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We present a study of events withW bosons and hadronic jets produced inp̄p collisions at a center of mass
energy of 1.8 TeV. The data consist of 51400W→en decay candidates from 108 pb21 of integrated luminosity
collected using the CDF detector at the Fermilab Tevatron collider. Cross sections and jet production properties
have been measured forW1>1 to >4 jet events. The data compare well to predictions of leading-order QCD
matrix element calculations with added gluon radiation and simulated parton fragmentation.

DOI: 10.1103/PhysRevD.63.072003 PACS number~s!: 13.85.Qk, 12.38.Qk, 13.87.Ce

I. INTRODUCTION

The production ofW bosons inp̄p collisions at the Fer-
milab Tevatron collider provides the opportunity to test per-
turbative QCD predictions at large momentum transfers. A
sample of 51400W candidates collected from 108 pb21 of
accumulated data is used to study the kinematic properties
and production rates of high energy hadronic jets produced
in association withW bosons. The jets are produced from
high-energy partons~quarks and gluons! when they had-
ronize after the collision. Figure 1 shows some of the
leading-order~LO! processes which produce aW boson and
a jet. The well understood electroweak decaysW→en of the
W boson provide efficient identification ofW candidates with
low background contamination. These electronicW decays
provide sufficient statistics to study the QCD production
characteristics forW1>0 to >4 jet event samples.

In this paper we first describe the data analysis techniques
used to measure the production cross section and kinematic
properties of W1>n jets events. We then describe a
leading-order perturbative QCD calculation which is en-
hanced with a coherent shower evolution of both initial- and
final-state partons, hadronization, and inclusion of a data-
based soft underlying event model. We refer to this tree level
calculation interfaced with parton evolution as enhanced
leading order~ELO!. Similar ELO QCD calculations are
commonly used for generating predictions of a variety of
important physics processes including top production, dibo-
son production, Higgs production and supersymmetry
~SUSY! processes. We use the high statistics singleW boson
data sample to assess the performance of these calculations
over a large jet energy domain and over a range of jet mul-
tiplicities.

Published analyses that use similar data to studyW pro-
duction and decay properties are found in Refs.@1–4# for
single boson production,@5–7# for diboson (WW,WZ,Wg)
production, and@8–10# for the pair production of top quarks.
Additional information about this analysis can be found in
@11#. Our goal in the current analysis is a comprehensive
study ofW boson production and a test of the reliability of
perturbative QCD in predicting the data over a range of jet
energies and jet multiplicity at the highest center of mass
energies studied to date.

II. THE COLLIDER DETECTOR AT FERMILAB

This analysis uses data collected at the Collider Detector
at Fermilab~CDF!, a multi-purpose detector designed for
precision energy, momentum, and position measurements of
particles produced inAs51.8 TeVp̄p collisions. A diagram

of the CDF detector is shown in Fig. 2. The CDF detector is
described in more detail in@12# and references therein. The
focus here will be those elements useful in identifying the
final state particles ofW→en 1 jet events.

The coordinate system at CDF is defined with respect to
the proton beam direction. The positivez direction is the
proton beam direction andf is the azimuthal angle and is
measured around the beam axis. The polar angleu is the
angle from the proton beam. An alternative variable tou is
the pseudorapiditywhich is defined byh52 log„tan(u/2)….
The transverse component of energy (ET) and momentum
(PT) of a particle is the projection into the plane transverse
to the beam line.

The principle detectors used in analyzing these events are
the vertex detector~VTX !, the central tracking chamber
~CTC! and the full set of hadronic and electromagnetic calo-
rimeters. The VTX is a time projection drift chamber which
allows us to reconstruct the position along the beam line
where aW boson is produced. Reliable vertex reconstruction
permits us to reconstruct multiple vertices from additional
p̄p interactions that occur simultaneous with the primaryp̄p

collision. Knowledge of additionalp̄p interactions allows us
to correct for energy contamination due to additional inelas-
tic p̄p collisions. The CTC is a open cell drift chamber
which precisely measures a particle’s trajectory over a 1.4
meter radius from the beam line. The curvature of the trajec-
tory and the known solenoidal magnetic field gives a mea-

FIG. 1. Feynman diagrams for some of the leading-order pro-
cesses that produce aW boson with an associated jet. Additional
diagrams can be obtained by exchanging the u and the d quarks, or
by replacing them with other pairs of quarks.
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surement of the charged particle’s momentum.
The most accurate measurement of aW electron’s energy

is derived from the central electromagnetic calorimeter
~CEM!. The CEM is a lead-scintillator calorimeter with 2p
azimuthal coverage and pseudorapidity coverage ofuhu
<1.0. The finest segmentation of the electromagnetic calo-
rimeter is referred to as a tower with each tower covering
15° in phi and 0.1 units ofh yielding a total of 480 towers.
Each tower energy measurement is read independently by a
pair of phototubes. The electron energy resolution for the
CEM is 0.137/AE•sinu%0.02 whereE is in GeV.

The CEM and CTC together provide several discrimina-
tion tests that are used to separate electrons from other phys-
ics objects such as photons and jets. These are described in
the next section.

Jets are measured primarily in the calorimeters. The cen-
tral hadronic calorimeter~CHA! is behind the CEM and con-
sists of alternating iron and scintillator sheets with segmen-
tation that matches the CEM. The energy resolution of the
CHA is 0.5/AE•sinu%0.03. The large size of typical jets
combined with the fine segmentation of the calorimeter
means that the jet energy is generally spread over many tow-
ers. This analysis included jets out touhu<2.4, so the jet
energy can also be in the plug and forward calorimeters.
These calorimeters are similar to the CEM and CHA with the
exceptions that the scintillators are replaced with wire pro-
portional chambers, andf is segmented in 5° sections rather
than in 15° sections.

III. W BOSON IDENTIFICATION

CDF excels at electron identification and precision elec-
tron energy measurement, and we use this ability to select a
clean sample of events containing high energy electrons. We

describe both the kinematic selection of the electrons and the
discrimination variables that are employed to distinguish
electrons from other types of energy. The inclusive electron
sample will contain those electrons which were produced
from a W decaying to electron plus neutrino. AW sample
can be extracted from the electron sample by the identifica-
tion of the neutrino. The result of high energy electron and
neutrino selection is a 94% pure sample ofW bosons. The
size of the data sample is summarized in Table I; the details
of the selection are described below.

TheW sample is divided into subsamples according to the
number of jets produced with the boson. In contrast to the
electron, the definition of a jet is more of an analysis deci-
sion. Jets produced with aW can have essentially any energy
and the jet’s pattern of energy deposition varies from jet to
jet. However, if the jet energy is corrected to represent the

FIG. 2. One quarter of the Collider Detector at Fermilab. The major detector elements are indicated. The center of the detector is along
the beam line to the far right.

TABLE I. Estimate of theW→en sample size. Each entry in-
cludes all the conditions on earlier lines, except for the background
~last entry! which adds events not coming from above.

Sample Number of Events

p̄p interactions 5.531012

W produced 2.93106

W decays toen 2.73105

e is central 1.53105

e is fiducial 1.13105

electronET>20 GeV 9.43104

electron ID 8.33104

E” T>30 GeV 5.43104

Jet overlap, etc. 4.83104

with background 5.13104
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energy of the parent parton, a precise definition is a matter of
the capabilities of the detector and the validity of the theo-
retical predictions at the minimum allowed jet energy. The
analysis requirements used in defining a jet are presented in
Sec. IV.

A. Electron selection

1. Trigger path

During data collection in the period from 1992 to 1995 at
the Collider Detector at Fermilab~a period known as run 1!,
there were about 5.5 trillionp̄p interactions in the detector’s
collision region, and in only about 3 million of these events
were W bosons produced. Nine percent of theseW bosons
decayed to the desired final state (en). In order to reduce the
events recorded for analysis and enhance the fraction of re-
corded events with interesting physics, we employ a series of
online triggers. TheW1 jet analysis uses a trigger path that
is designed to identify events with a high transverse energy
central (uhu<1.2) electron. This sample containsW→en
decays along with a variety of other inclusive electron pro-
cesses. The electron trigger data sample is used as the start-
ing point for the offline analysis.

For most of run 1, the level-one triggers were the first of
a series for filtering the hard scattering events fromp̄p col-
lisions. One level-one calorimeter trigger required that an
event deposit a minimum transverse energy of 8 GeV in a
central-electromagnetic calorimeter tower. TheW boson se-
lection relies only on this level-one trigger.

Events which pass the level-one triggers are evaluated at
level two. In our analysis, we require that an event pass the
level-two combined central electron trigger. This trigger con-
sists of 16 individual central-electron triggers; however, our
data sample depends predominantly on the highET electron
trigger which requires a minimum electromagnetic trans-
verse energy@ET(EM)# of 16 GeV and a track of minimum
momentum 12 GeV/c. The fraction of hadronic energy in the
associated hadronic towers is required to be small
@,0.125ET(EM)# in order to reduce the contamination
caused by jets which pass the trigger. The allowedh range
for the energy deposition is61.19.

The third trigger level uses reconstructed data so that spe-
cific physics decisions can be made. We use an inclusive
electron level-three trigger which allows us to later selectW
and Z bosons from a common trigger sample so that the
systematic errors in efficiencies are common. The most im-
portant inclusive trigger we use has higher track momentum
(13.0 GeV/c) and higher electromagnetic energy~18.0
GeV! requirements than the level-two trigger. This trigger
also requires that the 3D track point to the calorimeter en-
ergy thus identifying electrons and rejecting photon events
with incidental tracks in the event.

With our level-two and level-three trigger requirements,
the efficiency of identifying aW→en decay where the elec-
tron has anEt>20 GeV in the central detector and will pass
our electron quality requirements~described in the next sec-
tion! is greater than 99%. However, theW purity of the
sample is still too low to be useful for our analysis, so we

need to employ a series of analysis requirements designed to
enhance the component of electrons which come fromW
→en decays.

2. Electron geometric, kinematic and quality requirements

The electron trigger sample is reprocessed with offline
reconstruction code. After reconstruction we apply the tight
central electron selection requirements@13#. The list that fol-
lows details this selection.

The first five requirements described below represent geo-
metric and kinematic requirements on the electron energy.
The additional requirements are predominantly quality vari-
ables designed to discriminate between electron and non-
electron energy depositions. The totalW selection efficiency
of the additional requirements is about 85% yet they reduce
the number of events in the sample by about 90%.

Central. The allowedh range of the EM energy is61.1
which is determined by the central electromagnetic calorim-
eter coverage. Limiting the pseudorapidity range of the elec-
tron allows precise electron energy measurements and low
background contamination. This requirement selects about
55% of theW→en events.z50 is taken at the center of the
detector for fiducial requirements and at the interaction ver-
tex for event variables.

Fiducial. We restrict electrons to be in well-instrumented
regions of the central electromagnetic calorimeters~CEM!.
About 75% of the area of the CEM is suitable for precision
EM energy measurements.

Interaction Vertex(zvtx). A W boson can be produced
anywhere the proton and antiproton bunches overlap. Figure

FIG. 3. Distributions of some of the quality variables which are
used to isolate highET central electrons that result fromW decay.
The solid histograms show the variables before the requirements are
applied. The dashed histograms show the variables after full elec-
tron selection, normalized to the same~arbitrary! area. The vari-
ables plotted are the following: electron isolation~Iso!, hadronic
over electromagnetic energy~Had/EM!, CTC and CES matching in
local x (Dx) and alongz(Dz), electron energy divided by electron
momentum (E/p) and the vertex distribution (zvtx).
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3 shows the distribution inzvtx of the primary vertex. The
zero of the plot is the center of the detector. To keep the
interaction inside the fiducial volume of the detector and to
maintain the calorimeter’s projective tower geometry we re-
quire theW boson interaction vertex to be within 60 cm of
the center of the detector. Several vertices can be recon-
structed for an event. To identify theW boson vertex we
choose the vertex closest to the track of the electron from the
W decay. In the rare event that no vertex is within 5 cm of
the electron track we use the electron’s track to determine the
z position of the interaction.

Electron-Jet SeparationDRe j : Electron activity and high
ET jet activity are kept clearly separated in the analysis with
an electron-jet separation requirement. We reject all events
which have a jet which passes our selection criteria~de-
scribed in Sec. IV! and is centered in anh –f cone of radius
R50.52 around the electron.

High electron ET . The ET of the electron is corrected at
the offline analysis level for all known detector effects. We
require the corrected electronET to be greater than 20 GeV
thus avoiding trigger threshold effects. About 85% of central
electrons fromW decay haveET greater than 20 GeV.

