℓ∗(yij)(βd(n)
i ti

+ σd(n)
i ti

b(n)
i + τd(n)

i ti
c(n)
j )



+

I
i=1

log(ST
ti|d

(n)
i

) +

I
i=1

log(πd(n)
i

) +

I
i=1

log

g1(b

(n)
i )


+

J
j=1

log

g2(c

(n)
j )



M-STEP: Choose θ (r+1) such that θ (r+1)
= argθ max Q̂ (θ |θ (r)).

To obtain the MLE of θ , we consider to run R iterations of the MCEM algorithm until it converges. Convergence of the
MCEM algorithm is demonstrated in Section 3.2 by numerical examples.

3. Numerical studies

3.1. Simulation 1: Competition among pseudo-likelihood peers

This subsection aims at comparing the finite sample performance of the four pseudo-likelihoods PL2,2(θ; y), PL2,J(θ; y),
PLI,2(θ; y), and PLI,J(θ; y) for model (1), in estimating sensitivity and specificity and in estimating the relevant parameters.
We also compare the pseudo-likelihoods PL2,2(θ; y, t), PL2,J(θ; y, t), PLI,2(θ; y, t), and PLI,J(θ; y, t) for model (2) with
imperfect reference standards. A simulation studywas conductedwith various combinations of I and J , representing several
circumstances with different numbers of subjects and tests (raters). Simulation data were generated from P(Yij = 1|Di =

di, bi, cj) = Φ(βdi +σdibi + τdicj), with bi
i.i.d.
∼ N(0, 1), cj

i.i.d.
∼ N(0, 1), and π1 = 0.5. The rest of parameters were specified as

either (i) β1 = 1.795, β0 = −1.795, σ1 = σ0 = 1, τ1 = τ0 = 1, or (ii) β1 = 1.269, β0 = −1.269, σ1 = σ0 = 0.5, τ1 = τ0 =

0.5, both of which generated the true average sensitivity 0.85 and true average specificity 0.85. Three (I, J) combinations
were examined: (I, J) = (100, 25), (200, 50), and (500, 25). The total number of simulation replications was set to be 500.
After data generation, each of the simulation data sets was fit to model (1) via the pseudo-likelihoods. In the second part of
the simulation study, simulation data was generated from P(Yij = 1|Ti = ti,Di = di, bi, cj) = Φ(βdi + σdibi + τdicj) with
the same parameter specifications that are described above. The realizations of the imperfect reference standard Ti were
generated from ST1|1 = ST0|0 = 0.95, given the true disease status Di. After data generation, each of the simulation data sets
was fit to model (2) via the pseudo-likelihoods. Here, wemake an assumption that, given the true disease status is available,
the observed test results (ratings) are independent of the imperfect reference standard. This is an assumption that has been
made in Zhang et al. (2012) and Albert (2009), and is usually true in practice.

Table 1 (forσ = τ = 1) and Table 2 (forσ = τ = 0.5) report the estimation biases of sensitivity and specificity, aswell as
the relevant parameters, obtained frommaximizing the pseudo-likelihoods in this simulation study. The empirical standard
derivations are reported in the parentheses. Regardless of the true values of σ and τ and the combinations of (I, J), Tables 1
and 2 are delivering the same messages. When the imperfect reference standard Ti is not available, the dimension-wise
likelihood PLI,J(θ; y) usually has the smallest estimation bias and variance among the four pseudo-likelihoods in estimating
sensitivity and specificity, the pairwise likelihood PL2,2(θ; y) possesses the largest estimation bias and variance, and the hy-
brid likelihoods PL2,J(θ; y) and PLI,2(θ; y) reside in between. When the imperfect reference standard Ti is available, the four
pseudo-likelihoods (PL2,2(θ; y, t), PL2,J(θ; y, t), PLI,2(θ; y, t), and PLI,J(θ; y, t)) perform equally well in terms of estimation
bias and variance of sensitivity and specificity. With the aid of the imperfect reference standard, the estimation biases of the
pairwise likelihood and the hybrid likelihoods are decreased considerablywhile their variances reflect no significant change.
This indicates that the imperfect reference verification plays a key role in improving estimation precision when using the
proposed pseudo-likelihood approach. In Tables 1 and 2, dimension-wise likelihood appears to have persistent estimation
capacity regardless of whether there is an imperfect reference standard. However, this is generally not true. Previous re-
search (Zhang et al., 2012; Albert, 2009) showed that reliable imperfect reference standards can improve the robustness
of diagnostic accuracy estimation in latent class random-effects models. Thus, it is highly recommended to incorporate the
imperfect reference verification as long as it is available.