Isolation (Iso). An effective electron quality requirement
we use is the requirement that the electromagnetic energy be
physically separated from other energy in the detector. The
isolation is defined as the ratio of all non-electron energy in
a cone of 0.4 around the electron to the electron energy:

Iso5
ET~0.4!2ET~electron!

ET~electron!
.

A cone is defined by the center of the electron energy
deposition and a maximum radius@R5(Dh21Df2)1/2# in
which we look for non-electron energy. Non-electron energy
includes both hadronic and electromagnetic calorimetry en-
ergy that is not contained in the electron tower~s!. The non-
electron energy is required to be no more than 10% of the
electron energy (Iso<0.1). The Isolation requirement re-
duces the background from electron-like jets. The isolation
distribution is shown in Fig. 3.

Hadronic Energy Fraction (Had/EM). To further suppress
mis-identification of jets as electrons, we check the hadronic
calorimeter towers that are behind the electromagnetic tow-
ers that contain the electron’s energy. Leakage of the elec-
tron’s energy into the hadronic towers is a function of the
electron’s energy. We limit the ratio of hadronic over elec-
tromagnetic energy by the formula

Had/EM,0.05510.00045Eele

where the units forEele are in GeV. The Had/EM distribu-
tion is shown in Fig. 3.

Lateral Energy Sharing. The electron’s energy is gener-
ally spread over more than one tower. The lateral energy
sharing variable (Lshare) compares the expected and mea-
sured lateral leakage from the electron seed tower to the
adjacent towers. This is required to be consistent with the
sharing expected for an electron.

High PT . Since electrons and photons have similar calo-
rimetry signatures, we require a track pointing to the EM
energy deposit with aPT of at least 13.0 GeV to remove
high-ET photons.

Strip Chamber Variables(xstr
2 ,Dx,Dz). The central strip

chamber~CES! embedded in the EM calorimeter provides a
transverse profile of the electron shower at the expected
shower maximum. The profile is compared to an expected
electron profile shape which is determined from test beam
data. Thex2 of this shape comparison is used as a discrimi-
nation variable. The strip profile is also used to determine the
position of the electron inside the calorimeter tower. The
position resolution is 0.17 cm for a 50 GeV electron in the
CES. CES position measurements are compared to those ob-
tained from the track in the central tracking chamber. These
are required to match within 1.5 cm in theR•f (Dx) direc-
tion and 3.0 cm in thez direction (Dz). Distributions forDx
andDz are shown in Fig. 3.

Energy Momentum Ratio(E/p). The ratio of energy and
momentum of a relativistic electron is usually close to one.
We require the ratio of measured energy to measured mo-
mentum to be between 0.5 and 2.0. Figure 3 shows this ratio
for our inclusive electron sample. The long tail on the high
side is from low electron momentum measurements due to
Bremsstrahlung radiation of the electron where the radiated
energy is collinear with the electron and is deposited in the
same calorimeter tower as the electron.

Conversion Rejection. High energy photons converting to
electron-positron pairs can fake an electron from aW decay.
Photon conversions can be identified and removed directly
by reconstructing the conversion vertex of a pair of oppo-
sitely charged tracks. In addition, if the photon converts out-
side the radius of the vertex chamber there will be a deficit of
wire hits in the VTX along the direction pointing to the CTC
track. We require that the observed number of VTX hits be at
least 20% of the expected number of hits when at least 8 wire
hits are expected.

Run Quality. Each run of the accelerator is required to
meet a set of minimum quality conditions. The beam condi-
tions must be stable and the integrated luminosity delivered
must be greater than 1.0 nb21. All detectors must be opera-
tional and the solenoid ramped to the correct current. Tem-
peratures, voltages, trigger rates and electronics are required
to be within operational limits. Additionally, the validation
group at CDF checks physics distributions for any anoma-
lous behavior that would indicate problems. We analyze only
those runs which meet the run quality requirements for the
detectors used here. We do not exclude runs with problems
in the muon subsystems since we only use muons to correct
the missing transverse energy~very few events are affected
by this correction!, and muons can be identified with the
tracking chamber.

We use a subset of the selection requirements~‘‘loose
requirements’’! to select the electrons from the trigger
sample and then the full selection~‘‘tight requirements’’! to
obtain our final electron sample. The main difference be-
tween the loose and the tight requirements is the isolation
requirement in the tight selection, which strongly rejects
electron-like jets from multijet events. The loosely selected
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sample is used to measure residual multijet contamination,
described in Sec. V B 3. The loose and tight selection re-
quirements are both listed in Table II and theET distribution
at both stages of selection are shown in Fig. 4, which shows
the enhancement of theW electronET peak as additionalW
selection requirements are applied.

B. Neutrino selection

So far we have used the final state electron ofW→en
events to tag theW boson. Of the processes that contribute to
the inclusive highET electron sample, theW→en decay is
unique for its single final state highET neutrino. The neu-
trino does not interact with the detector components, so its

presence must be inferred by considering energy-momentum
constraints on the event. The momentum components of the
final state particles transverse to the beam line should sum to
zero because the initial state particles have essentially zero
net transverse momentum. Since the neutrino deposits no
energy in the detector the vector sum of the measured trans-
verse energies will not sum to zero. We refer to this imbal-
ance of transverse energy as missing transverse energy (E” T).

The missing transverse energy is calculated using the cor-
rected energies from electrons, muons, photons and jets. In
addition, low-energy depositions are often scattered through-
out the detector and must also be used in the missing trans-
verse energy calculation. We refer to the low-energy compo-
nent as unclustered energy, and its sources include
underlying event energy from the spectator quarks in theW
interaction, energy from partons which escape the jet clus-
tering algorithm~out-of-cone!, and energy from extra inter-
actions. Extra interaction energy is of course not useful in
constraining the neutrino energy since it arises from an inde-
pendent interaction; however, we must accept it since we
cannot separate it from theW event.

The jets are not corrected for radiation of energy out of
the 0.4 cone. This is so we avoid double counting this energy
which will appear in our unclustered-energy component. No
attempt was made to subtract the underlying event energy
from the jet cluster and add it to the unclustered energy.

After identification of jets in the event we remove the
associated raw jet energy from the calorimeter towers. The
electron energy is also removed, and the remaining energy
defines the unclustered-energy component. We vectorially
sum the individual calorimeter towers to obtain the
unclustered-energy vector. A calorimeter tower contributes
to this sum if it has at least 0.1 GeV of transverse energy, a
threshold designed to match the jet clustering algorithm.

The above procedure results in the identification of the
three components~electron, jet, and unclustered; in general
these events do not contain muons! of missing transverse
energy. Each component is individually corrected and the

FIG. 4. TheET distribution for events stripped with a subset of
the electron selection requirements, full electron selection, and our
final W sample which includes a missing transverse energy (E” T)
requirement of at least 30 GeV.

TABLE II. List of quality requirements forW→en selection.

Requirement Loose Tight

Detector Region Central
fiducial volume yes
DRe j >0.52
ET ~corrected! >20 GeV
Iso~0.4! <0.1
Had/EM <0.05510.00045Eele (GeV)
Lshare <0.2
PT> 13 GeV/c
uDxu <3.0 cm <1.5 cm
uDzu <5.0 cm <3.0 cm
xstr

2 <10.0
E/p <3.0 >0.5 and<2.0
uzvtxu <60.0 cm
remove conversions no yes
require good run no yes
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vector sum is calculated yielding theE” T

E”W T52~EW ele1EW jet1K•EW unc!.

We have determined the value ofK in this equation to be
2.0 by analyzing a sample ofZ→e1e21 jets events where
the trueE” T is expected to be zero.

C. W selection

W events are selected by requiring both a high-quality
electron ~using the tight electron requirements! with E” T
>20 GeV and a high transverse energy neutrino withE” T
>30 GeV. Figure 5 shows the imbalance of transverse en-
ergy for our tight central electron sample and Fig. 4 shows
the change in the electronET distribution after theE” T re-
quirement is applied. Although theE” T requirement selects
only 65% of theW boson candidates, the purity of the final
sample is 94%.

Z bosons which decay to electron-positron pairs will pass
the same electron selection criteria as electrons~positrons!
from W boson decay. WhileZ boson events are not expected
to produce muchE” T , measurement error can push the miss-
ing ET above our threshold, especially for the higher jet mul-
tiplicity events. Therefore we must reject theZ→e1e2

events by searching for them directly. Some care must be
taken because we intend to identify jets in theW events and
our Z identification should not strongly reject electron-jet
combinations as beingZ bosons thus biasing the sample
against high jet multiplicity. The followingZ identification
requirements are applied to a second electron:

Had/EM<0.125
Iso(0.4)<0.1
Central Detector:ET (corrected)>20 GeV
Plug Detector:ET (corrected)>15 GeV
Forward Detector:ET (corrected)>10 GeV
76 GeV/c2<Mee<106 GeV/c2

Mee is the electron-positron invariant mass.

Applying all of the above selection criteria, we have
51431 candidateW boson events for ourW1 jet analysis.

IV. JET SELECTION AND CORRECTIONS

The requirements described in the previous section select
a W→en sample of 51431 events. We divide this sample

FIG. 5. The plot shows theE” T distribution for the inclusive
electron sample. Noticeable is theW peak due to the escapedn.

FIG. 6. The upper plot shows the energy deposited into the
calorimeter from aW11 jet event. The electron is located atf
5291° andh50.78. The other tower cluster contains the jet’s
energy deposited in the electromagnetic calorimeter~dark shaded!
and the hadronic calorimeter~light shaded!. The lower plot shows a
view of the central tracking chamber. The beam line is perpendicu-
lar to the page. The track cluster associated with the calorimeter
cluster is evident. The electron track is the nearly straight track in
the box at about 5 o’clock. A superimposed arrow indicates the
direction of the missing transverse energy.
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into subsamples according to the number of jets produced
along with theW boson. The process ofW1 jet production
can be factored into two steps:~1! The production ofW1n
partons where a parton is a gluon or quark; and~2! the frag-
mentation and hadronization of the partons (quark/gluon
→hadrons). The manifestation of high momentum parton
production is therefore multiple hadrons in the detector
which are generally clustered in a direction close to the di-
rection of the parent-parton. The lego plot of Fig. 6 shows a
hadronic cluster of energy in the calorimeter. The cylindrical
calorimeter has been sliced atf50 and unfolded for this
plot. The vertical axis represents the transverse energy per
tower. The electron energy is shaded darker. The jet cluster
is evident and we see that its calorimetry signature is distinct
from that of the electron cluster. Since jet shapes and ener-
gies vary dramatically from jet to jet we use a jet finding
procedure that is capable of identifying potential jet candi-
dates with a large range of shapes.

A. Jet clustering

We use a cone clustering algorithm for finding jets@14#.
In this procedure we look for a seed tower around which to
cluster. Seed towers are all calorimeter towers containing
more than 1.0 GeV of transverse energy. We search in a cone
R5(Df21Dh2)1/2 around the seed tower and add any tow-
ers with anET more than 0.1 GeV. If the individual seed
towers are closer than the cone radius they are merged. Thus
several iterations are necessary before a stable set of clusters
is found. On each iteration the centroids of the clusters are
recalculated and used as the center of the cone for the next
iteration.

We use a cone radius of 0.4 for the clustering algorithm.
This choice is small enough for counting jets and is less
susceptible to energy contamination from outside the jet as
we discuss later. We also make three modifications to the
standard clustering procedure. First, we remove the elec-
tron’s energy from the towers before clustering, since the jet
clustering procedure will identify electrons as jets. This elec-
tron suppression allows energy near the electron to be con-
tained in the appropriate jet cluster. Secondly, we define the
clustering vertex as theW boson vertex~see definition in
Sec. III A 2! so that all transverse energy in the event is
calculated from theW vertex. Finally, we merge any jets that
haveET above 12 GeV~after the corrections described be-
low! and are separated by less than 0.52 inh-f space. This
factor represents a jet separation resolution criterion; it is
quite rare for the standard jet clustering to produce two jets
with less than this separation and our modification insures
that it never happens.

B. Jet corrections

The above procedure defines a jet as the energy in a clus-
ter of towers within a particular radius. To obtain the parent-
parton energy we must correct this energy for several effects:
the energy response of the calorimeter, the energy deposited
inside the 0.4 cone from sources other than the parent parton,
and the parent-parton energy which radiates out of the 0.4
cone. These corrections are standard CDF jet correction pro-

cedures which are fully described elsewhere@14#. We also
give brief descriptions of these corrections here.

The calorimeter energy response correction is designed to
obtain an estimate of the true energy inside the clustering
radius. This is achieved in two steps. First, the energy of jets
in the plug and forward calorimeters are scaled to give the
energy as it would be measured in the central calorimeter.
The correction is derived from a sample of jet events con-
taining one well-measured central jet opposite a second jet
which can be anywhere in the detector. The relative jet func-
tion that is derived from this sample corrects the imbalance
of the two jets as a function of the~measured! ET andh of
the second jet. After the jet energy is scaled to the central
detector it is corrected for the response of the central detec-
tor. The result of these two steps is our best estimate of the
true energy inside the 0.4 cone.

All energy inside the cone does not necessarily originate
from the parent-parton. There are two contributions of cone
energy contamination. First, underlying event energy from
the spectator partons of the hard interaction is subtracted.
The average contamination is 1.01 GeV. The second source
of contamination is energy deposited into the cone from in-
teractions other than theW boson interaction.

To obtain the contamination from interactions that occur

in the samep̄p crossing as theW boson event we would like
to have a sample selected from a completely unbiased trig-
ger, alternatively known as a crossing trigger sample. A

crossing trigger accepts allp̄p crossings as physics events
and is representative of the extra interactions inW events
since there is no significant selection bias for or againstW
events with extra interactions. The actual sample used to
determine the contamination from extra interactions is a
luminosity-weighted minimum-bias sample which is ap-
proximately a crossing trigger sample without the zero inter-
action events. We use a subset of the minimum-bias sample
that is selected so that the distribution of instantaneous lumi-
nosity for all the events is well-matched to the distribution of
instantaneous luminosity for ourW events.

The energy in minimum-bias events is examined to see
how much energy from these events would accidentally
overlap with a jet cluster in a hard physics event. We em-
ployed a random cone method which checked calorimeter
towers of minimum-bias events to determine the energy con-
tained in a random cone of 0.4. The amount of energy was
parametrized by the number of reconstructed vertices in the
event. The average contamination of 0.4 cones was found to
be 0.3 GeV for each vertex. This amount of energy is sub-
tracted from each jet in the event for every vertex recon-
structed in aW event except theW vertex~i.e. for every extra
vertex!. The uncertainty that we assign to the extra interac-
tion energy and the underlying event energy is 50% as de-
termined by a detailed examination of the random cone
method.

The final correction to the jet increases the jet cone energy
for energy that falls outside the 0.4 cone@15#. This out-of-
cone correction accounts for energy that radiates from the
parent parton at a large angle. The correction is parametrized
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by the jets transverse momentum because jets become nar-
rower at large energies.

The combined corrections to the jets raise the measured
jet energy by about 60% atET515 GeV ~corrected energy!.
The error on the jet energy is 5.0% atET515 GeV. This
value excludes the contribution to the error due to the uncer-
tainty on the underlying event and extra interaction energy.
These uncertainties contribute 3.3% additional error to the jet
energy.

C. Jet counting

We count jets inW events using the following definition:
jet ET>15 GeV
jet uhdetu<2.4.

Thehdet requirement~2.4! is the jeth as measured from the
center of the detector. This requirement limits us to the re-
gion of the calorimeter where the energy corrections are best
understood. The jet transverse energy requirement is chosen
to keep us in an energy region where the jet energy scale is

well known. We find a total of 14472 jets in theW sample.
The breakdown according to the number of jets in an event is
given in Table III.

The error on the jet energy is the largest source of error in
counting jets since theET distribution of jets is a steeply
falling distribution ~Fig. 7!. We present the error on theW
1jet cross section measurements due to the error on counting
jets in Sec. VII. The jet counting uncertainties are derived
from the 5% jetET uncertainty, 3.3% underlying event and
extra interaction uncertainty, and the60.2 uncertainty on the
jet hdet . The energy errors are with respect to a jet atET
515 GeV.

V. BACKGROUND CORRECTION TO W BOSON YIELDS

In Sec. III we described the selection ofW→en events
and in the previous section we defined a jet for the purposes
of counting the number of jets in aW event. This section and
the following will describe corrections to these raw numbers
of W1n jet candidates in order to obtain the production rates
of direct singleW’s produced in association withn jets. Di-
rect singleW production refers to a singleW produced from
qq̄ annihilation or quark-gluon fusion as shown in Fig. 1.
Direct singleW production dominates ourW1 jet samples;
however, other production processes will contribute a sig-
nificant fraction of events to our samples.

The standard model predicts that the top quark will decay
almost exclusively to a final state containing aW boson and
a b quark. The final state of a top pair (t t̄ ) decay in which
one top decays to anen typically includes at least 2 jets and
more likely 4 jets so that the contribution to our high multi-
plicity W samples is significant. Although top decay is a
source of trueW bosons we subtract its contribution from our
data as a background in order to make comparisons with
predictions for direct singleW production.

True background events are those events which do not
contain aW→en decay yet leave aW→en signature in the
detector. The list of significant backgrounds is multijet
events,W→tn andZ→e1e2. The largest of these contami-
nations is multijet events which refers to direct QCD produc-
tion of jets. These events have a small probability that the jet
will produce an electron signature and that the event will
simultaneously contain a large imbalance of transverse en-
ergy. However, since the production rate for multijets is
much larger thanW production even a small probability re-
sults in significant background rates. We use a sample of
events enriched in QCD multijet events~created by loosen-
ing some of our selection criteria! to estimate the contribu-
tion from this background.

The remaining backgrounds fromW→tn decay andZ
→e1e2 decay contribute a small but significant number of
events to ourW candidate samples.W→tn events are pro-
duced at the same rate asW→en and 18% of thet leptons
decay to a final state electron. This background is efficiently
rejected by the high transverse energy requirements on the
electron and neutrino. These events will also have the same
jet structure asW→en events, so they will not alter our
results. An electron fromZ→e1e2 decay passes our elec-
tron ET requirement as easily as electrons fromW decay so

FIG. 7. TheET distribution for all jets in theW sample with a
ET>15 GeV.

TABLE III. Event breakdown by jet multiplicities associated
with W production. The number listed is the number of events with
exactly the number of jets indicated rather than the inclusive
~greater than or equal to! jet multiplicity.

Sample NW Fraction

W10 jets 40287 0.7833
W11 jets 8548 0.1662
W12 jets 2016 0.0392
W13 jets 454 0.0088
W14 jets 105 0.0020
W15 jets 16 0.0003
W16 jets 5 0.0001

Total 51431 1.0000
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that we rely primarily on theE” T requirement to reject these
events. AZ→e1e2 decay can achieve a large missing trans-
verse energy if one of the leptons escapes the detector
through an uninstrumented region. We use a detector simu-
lation to obtain the fraction ofZ→e1e2 events for which
one lepton passes the electron selection and the other escapes
or is mis-measured enough to produce a large imbalance of
transverse energy.

We subtract the backgrounds mentioned above from the
total number ofW events in our samples. We also correct for
a special type of background which does not increase the
total number ofW’s but does add to the number of jets in a
W event. We refer to these backgrounds aspromotionback-
grounds because they promote aW event withn jets to aW
event withn1m jets. An example of a promotion is a jet
produced by an extra interaction. Since we do not distinguish
from which vertex a jet is produced we will count all jets as
produced from theW interaction and correct our counts later.
Although the probability for a promotion is very small the
effect is enhanced by the fact that the higher jet multiplicity
rates are being fed by the lower multiplicity channels which
have much larger production rates.

A. Background from top quarks

1. Sources of top contribution

TheW1 jet sample was used to establish the existence of
the top quark at CDF@9#, although theW1 jet sample used
for the top analysis was not precisely the same as the sample
used for this analysis. Both top and its antiparticle from top
pair production will decay to aW boson and ab quark. The
top discovery analyses achieved a sample enriched in top
events by identifying the leptonic decays ofW’s and further
enriching the sample for top by identifying events which
containb quarks. Although ourW samples are not required
to containb quarks, the fraction of top events is expected to
be significant in the subsamples with a high number of jets.

Since ourW data selection requires an electron and neu-
trino, one of theW’s from top pair decay is constrained to
this decay mode. The otherW can decay in any mode but it
is the hadronic decay (W→qq̄8→hadrons) that introduces
the largest contamination of our direct singleW candidate
sample. We refer to the mode in which the secondW decays
hadronically as the electron-jet mode. There are two reasons
why the electron-jet mode produces the largest contamina-
tion. First, the branching ratio of theW to jets is 69%@16#
and second, there are a total of 4 jets in this mode which
places these events in the subsamples of theW1 jet events
where the direct singleW production rate is small. The cal-
culation of the top background includes jet counting efficien-
cies as well the difference in the efficiency for findingW’s
produced from top. This is described in the next section.

Our top contribution estimate is derived from a top Monte
Carlo sample made by using thePYTHIA top event generator
with all decay modes allowed and a top mass of 170 GeV/c2

followed by a full detector simulation. FirstPYTHIA @17# gen-
erates and decays top pairs for 1.8 TeVp̄p collisions. TheW
bosons from the top decays are allowed to decay to any final

state in order to obtain every possible background event.
The output from the generator is processed with a full

detector simulation so that the efficiencies for findingW’s
and counting jets are modeled. A detector simulation also
models the effect of a second electron or at faking a jet
when the secondW decays leptonically. The output from the
detector simulation is in the same format as the data and the
Monte Carlo events are processed using the same analysis
that is used to identifyW events in our data sample.

There are 42000 top events generated (Ngen) for our cal-
culation. Of these, 2596 events pass ourW selection. The
breakdown according to the number of jets reconstructed is
presented in Table IV.

In order to extract a top expectation for ourW analysis we
must know the top mass, the top cross section at the mass of
the top and the luminosity of our data sample. Because we
are trying to compare the experimental results to QCD cal-
culations, we have chosen to use the theoretical top cross
section rather than the measured top cross section@18#. The
top sample was generated at a mass of 170 GeV. The top
mass measurement at CDF@19# yields a value of 176.0
66.5 GeV/c2. We correct our sample for the decrease in the
cross section from a mass of 170 GeV/c2 to 175 GeV/c2.
The luminosity of our top Monte Carlo is then calculated
with

Lgen5
Ngen

s t t̄ ~175!
57.6 fb21. ~1!

This value is used to scale the numbers in Table IV to our
data luminosity of 108 pb21. The expected top contribution
as a function of the number of jets is presented in Table IV.

2. Top background systematic error

The systematic error on our top background expectation
includes the uncertainty oft t̄ production rate due to the error
on the luminosity of ourW data sample (10869 pb21), the
theoretical error on the top cross section„s t t̄ (175)55.53
10.0720.39 pb… @20# and the error on the top mass as mea-
sured at CDF. The top cross section at masses of 170.3 and

TABLE IV. Results of top background calculation. The first
column lists the number ofW1>n jet events selected from the
42000 top events generated. The second column gives the expected
contribution to our data samples from top pair production and de-
cay. The first error is statistical and the second is the systematic
which is the sum of the top mass uncertainty, the luminosity uncer-
tainty, and the theoretical uncertainty on the top cross section.

Number Background
Sample Selected Expected

>0 jets 2596 35.960.718.126.2
>1 jets 2595 35.960.718.126.2
>2 jets 2548 35.360.718.026.1
>3 jets 2173 30.160.616.825.2
>4 jets 1481 20.560.514.623.5
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183.3 GeV/c2 are 6.35 pb21 and 4.61 pb21 respectively. This
variation dominates the systematic errors in Table IV.

B. QCD multijet background

1. Sources of QCD multijet background

The backgrounds toW→en come from any process
which produces an electron-like energy deposition plus a
large missing transverse energy. Multijet events, which we
refer to as QCD background, can produce this signature if
one jet leaves an electron signature in the detector and the
transverse energy in the event is not well measured. In fact,
QCD background is the largest source of background to the
W1 jet events. Furthermore the rate is dependent on the
number of jets so that systematic errors in the background
estimates do not completely cancel in the relativeW1n jet
cross sections which we use to determine the absolute cross
sections. To keep the error on our cross section due to back-
ground subtraction comparable to the statistical uncertainty
of our W1n>4 jet sample, we need to know the QCD back-
ground to'35%.