3.2. Simulation 2: Pseudo-likelihood versus MCEM

This subsection aims at evaluating the efficiency of MPLE via the Newton–Raphson algorithm and theMLE via the MCEM
algorithm inmodels (1) and (2). Prior to the comparison of estimation efficiency, we took one simulated data set as an exam-
ple, to assess the convergence of the MCEM algorithm described in Section 2.3 in seeking MLEs. One data set was simulated

from (2), as in Simulation 1, with I = 100, J = 25, bi
i.i.d.
∼ N(0, 1), cj

i.i.d.
∼ N(0, 1), π1 = 0.5, β1 = 1.795, β0 = −1.795,

σ1 = σ0 = 1, and τ1 = τ0 = 1. We set N = 2000 and N0 = 1000 and started the algorithm from three different combi-
nations of parameter initial values. Fig. 1 shows the change of parameter values along with R = 200 MCEM iterations. It is
observed in Fig. 1 that the three executionswith different initial values converge at around100th iteration andbecome stable



92 W. Liu et al. / Computational Statistics and Data Analysis 84 (2015) 85–98

Table 1
The estimation biases of sensitivity and specificity, as well as the related parameters, obtained from maximizing the pseudo-likelihoods in the Simulation
1 under σ = τ = 1. Standard derivations are reported in the parentheses.

Se Sp β1 β0 σ τ π1

I = 100, J = 25

PL2,2(θ; y) −0.032(0.073) −0.021(0.069) −0.023(0.626) −0.078(0.697) 0.257(0.199) −0.066(0.175) 0.010(0.046)
PLI,2(θ; y) −0.024(0.051) −0.011(0.044) 0.048(0.386) −0.146(0.370) 0.227(0.130) 0.100(0.102) 0.011(0.034)
PL2,J (θ; y) 0.012(0.052) 0.013(0.048) 0.291(0.511) −0.278(0.427) 0.119(0.197) 0.086(0.177) 0.001(0.032)
PLI,J (θ; y) 0.001(0.044) 0.002(0.045) 0.050(0.342) −0.058(0.330) −0.013(0.156) 0.017(0.184) 0.002(0.062)

PL2,2(θ; y, t) −0.000(0.042) −0.001(0.045) 0.149(0.330) −0.145(0.326) 0.109(0.216) 0.070(0.170) 0.001(0.054)
PLI,2(θ; y, t) −0.001(0.041) −0.002(0.043) 0.135(0.296) −0.135(0.314) −0.012(0.336) 0.158(0.160) 0.000(0.053)
PL2,J (θ; y, t) 0.000(0.043) 0.000(0.045) 0.185(0.367) −0.180(0.351) 0.169(0.178) 0.054(0.177) 0.000(0.054)
PLI,J (θ; y, t) −0.003(0.039) −0.004(0.041) 0.047(0.330) −0.048(0.340) 0.025(0.147) 0.036(0.204) 0.000(0.053)

I = 200, J = 50

PL2,2(θ; y) −0.024(0.045) −0.019(0.046) 0.007(0.363) −0.048(0.369) 0.251(0.150) −0.001(0.116) 0.006(0.029)
PLI,2(θ; y) −0.017(0.031) −0.010(0.029) 0.059(0.181) −0.115(0.192) 0.201(0.108) 0.095(0.064) 0.005(0.027)
PL2,J (θ; y) 0.012(0.041) 0.010(0.042) 0.276(0.548) −0.242(0.392) 0.088(0.124) 0.104(0.131) 0.000(0.024)
PLI,J (θ; y) 0.003(0.030) 0.003(0.029) 0.096(0.235) −0.092(0.224) 0.018(0.085) 0.068(0.109) 0.001(0.042)

PL2,2(θ; y, t) −0.001(0.032) 0.002(0.031) 0.113(0.245) −0.140(0.240) 0.104(0.159) 0.064(0.112) −0.002(0.038)
PLI,2(θ; y, t) 0.000(0.029) −0.001(0.028) 0.136(0.213) −0.123(0.205) 0.032(0.226) 0.142(0.111) 0.004(0.036)
PL2,J (θ; y, t) 0.001(0.031) −0.000(0.032) 0.161(0.236) −0.154(0.231) 0.157(0.130) 0.066(0.109) −0.002(0.040)
PLI,J (θ; y, t) −0.003(0.029) −0.003(0.028) 0.076(0.224) −0.072(0.218) 0.063(0.107) 0.071(0.128) 0.003(0.037)

I = 500, J = 25

PL∗

2,2(θ; y) −0.023(0.049) −0.018(0.048) 0.001(0.374) −0.043(0.377) 0.277(0.094) −0.068(0.144) 0.007(0.021)
PLI,2(θ; y) −0.017(0.032) −0.010(0.029) 0.063(0.177) −0.119(0.200) 0.207(0.118) 0.102(0.073) 0.005(0.027)
PL∗

2,J (θ; y) 0.010(0.039) 0.017(0.031) 0.253(0.347) −0.299(0.266) 0.132(0.112) 0.087(0.132) 0.001(0.016)
PLI,J (θ; y) 0.001(0.034) 0.002(0.036) 0.109(0.284) −0.110(0.270) 0.018(0.083) 0.102(0.118) 0.000(0.032)