Our identification of aW electron includes the use of both
tracking and calorimetry information. To fake aW electron, a
jet in a multijet event must leave a highPT track in the CTC
in addition to an electromagnetic energy deposition associ-
ated with this track. This dual tracking-calorimeter signature
can be produced from hadron jets through several modes.
Heavy flavor jets where charm or bottom quarks decay to
real electrons can leave an electron signature in the detector.
Gammas, converting to electron positron pairs, are a source
of W background. Also included in the conversion electron
sources are Dalitz pairs. Finally,p0-p6 overlaps and had-
ronic jets which shower early in the calorimeter can leave a
well-isolated EM energy deposit with associated tracks.

In addition to producing an electron signal, the multijet
background event must have a large missing transverse en-
ergy. Large missing transverse energy in a multijet event can
be attributed to the escape of significant energy from one or
more jets through uninstrumented regions between the detec-
tors that results in the mis-measurement of the jet.

2. Datasets for QCD background calculation

In order to obtain the QCD background we need to define
a sample of events enriched in QCD multijets. In our selec-
tion of W events we used the electron isolation variable~Sec.
III A 2 ! to discriminate between electrons and jets. We also
rejected a large amount of QCD background by requiring a
large imbalance of transverse energy. Therefore to obtain a
sample of QCD multijet events we remove these require-
ments from ourW selection. Specifically, we select a QCD
sample with the following criteria

Apply all W selection requirements except:
Iso(0.4)<0.1
E” T>30 GeV.

This sample contains 214046 events. Of course theW candi-
dates are in this sample but they will be confined to one
corner of the isolation-E” T plane. A lego plot of isolation
versusE” T is shown in Fig. 8. From this figure we can easily

distinguish the regions which are mostlyW boson events
~low isolation, highE” T) and mostly multijet events~every-
where else!. The estimate of the QCD background will ex-
trapolate from the multijet dominated regions to theW domi-
nated regions.

Removing the isolation andE” T requirements in the data
selection also invites some contamination from electroweak
processes such asZ→e1e2 andW→tn events. These will
concentrate in the low isolation and lowE” T region of the
isolation-E” T plane. We employ a set of requirements to reject

FIG. 8. Isolation vsE” T for the QCD sample. The bottom plot
shows the 3 regions~a, b, and c! which are used to calculate the
QCD events in region d whereW bosons dominate. The character-
istic E” T distribution of W→en events is evident in the lego plot
~top!. The QCD events have aE” T distribution that peaks near 0 in
this plot.

FIG. 9. The isolation of electron 1 versus isolation of electron 2
for events with at least two electrons. The events that show the
inverse relation between electron isolations are events where the
two electron clusters are closer than the cone used to define the
isolation. We remove these events from the QCD sample because
they do not contaminate theW sample.
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the electroweak contamination of these regions.
We removeZ→e1e2 and Drell-Yan contamination by

vetoing events with a second electron regardless of the mass
of the electron-positron pair. However, if a second electron
exists and is within a radius of 0.4 of the first electron the
isolation of the two are correlated resulting in poor isolation
of both electrons. The isolation of the first electron versus the
second electron is shown in Fig. 9 for the QCD sample be-
fore any electroweak contamination is removed.

If the e1e2 pairs are close enough each appears in the
isolation definition of the other. These events rarely allow
the isolation of the first electron to pass ourW selection;
however, the spoiled isolation of the first electron also results
in the failure of thee1e2 removal requirements. Since these
events do not contribute toW1 jets yet do appear in the
multijet background sample we must explicitly remove them
from our multijet sample.

To enrich the sample further in multijet events we require
that there is at least one other high energy cluster~besides
the selected electron!. The fraction of electromagnetic energy
in this jet must be less than 0.8. This last selection criteria for
a second energy cluster is only applied to the lowE” T events
~regions a and b! where we expect all jets were measured
reasonably well and therefore expect at least two highET
jets.

3. Measurement of QCD background

In order to estimate the amount of QCD background in
the W sample, we make the assumption that the electron’s
isolation is independent of theE” T . The first step in estimat-
ing the QCD background is to divide our QCD sample into 4
subsamples which are defined by their position in the
isolation-E” T plane ~Fig. 8!. We label the regions a, b, c
and d:

region a: Iso,0.1; E” T,10
region b: Iso.0.3; E” T,10
region c: Iso.0.3; E” T.30
region d: Iso,0.1; E” .30.

From the definitions of the regions above one sees that we
have excluded intermediate regions from consideration. This

exclusion is to insure that regions a, b and c are pure multijet
and not a mix of QCD andW events. We exclude events with
an electron isolation in the region 0.1 to 0.3 and any events
with a E” T in the region 10 to 30 GeV. This requirement
rejectsW→en leakage as well asW→tn events which have
an averageE” T less thanW→en events but generally larger
than 10 GeV.

A first order description of the isolation extrapolation
method assumes the isolation shape for QCD jets faking
electrons is independent ofE” T of the sample~see Fig. 10!.
Therefore, if the ratio (Na /Nb) of well-isolated to poorly
isolated QCD events is known for the lowE” T region then it
is known in the highE” T region. We directly count the num-
ber of multijet events (Nc) with poor isolation and largeE” T .
With these quantities the number of QCD background events
in the W sample (NQCD) is

NQCD5
Na

Nb
Nc . ~2!

FIG. 10. A profile plot of isolation versus missing transverse
energy. The vertical axis shows the average isolation for events
with a particularE” T ~horizontal axis!. The high missing energy
events show the low isolation characteristic ofW electrons but sig-
nificant QCD contamination is evident up to ourE” T requirement of
30 GeV. This variable measures the signal to QCD background
ratio as a function ofE” T , which is a minimum near 40 GeV since
this is the peak in theE” T distribution forW events.

FIG. 11. The plots show the subsamples of events in the
isolation-E” T plane which are used to test the QCD calculation. The
upper plot is the subsample of QCD events with lowE” T sample.
The lower is the subsample with a poorly-isolated electron. Each
sample is divided into 4 regions to allow a calculation of the events
in region d which is compared to the number of events (Nd) ob-
served in the region. These samples are chosen to be displaced from
the W dominant region~indicated by cross hatching!.

TABLE V. Results for the tests of the QCD background calcu-
lation. The predicted number of events in region d and the observed
number of events are compared. The first column lists the results for
the low E” T sample and the second column lists the results for the
poor isolation sample. Both samples are essentially free ofW con-
tamination.

Low E” T Sample Anti-isolation sample
E” T<10 GeV Isolation>0.3

Predicted Observed Predicted Observed

>0 jets 16522 15399 301 235
>1 jets 13658 12480 263 198
>2 jets 2782 2724 101 97
>3 jets 569 543 29 29
>4 jets 105 93 8.5 10
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4. Tests of the QCD background calculation

The large statistics of the run 1 data sample allow direct
tests of the isolation extrapolation method. For these tests we
select two subsamples of the QCD sample, which is the su-
perset of our selectedW events made by removing the isola-
tion cut and theE” T cut. The lowE” T sample consists of all
events with aE” T less than 10 GeV. The anti-isolated sample
is defined by an electron isolation greater than 0.3. These
two samples which are shown in Fig. 11 contain essentially
no W events. To test the isolation extrapolation method we
divide each of these samples into four regions just as we did
with the QCD superset of events. Within each sample we can
calculate the events in the new regiond from the other three
regions. We can also directly count the events since these are
no longer dominated byW events. The calculations and ob-
servations are compared directly in Table V.

Overall, Table V shows the method performs with the
desired accuracy~35%!. We use the test from the anti-
isolation sample to assign a systematic of 30% to the QCD
background calculation at each multiplicity.

5. QCD background results

The calculated QCD backgrounds are listed in Table VI.
We see that the QCD contamination is significant and that
the probability of contamination from multijet events in-
creases with the number of jets in theW1 jet samples.

C. Single boson background

1. Sources of single boson background

W decay in which a final state electron results from an
intermediate particle such as thet can contribute to ourW
→en1 jet samples.W→tn accounts for one third of the
leptonicW decays and thet has a significant branching frac-
tion ~18%! to electrons. These events will sometimes be
identified asW→en decay. However, the momentum of the
t is shared among three decay products (enn), two of which
do not deposit energy in the calorimeter. Our kinematic re-
quirements reject most of theW→tn events.

An accurate estimate of theW→tn 1 jet contamination
of our W→en 1 jet samples is made using a LO QCD cal-
culation forW→tn 1 jets events. The QCD production dia-
grams are the same whether theW decays to an electron ort
final state. We use this fact to remove the renormalization

scale dependence inherent in LO QCD predictions. Rather
than extracting an absolute prediction of theW→tn 1>n
jet cross section, we extract the ratio

RW→tn 5
s~W→tn !e~W→tn !

s~W→en !e~W→en !
. ~3!

Thee in Eq. ~3! is the efficiency for finding aW boson which
is dependent on the decay mode. The ratio as calculated from
Eq. ~3! used with the counts in ourW1 jet data samples
yields W→tn background.

Another significant source of highET electrons is pro-
duced fromZ→e1e2 decays. The electronET spectrum is
similar to that of electrons fromW→en but the Z cross
section is a factor of 10 below theW cross section. Although
we have explicitly removedZ→e1e2 decays from theW
sample~Sec. III C! the efficiency for ourZ→e1e2 identifi-
cation was about 50%. A fraction of theZ’s that failed theZ
selection will contribute to ourW events. If one lepton in the
Z decay passes the electron selection and the other escapes
through a gap in the detector coverage then aW signature
can result. The calculation we use to estimate the rate ofZ
→e1e2 events fakingW→en is identical to theW→tn
method described above.

2. Single boson background samples and results

We generate leading orderW→tn 1>n jet Monte Carlo
samples usingVECBOS @22#. The renormalization scale is
QREN

2 5MW
2 . We useHERWIG @23# to add initial or final state

radiation and provide fragmentation of the partons with the
HERWIG fragmentation scale (QFRG

2 ) set equal toMW
2 1Pt

2 .
The program~TAULOA @21#! used to decay thet allows all
final states and provides the correct polarization. The Monte
Carlo events are processed through the CDF detector simu-
lation code~QFL! andW events are selected with the same
requirements used for data selection. A description of the
Monte Carlo generation is found in Sec. VIII.

For eachW→tn 1>n jet sample we create aW→en
1>n jet sample with identical generation parameters. The
ratio in Eq.~3! is determined by the number of events pass-
ing our W selection requirements from both theW→tn and
W→en Monte Carlo samples. We use the following formu-
las to determine the backgrounds:

TABLE VI. Final results for QCD background. The first column
is the number ofW events selected with at leastn jets. The second
column presents the expected contamination of theW sample from
QCD background. The first uncertainty is the statistical error and
the second is systematic uncertainty.

W Candidates QCD Background

>0 jets 51431 15096736453
>1 jets 11144 12486656374
>2 jets 2596 4126316124
>3 jets 580 125617638
>4 jets 126 33.668.1610.0

TABLE VII. Expected background forW→tn and Z→e1e2.
Fractions are number of background over number ofW→en . The
asterisk identifies samples for which an extrapolation based upon
flat behavior is used because the calculation could not be per-
formed.

W→tn Z→e1e2

Sample fraction background fraction background

>0 jets 0.0150 726627 0.0155 752627(*)
>1 jets 0.0217 196614 0.0173 157613
>2 jets 0.0329 62.967.9 0.0137 26.365.1
>3 jets 0.0213 7.962.8 0.0155 5.762.4
>4 jets 0.0213 1.361.1(*) 0.0155 0.9260.96(*)

T. AFFOLDERet al. PHYSICAL REVIEW D 63 072003

072003-14



NW→tn 5RW→tn NW→en ~4!

NZ→e1e2 5RZ→e1e2 NW→en ~5!

where

NW→en 5
NSelected2NQCD2Ntop

~11RW→tn 1RZ→e1e2 !
~6!

and

RZ→e1e2 5
s~Z→e1e2 !e~Z→e1e2 !

s~W→en !e~W→en !
.

~7!

These equations assume that no other contamination be-
sides QCD and top exist in theW data. The results are shown
in Table VII for n50 through 4. The results show that the
contaminations fromW→en and Z→e1e2 are small and
will have a negligible effect on the relative cross section
measurements. The asterisk identifies samples for which the
calculation could not be performed because the LO generator
was not available. We extrapolated assuming a flat behavior.
This extrapolation should be safe given the background is
fairly insensitive to the number of jets but we have increased
the error for these extrapolations by a factor 2.0.

D. Multiplicity promotion background

1. Sources of multiplicity promotions

The previous sections discussed contributions to theW
candidates selected for ourW1 jet analysis. Here we discuss
backgrounds which do not contribute to the total number of
W events but rather add to the number of jets in aW boson
event. We correct for two contributions of jets which do not
arise from direct singleW1 jet production:

jets produced in interactions that occur in the same cross-
ing as theW interaction; and
g ’s in Wg events which are counted as jets.