PL∗

2,2(θ; y, t) 0.002(0.034) −0.000(0.035) 0.157(0.273) −0.140(0.265) 0.116(0.104) 0.074(0.125) −0.000(0.025)
PLI,2(θ; y, t) 0.001(0.032) −0.001(0.032) 0.130(0.244) −0.111(0.234) 0.038(0.139) 0.127(0.103) −0.001(0.023)
PL∗

2,J (θ; y, t) 0.005(0.033) 0.000(0.033) 0.213(0.276) −0.175(0.259) 0.180(0.092) 0.060(0.137) −0.001(0.023)
PLI,J (θ; y, t) −0.003(0.032) −0.005(0.032) 0.073(0.249) −0.056(0.243) 0.047(0.082) 0.083(0.134) 0.000(0.024)

thereafter with tolerable Monte Carlo variations, which provide evidences that the MCEM algorithm is not sensitive to the
initial values. In the implementation of the MCEM algorithm, we fixed ν2

b = ν2
c = 0.25, which in this context creates favor-

able proposal distributions for the Gibbs sampling. Numerical experiments showed that the specification of ν2
b and ν2

c had
negligible impact on the MLE results, but detrimental specification prolonged the computation duration. Details on select-
ing optimal proposal distributions for the Metropolis–Hastings algorithm can be found in Rosenthal (2011) and references
within.

To assess the relative efficiency of different methods, simulation data were generated from P(Yij = 1|Di = di, bi, cj) =

Φ(βdi +σdibi +τdicj) and P(Yij = 1|Ti = ti,Di = di, bi, cj) = Φ(βdi +σdibi +τdicj)with the same parameter specifications in
Simulation 1. Due to the extended computational duration of the MCEM algorithm, only one combination (I, J) = (100, 25)
was examined, and the total number of simulation replications remained to be 500. The realizations of the imperfect refer-
ence standard Ti were generated from ST1|1 = ST0|0 = 0.95, given the true disease status Di. Each of the simulation data sets
was fit to the true model by the pseudo-likelihood approach as in Simulation 1 and by the MCEM algorithm. Table 3 reports
relative efficiency results for pairwise likelihood, hybrid likelihood and full likelihood (via the MCEM algorithm). The rela-
tive efficiency results were calculated as inverse mean squared error ratios to the dimension-wise likelihood that serves as
a reference. Table 3 shows that the dimension-wise likelihood is more efficient than other pseudo-likelihoods in estimating
sensitivity and specificity. Yet, the dimension-wise likelihood appears to be less efficient in estimating test-specific variation
τ and disease prevalence π . Distinction between the pseudo-likelihoods in estimation efficiency is narrowed when the im-
perfect reference standard is present. The MCEM algorithmmostly possesses higher efficiency than the pseudo-likelihoods.
However, compared to the MLE obtained by the MCEM algorithm, the maximum dimension-wise likelihood estimates can
provide fairly comparable estimation efficiency.

4. Additional issues

4.1. Subject-specific and test-specific covariates

In diagnostic medicine, auxiliary covariates, either subject-specific or test(rater)-specific, may be the factors that affect
the estimation of diagnostic accuracy. The vector of subject-specific covariates, denoted byWi, represents the characteristics
of subjects such as their biomarker levels. The vector of test-specific covariates, denoted byUj, represents the characteristics
of diagnostic tests or raters. A test-specific covariate can be a binary treatment indicator that distinguishes experimental
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Table 2
The estimation biases of sensitivity and specificity, as well as the related parameters, obtained frommaximizing the pseudo-likelihoods in the Simulation
1 under σ = τ = 0.5. Standard derivations are reported in the parentheses.

Se Sp β1 β0 σ τ π1

I = 100, J = 25

PL2,2(θ; y) −0.016(0.063) −0.008(0.063) 0.013(0.412) −0.071(0.497) 0.118(0.100) −0.054(0.095) 0.007(0.040)
PLI,2(θ; y) −0.016(0.037) −0.004(0.034) −0.015(0.194) −0.050(0.193) 0.113(0.064) 0.009(0.080) 0.011(0.031)
PL2,J (θ; y) 0.006(0.039) 0.005(0.037) 0.070(0.224) −0.065(0.197) 0.056(0.096) −0.022(0.098) 0.001(0.035)
PLI,J (θ; y) 0.000(0.026) 0.000(0.029) −0.019(0.135) 0.019(0.144) −0.023(0.067) −0.056(0.095) 0.002(0.051)

PL2,2(θ; y, t) 0.000(0.034) −0.001(0.037) 0.052(0.173) −0.046(0.182) 0.042(0.168) 0.017(0.095) 0.001(0.054)
PLI,2(θ; y, t) −0.002(0.032) −0.003(0.034) 0.057(0.160) −0.053(0.170) −0.045(0.294) 0.097(0.099) 0.001(0.052)
PL2,J (θ; y, t) 0.001(0.035) −0.000(0.038) 0.066(0.189) −0.060(0.198) 0.084(0.091) 0.004(0.094) 0.000(0.054)
PLI,J (θ; y, t) −0.001(0.028) −0.001(0.031) 0.010(0.162) −0.009(0.174) −0.006(0.071) 0.002(0.112) 0.000(0.054)

I = 200, J = 50

PL2,2(θ; y) −0.010(0.035) −0.008(0.036) 0.003(0.201) −0.021(0.239) 0.108(0.074) −0.026(0.062) 0.004(0.023)
PLI,2(θ; y) −0.011(0.023) −0.003(0.021) 0.006(0.102) −0.049(0.106) 0.101(0.051) 0.037(0.042) 0.004(0.022)
PL2,J (θ; y) 0.011(0.027) 0.011(0.027) 0.101(0.162) −0.100(0.141) 0.043(0.052) 0.019(0.057) −0.000(0.019)
PLI,J (θ; y) 0.000(0.018) 0.001(0.017) −0.011(0.092) 0.008(0.091) −0.013(0.035) −0.027(0.061) 0.002(0.034)

PL2,2(θ; y, t) −0.001(0.025) −0.000(0.025) 0.038(0.128) −0.044(0.128) 0.053(0.138) 0.016(0.060) 0.002(0.038)
PLI,2(θ; y, t) −0.001(0.022) −0.002(0.022) 0.055(0.108) −0.051(0.109) −0.010(0.228) 0.089(0.074) −0.001(0.038)
PL2,J (θ; y, t) −0.000(0.023) 0.000(0.026) 0.053(0.123) −0.058(0.138) 0.093(0.059) 0.011(0.060) 0.001(0.037)
PLI,J (θ; y, t) −0.000(0.020) −0.001(0.019) 0.008(0.115) −0.005(0.115) −0.001(0.038) 0.007(0.079) 0.001(0.038)

I = 500, J = 25

PL∗

2,2(θ; y) −0.013(0.039) 0.003(0.043) −0.011(0.208) −0.082(0.256) 0.123(0.048) −0.045(0.084) 0.008(0.019)
PLI,2(θ; y) −0.010(0.019) −0.003(0.017) 0.011(0.085) −0.051(0.086) 0.099(0.051) 0.041(0.042) 0.004(0.020)
PL∗

2,J (θ; y) 0.010(0.025) 0.007(0.023) 0.087(0.146) −0.071(0.120) 0.061(0.049) −0.011(0.074) −0.002(0.015)
PLI,J (θ; y) 0.001(0.021) −0.001(0.022) 0.014(0.109) −0.004(0.117) −0.009(0.029) 0.012(0.078) −0.000(0.023)

PL∗

2,2(θ; y, t) 0.001(0.024) −0.002(0.024) 0.053(0.125) −0.036(0.126) 0.063(0.067) 0.023(0.064) 0.003(0.025)
PLI,2(θ; y, t) −0.000(0.024) −0.002(0.023) 0.039(0.118) −0.031(0.119) −0.017(0.151) 0.072(0.063) 0.003(0.023)
PL∗

2,J (θ; y, t) 0.003(0.024) −0.001(0.023) 0.071(0.130) −0.049(0.123) 0.091(0.042) 0.010(0.070) 0.000(0.025)
PLI,J (θ; y, t) −0.003(0.021) 0.001(0.020) −0.007(0.113) −0.013(0.113) −0.005(0.033) 0.007(0.088) −0.001(0.025)

Table 3
Relative efficiency of dimension-wise likelihood to pairwise and hybrid likelihoods, as well as to the MCEM algorithm, obtained in the Simulation 2.

Se Sp β1 β0 σ τ π1

I = 100, J = 25, σ = τ = 1

PL2,2(θ; y) 0.344 0.397 0.256 0.336 0.196 0.970 1.699
PLI,2(θ; y) 0.660 1.018 0.984 0.479 0.327 1.586 2.738
PL2,J (θ; y) 0.785 0.920 0.325 0.530 0.466 0.752 3.761
PLI,J (θ; y) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCEM 1.430 1.584 1.982 1.687 1.444 1.414 1.463
PL2,2(θ; y) 0.829 0.852 0.723 0.852 0.348 1.274 0.971
PLI,2(θ; y) 0.911 0.908 0.886 0.931 0.164 0.721 1.029
PL2,J (θ; y) 0.800 0.825 0.516 0.682 0.321 1.198 0.960
PLI,J (θ; y) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCEM 1.202 1.241 1.692 1.512 1.518 1.760 1.097