About 40% of ourW events have at least one other vertex
reconstructed in addition to theW boson vertex. The extra
vertices indicate the presence of additionalp̄p interactions,
although some low-multiplicity interactions do not make a
vertex that passes our vertex selection criteria. Typically
these extra interactions contribute a small amount of energy
which is spread over the detector. As we discussed in Sec.
IV B this energy is subtracted from our jet energy with a
value determined by the number of extra vertices that we
find in the W event. Occasionally the energy from an extra
interaction will be large enough and localized enough to re-
sult in a reconstructed jet. These jets will be counted along
with any jets produced in association with theW boson, so
we correct the jet multiplicity distributions to account for
these extra jets.

2. Calculation of promotions

The probability of aW event containing a jet that is gen-
erated from an extra interaction is 0.0099. This value was

calculated from our minimum-bias events~see Sec. IV B for
the definition of this sample!. The events in the minimum-
bias sample closely model the extra interactions found inW
events. Specifically, neither sample has a significant trigger
bias. This is true for minimum-bias samples by design.

We counted the number of jets and the number of vertices
in our minimum-bias sample. Note that the number of verti-
ces is different from the number of interactions because not
every interaction will produce an identified vertex, and mul-
tiple interactions very close together cannot be separated into
multiple vertices. However, the number of vertices per inter-
action should be the same for the minimum-bias sample and
the extra interactions in theW1 jets sample.

We found that for every 81 vertices in the minimum-bias
sample, one single-jet event was found. TheW sample con-
tains 41188 vertices in addition to those vertices associated
with theW bosons. We then expect 507 events with a single
extra jet from an extra interaction in ourW sample. This
number of jets in 51431W events yields the probability of
0.0099 for obtaining a single jet from an extra interaction per
W event. The formula is shown explicitly in Eq.~8! below.
In Eq. ~8!, Njet(MB) is the number of jets in the minimum-
bias sample,Nvtx(MB) is the number of vertices in the
minimum-bias sample,Nextra vtx(W) is the number of extra
vertices found in theW sample, andP1 is the probability for
a jet to arise from an extra interaction in aW event. The
calculation is repeated for the probability of obtaining 2, 3,
and 4 jets from an extra interaction by using the number of
minimum bias events with 2, 3, and 4 jets, respectively. The
probabilities are listed in Table VIII and are seen to drop by
a factor of 6 with each additional extra jet:

P15
Nextra vtx~W!

51431

Njet~MB!

Nvtx~MB!
. ~8!

Despite the fact that the probability for obtaining a jet
from an extra interaction is less than a percent, the correction
for multiplicity promotions can be significant. The 1% of
W11 jet events which get promoted toW12 jet events
represent a 5% increase on the number ofW12 jet sample
because the 2 jet sample is roughly 5 times smaller. TheW
12 jet sample is also increased by promotions from theW
10 jet sample. The probability of a 2-jet promotion is 6
times smaller but theW10 jet sample is 5 times larger than

TABLE VIII. The table shows the number of events found with
m jets in the minimum bias sample and the probabilities for obtain-
ing a single jet, 2 jets, 3 jets and 4 jets from an extra interaction. We
use the number of vertices~40117! found in the minimum-bias
sample and the number of extra vertices~41188! found in theW
sample to calculate the probabilities in the second column@Eq. ~8!#.

m jets N Events Pm

1 jet 494 9.931023

2 jets 67 1.331023

3 jets 11 2.231024

4 jets 2 4.031025
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the W11 jet sample. This means that the correction to the
W12 jet sample forW10 jet promotions is roughly the
same as that forW11 jet promotions. The effect of the
promotions therefore represents our second largest back-
ground correction to theW1 jet samples~except at some
higher jet multiplicities where top event background be-
comes significant!.

A second source of promotion arises fromWg events.
The photon in these events will be counted as a jet if its
transverse energy is above 15 GeV anduhu is less than 2.4.

The probability (Pg) that a photon will contribute a jet to
an event in ourW sample is 0.00460.0006. This value was
determined fromWg Monte Carlo events. We corrected the
photon energy using the standard jet corrections. These cor-
rections are necessary since we do not distinguish photons
and jets in the data. After obtaining the number of photons
which pass the jet selection requirements in the Monte Carlo,
we scale the Monte Carlo luminosity to our data luminosity.
We expect 207632 photons measured as jets in theW
sample. This number of photon-jets yields the value ofPg
~207/51431!.

To correct for photons faking jets we addPg for a photon
faking a jet to the probability (P1) of obtaining 1 jet from an
extra interaction.

The actual correction for promotions is complicated by
the fact that we must simultaneously correct for the jets be-
ing promoted to and from a particular jet multiplicity. In the
promotion calculation we use a matrix of probabilities which
maps then jet sample to then1m jet sample via the promo-
tion probability for m jets from extra interactions. The cor-
rections to theW1>n jet samples are shown in Table IX
and are calculated form as high as 4.

3. Uncertainty on the promotion correction

Although the most reliable method for obtaining the pro-
motion probabilities (Pm) is from the minimum-bias sample

as described in the preceding section, we have estimated the
number of jets from extra interactions in theW events from
other methods to establish an error.

One study looked at theDfe j distribution between the
electron and jet inW1 jet events. The electron fromW decay
is uncorrelated with jets from an independent interaction
therefore this distribution is flat. The distribution for jets pro-
duced in association withW bosons will be peaked atp. The
actualW1 jet data was fit with these distributions to extract
the amount of each.

Another study divided theW1 jet sample into 4 sub-
samples dependent on the average instantaneous luminosity
at which the events were collected. We would expect that in
high luminosity running the average number of extra inter-
actions that occur would increase. This increase would result
in a higher probability for jets from extra interactions.

The two studies gave results which bracketed our estimate
from the minimum-bias sample and from these we quote an
error on the promotion probabilities of1100% and
250%.

VI. EFFICIENCY CORRECTION TO W BOSON YIELDS

We restrict electrons to be in the region of the detector
where the most reliable electron measurements are made.
This requirement necessarily involves the loss of a large
fraction of the W’s produced at CDF. In this section we
determine our losses from this requirement and all other re-
quirements made in ourW data selection. Since someW
selection requirements are biased against events with jets, we
measure the efficiency for eachW1n jet sample indepen-
dently. The total efficiency for eachW sample is the product
of all individual efficiencies as shown in Eq.~9!. The de-
scriptions of these efficiencies are in Table X.

e tot5egeoekine IDe tr igeobleZrem. ~9!

TABLE IX. Summary of backgrounds to singleW1> jet samples.

Background >0 jets >1 jet >2 jets >3 jets >4 jets

QCD 1509 1248 412 125 33.6
W→tn 726 196 62.9 7.87 1.26
Z→e1e2 752 157 26.3 5.73 0.92
Top 35.9 35.9 35.3 30.1 20.5
Promotion 0 464 149 40.8 9.92

TABLE X. Efficiencies related to losses to theW→en sample due to the selection criteria.

Name Description

Geometric (egeo) electron in central detector
electron in well-instrumented region

Kinematic (ekin) electronET>20 GeV
E” T>30 GeV

Identification (e ID) passes event and electron quality cuts
Trigger (e tr ig) passes online trigger requirements
Obliteration (eobl) loss of events due to electron-jet overlap
Z removal (eZrem) loss ofW1 jet events due toZ removal
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A. Geometric and kinematic acceptances

1. Acceptance calculation for W¿Ðn jets

The efficiency for geometric and kinematic restrictions on
the leptons is referred to as the acceptance. The geometric
and kinematic acceptances are calculated separately. The
geometric acceptance is the fraction of electrons that deposit
energy in a fiducial region of the central electromagnetic
calorimeter. The kinematic acceptance is the fraction of elec-
trons and neutrinos to pass theET and E” T requirements re-
spectively. The fractions are calculated with simulatedW
→en events.

2. W¿ jet Monte Carlo samples

We generateW1n parton data samples using theVECtor
BOSon leading order Monte Carlo generatorVECBOS @22#.
VECBOS includes the correlations between the vector boson
decay fermions and the rest of the event. The renormaliza-
tion (QREN

2 ) scale for the calculation is the average parton
PT squared (̂PT&2). The generator output consists of the
four-momenta of the final state partons, and we apply the
following requirements at the parton level to avoid diver-
gences and to confine partons to the detector acceptance:

partonET>8.0 GeV
partonuhu,3.5; and

parton separationDR>0.4.
The Monte Carlo sample is selected by cutting on recon-
structed quantities as described below, so these requirements
do not restrict the final sample in any way. No requirements
are imposed upon the leptons from theW decay.

The evolution of the parton level hard scattering process
into hadrons is carried out usingHERWIG @23#, which in-
cludes initial state gluon radiation from the incident partons
as well as color coherence in the final state radiation. The
cutoff on the virtuality limit of the emitted gluons inHERWIG

is QFRG
2 5MW

2 1PTW
2 . Further details of the Monte Carlo

parton generation and fragmentation are discussed in Sec.
VIII.

The Monte Carlo events are passed through the CDF de-
tector simulation~QFL! to obtain the energy measured by the
detector for electrons, jets, and the underlying event. The
simulated events are processed by the same analysis code
used for the data; event selection requirements and jet count-
ing criteria are identical to those used for real events. For
consistency in the modeling of ourW events, theW plus 0
jets sample is generated withVECBOS using a partonPT re-

quirement lowered to 1 GeV but with the Monte CarloW PT
distribution tuned to describe the realW data.

3. Geometric acceptance

We require the electron to be in the central region of the
detector (uhu<1.1). The region of the electron is determined
from the reconstructed electron rather than the four-vector
from the matrix element calculation so that we include de-
tector smearing. The second acceptance requirement applied
to the electron is the fiducial requirement. Good fiducial sta-
tus requires the electron to be in a well-instrumented region
of the calorimeter. The number of events with a central fidu-
cial electron as a function of the jet multiplicity is shown in
Table XI.

In a small percentage of events the electron is not recon-
structed. We determine the cause of such losses by using the
four-vector from the matrix element calculation and propa-
gating the electron into the detector. These ‘‘lost’’ electrons
fall into two classes: electrons which escape the detector and
electrons which are obliterated. An obliterated electron is
defined as an electron which overlaps with a jet to the extent
that electron reconstruction fails. The rate of obliteration is
measured separately~Sec. VI D! using data. After propagat-
ing the electron the acceptance status is properly categorized.
Table XII lists the geometric acceptance for ourW
1jets samples.

4. Kinematic acceptance

We apply a 20 GeV transverse energy requirement to
electrons in events which pass the geometry requirements.
The electron energy is corrected with the Monte Carlo elec-
tron correction code which is the equivalent of the correc-
tions used onW data events. The number of events surviving
the electronET requirement are presented in Table XI.

TABLE XI. Number of Monte Carlo events passing each acceptance requirement for our 0 to 4 jets
samples.

Sample N Ncentral Nf iducial NET
NE” T

W10 jets 42836 23699 17863 15238 10054
W11 jets 37282 21486 16290 14139 8955
W12 jets 10972 6543 4954 4305 2647
W13 jets 3848 2383 1819 1566 1053
W14 jets 1399 873 654 575 384

TABLE XII. Geometric and kinematic acceptances forW
1 jets. The last column shows the total acceptance with the statis-
tical error and the systematic error respectively. The systematic
uncertainty comes from varying the jet energy scale as described in
Sec. VI G, which has no effect on the 0 jet sample.

Sample Geometric Kinematic Total

W10 jets 0.4170 0.5629 0.234760.0020
W11 jets 0.4369 0.5497 0.240260.002260.0021
W12 jets 0.4515 0.5342 0.241260.004160.0025
W13 jets 0.4727 0.5791 0.273760.007260.0045
W14 jets 0.4675 0.5877 0.274760.011960.0100
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Events with an electronET>20 were tested for aE” T
>30 GeV. We calculate the imbalance of transverse energy
from fully corrected detector energy and include the effects
of extra interactions.

5. Acceptance summary

Our measuredW acceptances are shown in Table XII. The
results are given for exclusive jet multiplicities withn50 to
4. The measurement used a LO matrix element calculation
with partial higher order corrections via aHERWIG parton
shower simulation. The detector simulation QFL was used to
model the response to electrons and the recoil to theW.