I = 100, J = 25, σ = τ = 0.5

PL2,2(θ; y) 0.193 0.160 0.083 0.086 0.182 0.988 1.670
PLI,2(θ; y) 0.527 0.615 0.511 0.457 0.282 1.846 2.349
PL2,J (θ; y) 0.527 0.538 0.311 0.421 0.330 1.105 2.232
PLI,J (θ; y) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCEM 0.961 0.960 0.943 0.980 0.853 1.761 0.934
PL2,2(θ; y) 0.663 0.692 0.716 0.778 0.162 1.262 0.978
PLI,2(θ; y) 0.801 0.783 0.884 0.884 0.058 0.521 1.053
PL2,J (θ; y) 0.620 0.660 0.557 0.628 0.345 1.536 0.963
PLI,J (θ; y) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MCEM 1.252 1.279 1.560 1.444 1.018 1.705 1.101

tests from the predicate tests. A rater-specific covariate can be an ordinal variable characterizing raters’ precision levels.
Subject-specific and test-specific covariates can be incorporated into (1) or (2) in the same fashion:

P(Yij = 1|Di = di, bi, cj) = h̄−1


βdi + ξ ′

diWi + ζ ′

diUj + σdibi + τdicj


, (19)
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Fig. 1. Convergence plots of the MCEM algorithm.

and

P(Yij = 1|Ti = ti,Di = di, bi, cj) = h̄−1


βditi + ξ ′

ditiWi + ζ ′

ditiUj + σditibi + τditicj


. (20)

The pseudo-likelihood approach can be implemented for (19) and (20) as described in Section 2.2 to estimate the covariate
effects.

4.2. Variance estimation

Inference on θ , whose estimate θ̂ c is derived from maximizing pseudo-likelihood (5) or (17), can be made based on
existing asymptotic theories in Lindsay (1988), Molenberghs and Verbeke (2005) and Varin et al. (2011). The maximum
pseudo-likelihood estimator θ̂ c can be found by solving the pseudo-likelihood score equations ∇θpℓ(θ) = 0, where pℓ(θ)

is a unified notation that represents log PLs1,s2(θ; y) and log PLs1,s2(θ; y, t) with various (s1, s2) combinations. Suppose θ̂ c
I,J

is the maximum pseudo-likelihood estimator obtained from a I × J crossed design data matrix. Under sufficient regularity
conditions, θ̂ c

I,J asymptotically follows N(θ, B(θ)−1A(θ)B(θ)−1) as I, J → ∞, where B(θ) = E{−∇
2
θ pℓ(θ)} is the sensitivity

matrix, A(θ) = var{∇θpℓ(θ)} is the variability matrix, and G(θ) = B(θ)A(θ)−1B(θ) is the Godambe information matrix
(Godambe, 1960). Note that, the score statistic ∇θpℓ(θ) cannot be written as a sum of independent random components.
Yet, the asymptotic normality can still be proved as in Appendix 2 in Lin (1997). To obtain the parameter variance estima-
tion, we need to separately estimate A(θ) and B(θ). As discussed in Bellio and Varin (2005), B(θ) can be estimated by the
Hessian of −pℓ(θ) evaluated by θ̂ c . However, it is impossible to find a close-form estimator for A(θ) due to the correlation
data structure in (1) and (2). Bellio and Varin (2005) suggested a Monte Carlo approach to estimate A(θ). GivenM data sets
Y ∗

(1), . . . , Y
∗

(M) generated under the assumed model (1) or (2) with the true parameter θ replaced by θ̂ c , the Monte Carlo
estimate of A(θ) is given by Â(θ̂ c) =

1
M

M
m=1 ∇θpℓ(θ̂ c

; Y ∗

(m))∇θpℓ(θ̂ c
; Y ∗

(m))
T .
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However, a rather simple approach is to estimate the sampling variance of θ̂ c using a parametric bootstrap approach. To
implement the parametric bootstrap, we generate M parametric bootstrap samples Y ∗

(1), . . . , Y
∗

(M) from (1) or (2) with the
true parameter θ replaced by θ̂ c . Specifically, the true disease status is generated according the estimate of πdi . And, bi and cj
are generated from standard normal distribution. Then, the response values can be subsequently generated from (1) or (2).
After obtainingM parametric bootstrap samples Y ∗

(1), . . . , Y
∗

(M) and their estimates θ̂ c
(1), θ̂

c
(2), . . . , θ̂

c
(M), parametric bootstrap

variance can be calculated as the sample variance of {θ̂ c
(1), . . . , θ̂

c
(M)}. Compared to the variance estimation method in Bellio

and Varin (2005), which also requires Monte Carlo simulation under the estimated model, this parametric bootstrap is sim-
pler and its implementation is more straightforward because it does not require calculating the Hessian of−pℓ(θ) anymore.

4.3. Partial imperfect reference standards

The evaluation of imperfect reference standards may be expensive, time consuming, or unethical to perform on all pa-
tients. This is why in some circumstances it is difficult to obtain imperfect reference standards for all subjects. Alternatively,
investigators may be able to obtain an imperfect reference standard on a sub-group of subjects, or equivalently, to obtain
a ‘‘partial imperfect reference standard’’. We extend the pseudo-likelihood approach in Section 2.2 to estimate diagnostic
accuracy with a partial imperfect reference standard, and report the details in the Appendix.

5. Application: Colon cancer detection data

Colorectal cancer is one of the leading causes of cancer-related deaths in the United States (ACS, 2013; Jemal et al., 2003).
The American Cancer Society has estimated that approximately 142,820 new cases of colon cancer and 50,830 deaths from
the disease occurred in 2013 (ACS, 2013). Because most colorectal cancers arise from benign or malignant polyps, detection
and removal of polyps have been proved to reduce the incidence and themortality of colorectal cancer (Mandel et al., 1993).
Virtual colonoscopy, or CT colonography, has been shown very appealing as a computer-aided screening tool for polyp de-
tection (Perumpillichira et al., 2005). Zhou et al. (2002) reported a case study on colon cancer detection, in which each of the
14 readers (physicians) made diagnosis on whether a colon segment from a patient had polyps (0 for no polyp; 1 for having
polyps). Totally 130 colon segments were evaluated. Among 14 readers, 7 of them were using conventional colonoscopy,
whereas other 7 physicians were using computer-aided CT colonography. In addition to the scores given by 14 readers, the
reference standard diagnosis was included for the each colon segment, where ‘‘F’’ represents that no polyp existed in the
segment, and ‘‘T’’ denotes one or more polyps were present in the segment.

In this section, we report the numerical results from analyzing the colon cancer detection data, for the purpose of demon-
strating the proposed methodologies. Model (1) (without the aid of the reference standard diagnosis) and model (2) (with
the reference standard diagnosis) with a probit link were applied to the colon cancer detection data with linear predictor
βdi + ζdiUj + σbi + τ cj, in which bi and ci were assumed to follow standard normal distributions, σ and τ were assumed to
be independent of latent disease classes, and Uj was the indicator for the use of colonography technology (Uj = 1 if the jth
reader used computer-aided CT colonography; Uj = 0 if the jth reader used conventional colonoscopy). The linear predictor
representation can help to test whether there was distinction in diagnostic accuracy between using the conventional and
new colonography technologies. Parameter estimationwas achieved by theNewton–Raphson algorithm thatmaximized the
proposed pseudo-likelihood functions, including pairwise likelihood, dimension-wise likelihood, and two hybrid likelihoods
from Section 2. Parametric bootstrap with 100 bootstrap samples was applied for variance estimation.

Table 4 reports the analysis results for colon cancer detection data, including estimated sensitivities and specificities for
conventional colonoscopy and computer-aid CT colonoscopy and related parameter estimates (standard errors in the paren-
theses). The data analysis results effectively confirm the conclusions in Section 3 regarding the performance of the pseudo-
likelihoods. The diagnostic measures estimated by the pseudo-likelihood methods without using the reference standard
evaluation show some discrepancy from one another. Compared to the scenario with no imperfect reference standard, the
sensitivities and specificities estimated by the pseudo-likelihood approach with the aid of the imperfect reference verifica-
tion are more consistent with each other. Benefits of using the imperfect reference standard are very limited in the boot-
strap variance estimation. The sensitivity from using conventional colonoscopy is generally higher than computer-aided CT
colonography, while the specificity of computer-aided CT colonography is higher than conventional colonoscopy. However,
this conclusion is limited to the current colon segment sample, and therefore cannot be generalized.

6. Discussion

This article proposes a class of pseudo-likelihoods for estimating diagnostic accuracy of a group of tests or raters when
using crossed random effects latent class models. It has been shown that the maximum pseudo-likelihood estimates pos-
sess satisfactory relative efficiency, compared to the maximum likelihood estimates obtained by the MCEM algorithm. The
maximum pseudo-likelihood estimation and the MCEM algorithm for maximum likelihood estimation proposed in this ar-
ticle were implemented in R, and the R code is available upon request. The proposed methodologies to obtain maximum
pseudo-likelihood estimates are not limited to latent class models (1) and (2) for estimating sensitivity and specificity. The
methods can also be applied to other crossed random effects models that fit to the data collected from a crossed design.



96 W. Liu et al. / Computational Statistics and Data Analysis 84 (2015) 85–98

Table 4
Analysis results of colon cancer detection data: estimated sensitivities (Se ’s) and specificities (Sp ’s) for conventional colonoscopy (cvc) and computer-aid
CT colonoscopy (ccc) and related parameter estimates. Standard errors are reported in the parentheses.