B. ID efficiency

We showed in Sec. III A that an effective means of se-
lecting electrons while reducing backgrounds was to impose
electron quality criteria on the electromagnetic cluster in the
central calorimeter. This procedure necessarily involves the
loss of true electrons that happen to fail these requirements.
Simulations of electron response are difficult because some
of these requirements are sensitive to the running conditions
such as the luminosity while others could show time depen-
dent behavior due to the slow degradation of detectors such
as the calorimeter. An example of the former is the isolation
variable. As the instantaneous luminosity increases the aver-
age number of interactions increases. The contamination of
the electron energy by extra interactions increases with the
number of interactions and therefore with the luminosity. To
obtain reliable efficiency numbers we measure the efficiency
using data rather than simulations. TheZ data is a very suit-
able sample for several reasons: theZ data were collected
over the same time period as ourW1 jet data; the production
and decay kinematics are similar; andZ bosons are easily
found and contain very small backgrounds.

The ID efficiency sample and calculation

The event sample used for determining ID efficiencies is
derived from the inclusive electron sample by selecting
events that have at least one lepton which passes our tight
electron selection requirements. From this sample we apply
the following requirements to a second electron:

central (uhu<1.1);
ET>20 GeV; and

in the fiducial region.
The result is a sample where both leptons are central and
fiducial and both have aET>20 GeV. The following addi-
tional event requirements are made to insure that we have
cleanZ bosons:

Qe11Qe250;
81<Me1e2<101; and

uZvtxu<60.0 cm.
There are 2696 events which satisfy these requirements
([NP). In 2138 of these events both the electron and posi-
tron pass the electron quality requirements ([NPP).

Given thatP represents the probability that a lepton will
pass the quality requirements we can write the number of
events which have both leptons passing as

NPP5P2Ntot ~10!

and the number of events for one lepton passing as

NPF52P~12P!Ntot . ~11!

Ntot represents all electron-positron pairs which satisfy the
kinematic and event requirements listed above. This number
is an unknown since we do not have the events for which
both leptons fail the requirements. However we can elimi-
nateNtot from Eqs.~10! and~11! and solve for the probabil-
ity P in terms ofNPP andNPF :

P5
2NPP

NPF12NPP
. ~12!

Substituting 2696221385558 for NPF and 2138 forNPP
yields P50.88560.005 as our ID efficiency.

We have assumed that our ID efficiency calculation is
independent of the number of jets in the event because we
calculated the efficiency with obvious jet dependence sepa-
rately ~see Sec. VI D!. To check that this was a reasonable
course of action we recalculate the ID efficiency for eachZ
1 jet sample. The results are shown in Table XIII. We do not
observe a significant trend for the efficiency as a function of
jet multiplicity so we use the single combined number in the
calculations.

C. Trigger efficiency

All events in our data sample must pass the level-two and
level-three inclusive central electron triggers. To determine
the fraction of electrons which fail these triggers we select a

TABLE XIII. ID efficiency for electrons as a function of the
number of jets. Since there is no evidence for any dependence upon
the number of jets, we use the inclusive measurement for all jet
multiplicities.

Sample NP NPP e ID

50 jets 2128 1690 0.88560.005
51 jets 439 348 0.88460.012
52 jets 107 83 0.87460.026
53 jets 18 14 0.87560.062
>4 jets 4 3 0.85760.141

TABLE XIV. Trigger efficiency for electrons as a function of
the number of jets. Since there is no evidence for any dependence
upon the number of jets, we use the inclusive measurement for all
jet multiplicities.

Sample e tr ig

50 jets 0.993660.0005
51 jets 0.996960.0007
52 jets 0.994760.0022
53 jets 0.995960.0041
>4 jets 0.966760.0232
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new W boson sample from theE” T triggers at level-two and
level-three which are based on identifying neutrino candi-
dates instead of electron candidates. This trigger provides a
dataset from which to selectW bosons without the require-
ment of an electron trigger. From these events we selectW
events by applying our geometric, kinematic and extra tight
electron selection~limiting the isolation to less than 0.05 to
effectively eliminate multijet background!. The E” T is re-
quired to be at least 25 GeV. We check whether the electron
from these events passed the level-two and level-three cen-
tral electron triggers. We find that trigger efficiency is
0.994160.0004. The results are presented as a function of
the number of jets in Table XIV and show no dependence
with jet multiplicity so we use the single combined number
in the calculations.

D. Electron-jet overlap losses

In this section we factor out the losses that depend on the
jet activity in the event. As part of theW selection we require
that the electron and any highET jets be separated by aDR
of no less than 0.52. We can only apply this requirement
when we can physically distinguish an electron from a jet. If
a jet and an electron occupy the same area of the detector we
might lose the electron altogether. These events by their na-
ture will not appear in the electron data samples, so we need
to simulate the effect from existing data. We refer to the
efficiency for events to appear in the electron data samples
and to haveDR to the nearest jet no less than 0.52 as the
obliteration efficiency.

Electron-jet overlap data samples and calculation

We estimate the rate at which jets and electrons overlap
from Z data events. These data events contain all sources of
low-energy hadronic contamination of the electron, properly
correlated from the recoil against the boson’s momentum,
but the dataset is an order of magnitude smaller than theW
dataset which results in limited statistics for events with high
jet multiplicity. To help overcome these limited statistics, we
remove theZ boson decay products from the event and then
replace theZ with a W boson of the same momentum. We
then decay thisW boson many times with a Monte Carlo
calculation, and each time we add the decay electron to the
event and observe how often this electron falls on top of a jet
in the event. Although we decay theW in each event several
thousand times, systematic effects can enter the calculation
because of the limited number of events. We are unable to
use our much largerW sample for this estimate because the
longitudinal momentum of theW is unknown. Implicit in this
procedure is the assumption that the production mechanisms
for W andZ bosons are similar.

We check to see if the electron from boson decay lands
near any jets in the event. The criteria for the electron to be
obliterated by jet activity are the following:

a jet cluster with anET(jet)>0.1•ET(ele) within a cone
of 0.4 of the electron cluster; and
a jet satisfying our jet selection criteria (ET>15 GeV and
uhu<2.4) within a cone of 0.52 of the electron.

Because of the possibility of systematic effects resulting
from the limited number of events in ourZ data sample, we
also study the electron-jet overlap~obliteration! using a pure
W Monte Carlo calculation. The results from the two studies
are shown in Fig. 12, which shows the fraction of events
which pass our electron-jet obliteration criteria. The errors
are obtained by varying the polarization of the boson. The
quantity that enters theW cross section calculations is the
ratio of the efficiencies for the different jet multiplicities and
not the absolute magnitude of the efficiency. Where theZ
statistics allow comparison, this ratio agrees for theZ andW
samples. The magnitude of the obliteration efficiency indi-
cates that theW Monte Carlo calculation is a little more
efficient than theZ data~Fig. 12!. This is not surprising since
low-energy contamination is not modeled well by the Monte
Carlo calculation, and this could cause some additional loss
in the data. Since the ratio is estimated better for high jet
multiplicities from the Monte Carlo calculation, we use these
in our cross section calculation. The values for the electron-
jet obliteration efficiency are shown in Table XV. Also
shown in this table are the Monte Carlo efficiencies scaled to
match the low-multiplicity efficiencies estimated from theZ
data. These scaled efficiencies represent our best estimate of
the true values.

E. Z removal

Our selection ofW events includes a rejection of events
which pass looseZ identification requirements~Sec. III C!.
These requirements are applied to a second electron after the
primary electron identification andE” T requirement. This pro-
cedure is repeated on theW Monte Carlo calculation. Al-

FIG. 12. Obliteration efficiency as calculated fromW Monte
Carlo ~filled circles! and Z data ~open circles!. Statistical errors
only; note that the systematic errors are large for the high-
multiplicity points based upon theZ data because of the limited
number of high-multiplicityZ events.

TABLE XV. Electron-jet obliteration efficiency forW1 jets
Monte Carlo, and for this efficiency scaled to the low-jet-
multiplicity Z data. Only the ratio of the efficiency to the 0-jet value
enters into the cross section calculations.

Sample eobl eobl (scaled)

50 jets 0.95660.010 0.94860.010
51 jets 0.92460.009 0.91760.009
52 jets 0.89460.011 0.88760.011
53 jets 0.86360.009 0.85660.009
>4 jets 0.82660.012 0.81960.012
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though the Monte Carlo sample is entirelyW1 jets events,
some jets in these events look enough like a second electron
so that the event passesZ identification. Therefore the frac-
tion of W events that pass theZ identification is dependent
on the number of jets. Table XVI shows the efficiency forZ
removal as calculated from ourW Monte Carlo calculation.

F. Summary of efficiencies

We have measured the efficiencies for identifyingW
→en decays as a function of the number of jets. The indi-
vidual and total efficiencies are collected in Table XVII. One
source ofW boson loss has not been determined in these
estimates. The loss ofW→en events due to our requirement
that the event vertex is within 60 cm of the center of the
detector is not dependent on the number of jets and therefore
will cancel in our final cross section measurements since we
scale our cross section to a previous CDF inclusiveW mea-
surement. The value has been determined for the run 1a data
~the first 20% of the data! to be (95.5561.05)% and (93.7
61.1)% for run 1b~the remaining 80% of the data!.

G. Systematic uncertainties

In this section we present the systematics which can
change the ratio of the acceptance ofW1n jets to that of
W10 jets. We recalculate the acceptance from the CDF
simulation program QFL after shifting the jet energy scale by
1/25.0%. This scaling will not only affect jet counting but
will change the measurement of theE” T which depends on the
measurement of jet energy. The absolute shifts of the accep-
tance for this procedure are shown in Table XVIII. We also
have a choice for the renormalization scale when generating
W1n jets Monte Carlo calculation. We expect some depen-
dence on this parameter since the acceptance does depend on
PT and aQ25MW

2 1PTW
2 would yield a harderPT spectrum

than our default choice ofQ25^PT&2 ~partonPT). The shifts
due to a change in the renormalization scale are also pre-
sented in Table XVIII.

VII. DATA RESULTS FOR CROSS SECTION
MEASUREMENTS

We have measured the quantities required for a calcula-
tion of theW→en 1>n jet cross sections. First, we calcu-
late the number ofW→en 1>n jet events produced at CDF
during the period of data collection. This number is derived
by correcting the number ofW→en 1>n jet candidates for
the contamination from backgrounds and for the loss of di-
rect singleW→en 1>n jet events~efficiency!. The relative
production is defined as the number ofW→en 1>n jet
events divided by the total number ofW→en events. The
absolute cross sections will be obtained from the relative
production rates by scaling to the inclusiveW→en cross
section of s0(W)•BR(W→en )524906120 pb as mea-
sured from a previous CDF analysis@24#.

A. W\en ¿Ðn jet cross section results

To calculate the number ofW→en events produced with
at leastn jets, we use the number ofW→en 1>n jet can-
didates (Nn), subtract the estimated background contamina-
tion (Bn) to get the number ofW→en events in our candi-
date sample that were contributed from direct singleW
production. Dividing this difference by the efficiency (en ,
estimated in Sec. VI! of identifying a W→en decay when
the W is produced withn jets, we obtain a measurement of
the number ofW→en events that were produced. The sub-
script indicates that these quantities are measured for each
W1>n jet sample. Forn50 this is the total~inclusive!
number of direct singleW→en events. The fractionFn is

TABLE XVI. Z removal efficiency forW1 jets.

Sample Z removal

W10 jets 1.000060.0
W11 jets 0.997660.0005
W12 jets 0.995360.0014
W13 jets 0.988160.0035
W14 jets 0.984660.0062

TABLE XVII. Summary of W1 jet efficiencies.

Eff 50 jets 51 jets 52 jets 53 jets >4 jets

egeo 0.4170 0.4369 0.4515 0.4727 0.4675
ekin 0.5629 0.5497 0.5342 0.5791 0.5877
e ID 0.8846 0.8846 0.8846 0.8846 0.8846
eTrig 0.9941 0.9941 0.9941 0.9941 0.9941
eobl 0.9478 0.9172 0.8867 0.8561 0.8192
eZrem 1.0000 0.9976 0.9953 0.9881 0.9846

e tot 0.1956 0.1933 0.1872 0.2036 0.1948

TABLE XVIII. Acceptances for variations in renormalization
scale and jet energy scale.

QREN
2 5 15% Et 25% Et

Sample Default PTW
2 1MW

2 Scale Scale

W11 jets 0.2402 0.2406 0.2420 0.2381
W12 jets 0.2412 0.2423 0.2434 0.2407
W13 jets 0.2737 0.2766 0.2729 0.2702
W14 jets 0.2747 0.2756 0.2847 0.2717
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defined as the rate ofW→en 1>n jet events relative to the
total production rate. These fractions (Fn) are the relative
production rates and they are presented in Table XIX. The
inputs that were used in the determination of the relative
production rates are also shown in the table.