Se(cvc) Sp(cvc) Se(ccc) Sp(ccc)

PL2,2(θ; y) 0.910(0.016) 0.714(0.040) 0.814(0.071) 0.758(0.040)
PLI,2(θ; y) 0.905(0.020) 0.758(0.038) 0.828(0.077) 0.803(0.034)
PL2,J (θ; y) 0.863(0.013) 0.741(0.035) 0.809(0.026) 0.791(0.036)
PLI,J (θ; y) 0.913(0.057) 0.828(0.041) 0.838(0.070) 0.857(0.041)

PL2,2(θ; y, t) 0.938(0.044) 0.784(0.031) 0.821(0.055) 0.817(0.031)
PLI,2(θ; y, t) 0.914(0.045) 0.783(0.033) 0.806(0.060) 0.817(0.027)
PL2,J (θ; y, t) 0.941(0.052) 0.784(0.032) 0.823(0.065) 0.817(0.032)
PLI,J (θ; y, t) 0.917(0.042) 0.785(0.036) 0.821(0.064) 0.818(0.027)

β1 β0 ζ1 ζ0 σ τ π1

PL2,2(θ; y) 2.147(0.223) −0.905(0.189) −0.718(0.575) −0.216(0.112) 1.237(0.053) 0.162(0.056) 0.125(0.059)
PLI,2(θ; y) 1.866(0.195) −0.996(0.152) −0.518(0.612) −0.216(0.141) 1.000(0.236) 0.162(0.058) 0.184(0.049)
PL2,J (θ; y) 1.801(0.065) −1.063(0.175) −0.360(0.093) −0.268(0.130) 1.295(0.059) 0.183(0.056) 0.173(0.056)
PLI,J (θ; y) 2.005(0.711) −1.394(0.206) −0.548(0.357) −0.182(0.166) 1.057(0.195) 0.241(0.090) 0.236(0.053)

PL2,2(θ; y, t) 2.073(0.784) −1.058(0.150) −0.831(0.678) −0.161(0.126) 0.883(0.119) 0.201(0.086) 0.204(0.043)
PLI,2(θ; y, t) 1.857(0.409) −1.063(0.154) −0.685(0.302) −0.166(0.158) 0.901(0.108) 0.198(0.081) 0.208(0.037)
PL2,J (θ; y, t) 2.580(0.958) −1.297(0.208) −1.048(0.801) −0.197(0.145) 1.289(0.159) 0.259(0.094) 0.204(0.041)
PLI,J (θ; y, t) 1.967(0.390) −1.122(0.188) −0.659(0.260) −0.173(0.177) 0.992(0.093) 0.206(0.094) 0.205(0.046)

For instance, we may apply the strategies of constructing the pseudo-likelihoods to multireader, multicase receiver oper-
ating characteristic analysis (Obuchowski et al., 2004) as an aid in estimating the area under the curve from a model with
crossed random effects. However, flexible model specification in the pseudo-likelihoods may require more sophisticated
maximization algorithm such as the composite likelihood EM algorithm in Gao and Song (2011).

Noticeably, Molenberghs et al. (2011) proposed a partitioned pseudo-likelihood (PPL) approach for partitioning high-
dimensional correlated data to achieve the goal of reducing the computational complexity. This method can also be adopted
to prevent (5) and (17) from suffering the high-dimensional curse. Suppose we split I subjects into κI subgroups and split J
tests into κJ subgroups. The PPL approach breaks the original I × J data frame into κIκJ blocks. Then, the pseudo-likelihood
approach proposed in this article can be directly applied to each block. Denote θ̂ c

k the vector of parameter estimates ob-
tained from maximizing the pseudo-likelihood using the data from the kth block, where k = 1, 2, . . . , κIκJ . Molenberghs
et al. (2011) derived the overall estimates to be θ̂ c

=
κIκJ

k=1 θ̂ c
k . Combinedwith the PPL approach, the pseudo-likelihoods dis-

cussed in this article can manage the diagnostic data with large dimensions. Molenberghs et al. (2011) showed that the PPL
approach is fully efficient for independent partitions, which is not the case for the diagnostic data collected from a crossed
design. They also showed, with dependent partitions, the PPL estimators are sometimes, but not always, fully efficient. Data
analyst is advised to study efficiency loss, perhaps using a simulation study designed after the real application at hand. More
details on the efficiency loss from using the PPL approach can be found in Section 5 in Molenberghs et al. (2011), where the
authors carefully discussed the strategies to adjust the number of subsamples in the partition, to achieve the goal of only
having mild efficiency loss when using the PPL approach.

Although this article has discussed several aspects on the pseudo-likelihood approach, there are still related issues that
have not been tackled. More recently, it has been shown that latent class models for estimating diagnostic accuracy may be
problematic in many practical situations (Albert and Dodd, 2004; Pepe and Janes, 2006; Xie et al., 2013). Albert and Dodd
(2004) showed that with a small number of binary tests, estimates of diagnostic accuracy with random-effects latent class
models are biased under amisspecified dependence structure. Zhang et al. (2012) showed that imperfect reference standards
can substantially increase the robustness of these models. Further investigation is necessary on whether the proposed
pseudo-likelihood approach enjoys the similar robustness when an imperfect reference standard is used. Furthermore,
in some diagnostic studies, investigators fail to collect all the data that they expect. Missing data can be response or
covariate values, potentially mixed with complex missing mechanism. Whether the proposed pseudo-likelihood approach
can appropriately adopted to handle the missing data problems is another area that requires further investigation.
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Appendix. Partial imperfect reference standards

Denote Vi an indicator of whether the ith patient is verified by the imperfect reference standard Ti, in which Vi = 1
represents the ith patient is verified by the imperfect reference standard (i.e., Ti exists) and Vi = 0 otherwise (i.e., Ti is
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not observed). Let V = (V1, V2, . . . , VI)
′ and let v = (v1, v2, . . . , vI)

′ be the set of realizations of V . We now introduce a
notation for the event of observing a set of partial imperfect reference standard verifications: {T v

= tv} = {T v1
1 = tv11 , . . . ,

T vI
I = tvII }. When vi = 0, {T vi

i = tvii } = {1 = 1} becomes a nuisance condition. When vi = 1, then {T vi
i = tvii } = {Ti = ti}.