The last step for obtaining cross sections is to scale the
relative rates to the inclusive cross section times the branch-
ing ratio, which is from a previous CDF analysis that used
the first 19.6 pb21 of luminosity. The luminosity and vertex
requirement efficiency were well measured for these data.
The uncertainties in this measurement are retained in our
absolute cross section measurements and represent a 4.8%
uncertainty for eachW1>n jet cross section. We refer to
this contribution to the uncertainty as the common uncer-
tainty. The cross sections forW→en 1>n jets are pre-
sented in Table XX and plotted in Fig. 13. The curve in Fig.
13 is an exponential fit to the data. The uncertainties in Table
XX are divided according to type; the first uncertainty listed
in the Table XX is statistical, the second is the common
uncertainty~4.8%!, and the third is the systematic uncer-
tainty.

The systematic uncertainty dominates the uncertainties in
the W1 jet measurements. An estimate of the systematic
uncertainty must avoid double counting the uncertainties that
are already accounted for in the common uncertainty. This is
achieved by defining the systematic uncertainty to represent
only the uncertainty on the ratio ofW1>n jet events to
W1>0 jet events. We discuss the quantities that can change
the ratio in Sec. VII B. Here, we only note that the dominant
contribution is due to the uncertainty on the jet energy.

Also shown in Table XX is the ratio

Rn/(n21)5
sn

sn21
.

Rn/(n21) shows explicitly that the cross section drops a factor
of 5.260.3 with each additional jet. This ratio gives the
probability of measuring one additional jet in aW event and
is therefore closely related to the coupling strength of the
strong interactionas . In Sec. IX A, we useRn/(n21) to make
more demanding tests of QCD since the uncertainty on this
ratio is smaller than the uncertainty on the absolute cross
section. The cancellation of the systematic uncertainty is pre-
dominantly due to the correlation in the jet counting uncer-
tainties in the numerator and denominator ofRn/(n21) . For
example, the increase in the number of jets from a shift in the
jet energy increases bothsn andsn21. The increase in cross

section is greater for higher jet multiplicities so that the can-
cellation is not complete but the final uncertainty is relatively
smaller when compared to the absolute cross sections. This
argument is not true in the ratios1 /s0 becauses0 is insen-
sitive to the jet counting uncertainties. We describe the sys-
tematic uncertainties in more detail in the next section.

B. Systematic uncertainties in the data

In this section we give descriptions of the systematic un-
certainties in theW1 jets analysis. The determination of a
particular systematic is produced by varying a quantity by its
uncertainty and recalculating the cross section. The differ-
ence of the new cross section and default cross section yields
the systematic uncertainty on the cross section. The system-
atic variations we examine are those that change the ratio of
the number of events with>n jets to the total number of
events.

The quantities which are varied systematically can be
grouped into jet counting variations, backgrounds, and effi-
ciencies. The jet counting variations are the jetET , the de-
tectorh cut, the underlying event energy scale, and the pro-
motion correction. The background variations include the
QCD background normalization and the top background nor-
malization. The efficiency variations include the acceptance
and the electron-jet overlap calculation.

The uncertainties on each of these quantities are explained
in detail in the associated sections. Table XXI shows the
change in the cross sections as a result of the variations that
are listed above. The systematic error due to the uncertainty
on jet counting dominates in all>n jet samples. The count-
ing error is in turn dominated by the uncertainty of the jet
ET . However, the contribution of systematic uncertainty due
to extra interactions is also significant. The effect of extra
interactions is seen in two uncertainties: the uncertainty on
the correction of jet energy due to contamination of 0.4 clus-
tering cone from extra interaction energy, and the uncertainty
on the promotion correction which corrects for jets from ex-
tra interactions. As the instantaneous luminosity at CDF in-
creases both the extra interaction correction and the promo-
tion correction contribute a larger fraction of the total

TABLE XIX. Candidates, total background, totalW efficiency
~applies ton jets, not>n jets!, and the relative cross sections for
the W1 jet samples.

>0 jets >1 jet >2 jets >3 jets >4 jets

Nn 51431 11144 2596 580 126
Bn 3024 2102 686 210 66.7
en 0.196 0.193 0.187 0.204 0.195
Fn 1.0000 0.1868 0.0395 0.0076 0.0012

TABLE XX. W1>n jet cross sections. The total uncertainty is
broken down into the combined statistical uncertainty~which in-
cludes the statistical uncertainty on the number of events and the
statistical uncertainty on the efficiency and background calcula-
tions!, the common systematic uncertainty~4.8% from the input
inclusiveW cross section!, and the systematic uncertainty~which is
dominated by jet counting systematics; see Sec. VII B!. For this
table we list the maximum of the plus and minus systematic.

n Cross Sections Results~pb! sn

Jets BR•s Stat. Com. Syst. sn21

>1 471.2657.1 6.3 23.1 51.8 0.18960.021
>2 100.9619.0 3.2 4.9 18.1 0.21460.015
>3 18.465.3 1.4 0.9 5.1 0.18260.020
>4 3.161.4 0.7 0.2 1.2 0.16660.042
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uncertainty. This point needs to be considered in future
analyses which will collect data at even higher instantaneous
luminosities.

VIII. PREDICTIONS FOR W BOSON PLUS JETS
PRODUCTION

Generating perturbative QCD predictions requires several
inputs which must be chosen with reasonable attention to
both theoretical and experimental considerations. The lead-
ing orderW1 parton calculations are most sensitive to the
renormalization scale used in the evaluation of the strong
coupling of the theory. We assess the dependence of the LO
perturbative calculation on this scale and on other inputs.

Perturbative QCD yields definite predictions for theW1
parton cross sections. In order to compare theory to data at
the level of jets, the partons need to be converted into jets. In
a procedure we call enhanced leading order~ELO!, we use
the HERWIG parton shower simulation which fragments the
parton and hadronizes the final state quarks. This procedure

provides gluon radiation from both the initial state and final
state partons. The degree to whichHERWIG adds radiation is
determined by the fragmentation scale. As one might expect,
the cross section predictions are fairly insensitive to this
scale but the kinematic predictions show some dependence
as we shall see.

A. Event generation

We use the programVECBOS @22#, a leading orderW(Z)
1 parton Monte Carlo event generator, to produce theW
→en 1n parton event samples. Forn51, 2, 3 and 4, we
generate samples of 50000 events using the generation re-
quirements listed in Sec. VI A 2.

The leading order matrix element calculation uses a two-
loop ~NLO! evolution ofas chosen for consistency with the
NLO order parton distribution function~CTEQ3M! @25#. We
evaluateas at two renormalization scales that bracket theW
boson mass. These scales are defined by Eqs.~13! and ~14!
below. The value ofas as a function of the renormalization
scale is shown in Fig. 14.

The low renormalization scale is defined by the average
value of the partonPT . Explicitly, the lower renormalization
scale is the scalar sum of the partonPT’s divided by the
number of partons (n). The value of the lower renormaliza-
tion scale is on average approximatelyMW/4. The high
renormalization scale is defined by the square root of the
sum of the squares of the boson’s mass andPT . The average
value of this quantity is about 84 GeV:

FIG. 13. W1>n jets cross sections. The inclusive (W1
>0 jet) cross section is from a previous CDF measurement. The fit
line is an exponential that corresponds to the cross section dropping
by 5.260.3 for each additional jet.

FIG. 14. The variation of strong coupling (as , two-loop! with
the renormalization scale used in theVECBOS generator. The value
of as for the two renormalization scales that are used in the LO
matrix element calculation are indicated by the arrows.

TABLE XXI. List of systematic uncertainties forW1 jets analysis. Values are in picobarns.

W1>1 Jet W1>2 Jets W1>3 Jets W1>4 Jets

2s 1s 2s 1s 2s 1s 2s 1s

ET scale 231.5 31.8 210.1 11.5 22.35 3.08 20.53 0.70
hdet 210.7 9.1 24.1 3.7 20.99 0.89 20.41 0.17
Underlying Event 223.0 27.3 28.6 9.9 21.91 3.01 20.48 0.65
Promotion 212.1 24.7 23.7 7.2 20.97 1.81 20.24 0.44
QCD 215.2 14.9 25.6 5.5 21.71 1.68 20.49 0.49
Top 20.31 0.22 20.36 0.26 20.32 0.23 20.22 0.16
Acceptance 23.58 3.64 21.02 1.05 20.32 0.34 20.10 0.11
Obliteration 20.97 0.97 20.30 0.30 20.11 0.11 20.04 0.04
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QREN low
2 5^PT&25S ( PTi

n
D 2

~13!

QREN high
2 5MW

2 1PTW
2 . ~14!

The lower scale has several features that distinguish it
from the higher scale. First, since it is on average less than
1/4 of the higher scale, the value ofas is larger. The cross
sections for the lower renormalization scale will be greater.
Additionally, the decrease of the cross sections as a function
of jet multiplicity will depend on the renormalization scale
since the power ofas is n. This is because at leading order
each additional jet adds an additional strong-coupling vertex
which is proportional toas . Finally, the lower renormaliza-
tion scale varies with the partonPT which can vary by an
order of magnitude from event to event, while the higher
scale is more or less a constant because theW boson invari-
ant mass used by the Monte Carlo is large and fairly con-
stant, soQ25MW

2 1PTW
2 does not vary much. This last dis-

tinction will primarily be reflected in the shapes of the
kinematic variables that we examine. We will see that the
differences in the higher and lower renormalization scales do
not have a large effect on these shapes so that the kinematic
variables provide stringent tests of QCD predictions.

The factorization scale is the scale used to evaluate the
proton structure as defined by the parton distribution func-
tions. This scale is always set equal to the renormalization
scale for theW1n parton predictions. The sensitivity of the
cross section prediction to the factorization scale is much
less than the sensitivity to the renormalization scale.

Although the VECBOS parton calculations are not com-
pared directly to data, it is interesting to explore the depen-
dency of the kinematic predictions on the various inputs to
the theory. This allows us to see the effects of the LO scales
factorized from the enhancements which are described in the
next section. Figure 15 compares theW11 parton predic-
tions for the partonPT distribution. The comparison is made
for changes in the renormalization scale, the factorization
scale and the parton distribution function. The renormaliza-
tion scale has a noticeable effect on the partonPT shape
especially at lowPT as seen by the changing ratio at lowPT
in the top plot of Fig. 15. This is expected because the lower
renormalization scale is in a region whereas changes more
rapidly ~Fig. 14!. For the 1 parton sample that is plotted in
Fig. 15, there is an exact correlation between the partonPT
and the renormalization scale.

B. Fragmentation and hadronization

The jet energy corrections in theW1 jet data analysis are
designed to correct jets back to the parent-parton energy.
Ideally we would compare the data results to theVECBOS

predictions; however, parton fragmentation effects and mea-
surement resolution must be included for a valid comparison.

We use theHERWIG @23# parton shower simulation to en-
hance the LO QCD calculation fromVECBOS. HERWIG pro-
vides a color-coherent shower evolution which includes both
initial- and final-state gluon radiation.HERWIG hadronizes
the final quarks, and includes a data-based soft underlying
event model.

The radiated gluon transverse momentum inHERWIG is
limited by an input parameter in addition to kinematic con-
siderations. We will refer to this parameter as the fragmen-
tation scale, and its default value is theVECBOS QCD renor-
malization scale, used in computation of the running strong
coupling constantas in the LO matrix element calculation.
Using a low value for the fragmentation scale, such as the
average partonPT , results in a softer gluon distribution than
is obtained using a larger value like the boson mass.

Gluon emission fromVECBOS partons can have different
effects, depending on thePT of the radiated gluon and the
resulting parent parton, and their separationDR in h2f
space. An additional jet is produced if a radiated gluon and
the resulting parent parton are both energetic enough and
their separationDR is large enough to pass jet clustering
cuts. TheVECBOS W1n jet event is promoted to aW1>n
jet event and it is kept in the sample since we treat the
VECBOS sample as a LO inclusiveW1n jet generator. If the
separationDR is less than the jet clustering criteria, then the
parton and the radiated gluon will be clustered together into
a single jet. However, if the separation between the initial
parton and the radiated gluon exceeds the jet clustering cone
size, and if both jets fall below the jetET threshold, then the
event will have fewer thann jets and the event will be dis-
carded, since it is no longer a member of the inclusiveW
1n jet sample.