As a consequence, {T v
= tv} precisely denotes the event that the current set of partial imperfect reference standard verifi-

cations are observed. Following (1) and (2), the likelihood with a partial imperfect reference standard is

L(θ; y, t, v) =


d1=0,1

· · ·


dI=0,1

P(V = v|Y = y, T v
= tv,D = d)


· · ·

 
I

i=1

J
j=1


h̄−1


ℓ∗(yij)(βditi

+ σditibi + τditicj)
vi

h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)
1−vi


I

i=1

πdi


STti|di

vi

× g1(bi)dbi
J

j=1

g2(cj)dcj.

If the evaluationmechanismof the partial imperfect reference standard is completely random (i.e., the patients are randomly
assigned to be evaluated), then p = P(Vi = 1) is the proportion of subjects that are evaluated by the imperfect reference
standard, and P(V = v|Y = y, T v

= tv,D = d) = P(V = v) =
I

i=1 p
vi(1 − p)1−vi . Another type of verification process

occurs, when the probability of verification on the ith subject depends on Yi; that is, P(V = v|Y = y, T v
= tv,D = d) =I

i=1 P(Vi = 1|Yi = yi). A special case of this verification process is verification biased sampling (Pepe, 2003), in which the
probability of imperfect reference standard evaluation depends on the number of positive tests: P(V = v|Y = y, T v

= tv,
D = d) =

I
i=1 P(Vi = 1|Ȳi =

J
j=1 yij). Another important special case is extreme verification biased sampling (Albert

and Dodd, 2008;Walter, 1999; van der Merwe andMaritz, 2002), in which the imperfect reference standard test is obtained
only for the subjects that received all positive test results or ratings. Extreme verification biased sampling usually occurs
when the imperfect reference verification is an invasive procedure that is unethical to perform on all subjects if any test
result is negative.

If we follow the same format of (17), then the pseudo-likelihood with a partial imperfect reference standard should be
proposed as

PLs1,s2(θ; y, t, v) =

I
i=1

J
j1<j2<···<js2

P(Vi = vi, T
vi
i = tvii , Yij1 = yij1 , . . . , Yijs2

= yijs2 ; θ)

×

J
j=1

I
i1<i2<···<is1

P(Vi1 = vi1 , . . . , Vis1
= vis1

, T
vi1
i1

= t
vi1
i1

, . . . , T
vs1
is1

= t
vs1
is1

,

Yi1j = yi1j, . . . , Yis1 j
= yis1 j; θ). (21)

However, (21) is applicable only when P(Vi = vi|Yij = yij) is identifiable for any j, which is true in completely randomized
reference standard evaluation, but is apparently not true in verification biased sampling. We therefore suggest to use the
following pseudo-likelihood in verification biased sampling:

PLI,J(θ; y, t, v) =

I
i=1

P(Vi = vi, T
vi
i = tvii , Yi1 = yi1, . . . , YiJ = yiJ; θ)

×

J
j=1

P(T v1
1 = tv11 , . . . , T vI

I = tvIvI
, Y1j = y1j, . . . , YIj = yIj; θ). (22)

In (22),
P(T v1

1 = tv11 , . . . , T vI
I = tvIvI

, Y1j = y1j, . . . , YIj = yIj; θ)

=


cj


I

i=1


di=0,1

πdi


STti|di

vi 
bi


h̄−1


ℓ∗(yij)(βditi + σditibi + τditicj)

vi

×


h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)

1−vi

g1(bi)dbi


g2(cj)dcj

is the marginal density of all observed imperfect reference evaluations and all ratings from the jth test or rater, and
P(Vi = vi, T

vi
i = tvii , Yi1 = yi1, . . . , YiJ = yiJ; θ)

=


di=0,1

P(Vi = vi|Yi1 = yi1, . . . , YiJ = yiJ)πdi


STti|di

vi 
bi


J

j=1


cj


h̄−1


ℓ∗(yij)(βditi

+ σditibi + τditicj)
vi

h̄−1


ℓ∗(yij)(βdi + σdibi + τdicj)
1−vi

g2(cj)dcj


g1(bi)dbi.
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The advantage of employing (22), instead of (21), is that the probability of imperfect standard verification Vi that depends
on Yi can be appropriately integrated into the pseudo-likelihood.
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