C. Enhanced leading order predictions

The parton shower simulated byHERWIG represents a par-
tial higher-order correction to the leading-orderVECBOS cal-

FIG. 15. Comparison of the partonPT distributions for various
W11 parton VECBOS Monte Carlo samples. The plots shows
(theory82theory)/theory as a function of partonPT . The default
calculation usesQREN

2 5Qf ac
2 5^Pt&

2. This sample is compared to a
sample derived from the high renormalization scaleQREN

2 5MW
2

1PTW
2 ~top!, the high factorization scaleQREN

2 5MW
2 1PTW

2

~middle! and an alternate PDF MRSA8 ~bottom!.
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culations, so we call the combination enhanced leading order
~ELO!. We generateVECBOSsamples with both low and high
renormalization scales and for both samples pass them
through theHERWIG simulation with a low and a high frag-
mentation scale. The resulting events are passed through the
CDF detector simulation~QFL! to model the detector jet
acceptance, jet energy response and jet energy resolution.
The reconstruction of jet energy in the simulated Monte
Carlo calculation is identical to the algorithm used in the
data. TheW1>n jet cross sections are measured by count-
ing the number of events with at leastn jets that have an
ET>15 GeV and anuhu<2.4. The ELOW1>n jet cross
sections are presented in Table XXII for both the hard and
soft fragmentation scales.

The parton shower simulated byHERWIG is a partial
higher-order correction because the radiated jets from
HERWIG will occasionally pass the jet selection criteria even
when theVECBOS-generated jets do not. However,HERWIG

does not generate all the processes that would contribute to a
higher-order calculation, so the correction is only partial. We

do not promote events with more thann reconstructed jets to
the n11 jet sample because this would lead to double-
counting of some of the leading-order processes generated
by VECBOS. Rather, we compare the resulting Monte Carlo
data samples to the inclusive data (>n jets). These com-
parisons of ELO theory with data, which are described in the
next section, allow us to investigate the effects of the choice
of parameters on the model’s ability to reproduce the jet
physics.

IX. COMPARISONS OF THEORY TO DATA

A. Cross section comparisons

The W→en 1 jet measured cross sections and the theory
predictions for these cross sections are plotted in Fig. 16.
The errors on the data points are the sum of the statistical and
systematic uncertainties. The sensitivity to the renormaliza-
tion scale is indicated by the band between the two theory
predictions. The lower renormalization scale (^PT&2) yields
higher cross sections as is expected since it correlates with a
higher value ofas .

We have also plotted the leading order theory prediction
for the inclusiveW cross section (W→en 1>0 jets). Since
jets have no effect on this point (as

0), there is no dependence
on the renormalization scale. The uncertainty on the inclu-
sive prediction is derived from the sensitivity to the factor-
ization scale. The variation of this scale was fromMW/2 to
2MW while the default value isMW . The variation is not
noticeable in the plot. This choice of factorization scale is
consistent with the higher factorization scale
@A(MW

2 1PTW
2 )# that we use in theW1 jet predictions be-

cause the bosonPT is 0 for the born level calculation.
In Fig. 17 we plot the ratio of data to theory cross sections

versus the jet multiplicity. The upper plot shows the change

FIG. 16. W1>n jets cross sections compared to theory. The
horizontal lines are the data measurements with the error bars rep-
resenting the combined statistical and systematic uncertainties. The
band indicates the variation of the predictions with the renormaliza-
tion scale. TheW1>0 jet prediction is from a Born calculation of
inclusiveW production.

FIG. 17. The ratio of data to theory for theW1>n jet cross
sections. The horizontal axis is the jet multiplicity. The upper figure
compares the ratio for a variation in the renormalization scale. The
lower plot shows the results for a variation in the fragmentation
scale. Then54 point is unavailable for the lower fragmentation
scale.

TABLE XXII. Enhanced LOW1>n jet cross section predic-
tions in picobarns. The results are presented forn51 to 4 with
statistical uncertainties shown. The determination of the cross sec-
tion counted jets with aET>15.0 GeV and anuhdetu<2.4 after a
full detector simulation of the jets had been performed.

QREN
2 5Qf ac

2 ^PT&2 ^PT&2 MW
2 1PTW

2

QFRG
2 MW

2 1PTW
2 ^PT&2 MW

2 1PTW
2

W1>1 jet 36765 31665 28564
W1>2 jet 11265 80.862.5 58.161.0
W1>3 jet 27.262.1 21.161.3 12.360.62
W1>4 jet 5.8160.77 2.2960.21
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in the theory predictions with the same renormalization
scales from the previous cross section plot. This plot is to be
compared with the lower plot in the same figure which
shows the variation of the cross sections with the fragmen-
tation scale. Clearly the fragmentation scale does not intro-
duce large uncertainties into the cross section predictions
when compared with the renormalization scale. The increase
in cross section at a higher fragmentation scale is understood
as the introduction of parton radiation fromHERWIG that
passes our jet selection criteria. TheseHERWIG jets can pro-
mote an event into the sample when the event contains a
parton from the matrix element calculation that has failed the
jet requirements. The ratios of the measured cross section to
the predicted cross sections are also presented in Table
XXIII.

We show the ratioRn/(n21)5(sn /sn21) for the data and
Monte Carlo at the top of Fig. 18. The data measurement of
this ratio benefits because the uncertainties are less than half
the relative size of the cross section uncertainties except for
R10 where the jet counting systematics will not cancel. We
also see thatRn/(n21) is more robust to the renormalization
scale because variations cancel in the ratio.

The particular value ofRn/(n21) will vary as a function of
the specific jetET requirement that defines a jet. The jet
definition we chose is jetET>15 GeV. To remove this de-
pendence to some degree we plot in Fig. 18~bottom! the
ratio of data and theory forRn/(n21) . With accurate theory
predictions and accurate data measurements the value of this
ratio is 1.0. The predictions and measurements are in fair
agreement for this quantity. If the QCD predictions repro-
duce the jet kinematics accurately the ratio of data to theory
is independent of the choice of jetET requirement so that the
quantity may be of more general interest. Although we have
measured this ratio for only one jetET definition for each
W1 jet sample, we examine the performance of QCD kine-
matic predictions through alternate tests in Sec. IX B.

Interpreting the data and theory comparisons that were
just described, we see that the absolute cross section predic-
tions agree with the data forn52 through 4. TheW1>1 jet
data cross section is a factor of 1.3 high forQREN

2 5^PT&2

and a factor 1.7 high forQREN
2 5MW

2 1PTW
2 . The lower

renormalization scale agrees better in magnitude, while the
higher scale agrees better with the slope of cross section
versus the number of jets. The variation of the cross section
predictions with the renormalization scale indicates that
higher order corrections to the LO>1 jet cross section could
be of the order of 30%. The QCD corrections to the inclusive
prediction are known to be about 20%. Therefore, the lack of
quantitative agreement is not a serious concern. The QCD
predictions of the absolute cross sections are in agreement
with the data given the inherent uncertainty of LO QCD.

TheRn/(n21) comparison~Fig. 18! is valid if higher order
QCD corrections to the LO cross sections are not strongly
dependent on the number of final state partons~i.e. the order
of as). The ratioRn/(n21) measures the decrease in cross
section with the addition of 1 jet. Although not a direct mea-
sure ofas , the value ofRn/(n21) is clearly dictated by the
magnitude of the strong coupling since adding an extra jet
adds a factor ofas . Figure 18 shows that this ratio is well
predicted by QCD and the lower value ofas is favored by
the data~see Fig. 14!. This value yields roughly a factor of 5
decrease in the cross section with each additional jet. This
decrease in the data actually may show some dependence
with the number of jets which is clearly evident in the
theory.

B. Kinematic distributions

The kinematic distributions we study include various jet
ET , mass and angular variables. These distributions have
been measured from theW1 jet data but were not corrected
for variations in the efficiency ofW boson identification as a
function of the variable that we study. In order to make a fair
comparison we must include this differential efficiency in the
theory. This is achieved with the use of a full detector simu-
lation that models the response to all final state particles
from W→en 1 jet production. For these fully simulated
events we apply our fullW selection procedure in order to
include the biases from the use of electron and neutrino re-
quirements.

FIG. 18. The upper plot shows data and theory comparisons for
sn /sn21. The band represents the variation with the renormaliza-
tion scale. The error bars on the data represent the combined statis-
tical and systematic uncertainty. The lower plot shows the ratio of
data to theory of the quantitysn /sn21. The horizontal axis for both
plots is the jet multiplicity.

TABLE XXIII. Ratio of the measured cross sections to the pre-
dictions.

n Q25^pT&2 Q25MW
2 1pTW

2

Jets sData/sQCD sData/sQCD

>1 1.2860.16 1.6560.20
>2 0.9060.17 1.7460.33
>3 0.6760.20 1.4960.44
>4 0.5360.25 1.3360.62
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Before the data are compared to theory, theW
1 jet kinematic distributions are corrected for the back-
grounds that change the shape of the jet spectra. There are
three significant backgrounds: promotions, QCD, and top.
The top quark contributions are only important in theW1
>4 jet distributions. The promotion backgrounds~photons
and jets from extra interactions! generally contribute jets at
the lowest transverse energies so that they have a concen-
trated effect on the jetET spectra. Likewise, the QCD back-
ground has a significant effect on the low region of theET
spectra but this is due to a deficit of QCD contribution in this
region rather than an excess.

We show in Fig. 19 a shape comparison between theW1

andW2 data for the distribution of the highestET jet in an
event. The plot shows the fractional difference in the contri
bution to each bin of theET distribution byW11 jet events
and W21 jet events. The distributions should be consistent
because there is no known physics which could change the
shape of one distribution without changing the other. Thus
the comparison of Fig. 19 could indicateh asymmetries in
the detector’s jet acceptance sinceW1’s are produced pref-
erentially in the direction of the proton andW2’s are pro-
duced preferentially in the direction of the antiproton. In Fig.
20 the same distribution is compared forW andZ data~The
Z data is normalized to theW data for this distribution!. In
this comparison, the jetET and background systematics can-
cel except for the QCD background which is negligible in
the Z data. There was a small but noticeable improvement
after correcting theW data for the QCD contribution. LO
QCD predicts that theW andZ jet ET distributions@26# are
very similar and we observe this in Fig. 20.

Finally, before we compare data to theory we normalize
the theory distributions to the total number of events in the
data. The kinematic tests of the theory will therefore explic-
itly reveal the sensitivity of the kinematic shapes to the QCD
parameters that we used as input. The systematic uncertain-
ties in the data distributions are also calculated to only rep-
resent the change in the shape of the distributions.

1. Jet transverse energy

We compare data to theory in Fig. 21 for theET of the
highestET jet in W1>1 jet events, the second highestET
jet in W1>2 jet events, the third highestET jet in W1
>3 jet events, and the fourth highestET jet in W1>4 jet
events. The solid curves are theory for the low renormaliza-

FIG. 19. The plot compares the jetET distributions for the high-
est ET jet found in W1 events andW2 events. The vertical axis
represents the fractional difference of events per bin ofET . The
samples are normalized in area to one another before a comparison
is made.

FIG. 20. The plot compares the jetET distributions for the high-
estET jet found inW andZ events. The vertical axis represents the
fractional difference of events per bin ofET . The samples are nor-
malized in area to one another before a comparison is made.

FIG. 21. The jetET distribution for ~a! the highestET jet in
W1>1 jet events,~b! the second highestET jet in W1>2 jet
events,~c! the third highestET jet in W1>3 jet events, and~d! the
fourth highestET jet in W1>4 jet events. The points represent the
data and the curves represent the theory. The solid curve is for the
lower renormalization scale and the dashed is for the higher renor-
malization scale. The curves were derived from fits to an analytic
function that reproduced the theory well.

FIG. 22. Comparison of jetET distributions between data and
theory. The fractional difference@(data2theory)/theory# versus the
ET of the highestET jet in W1>1 jet events~a! and second highest
ET jet in W1>2 jet events~b!. The theory usesQ25^PT&2 and is
normalized to the data before comparison.

T. AFFOLDERet al. PHYSICAL REVIEW D 63 072003

072003-26



tion scale and the dashed curves are theory for the high
renormalization scale. The curves are fits of an analytic func-
tion to the theory histograms. The analytic function was cho-
sen exclusively on its ability to reproduce the theoretical
distributions via a minimumx2 test.

We can see in Fig. 21 that the sensitivity of the theory to
the renormalization scale is mild with respect to the varia-
tions in the cross section predictions. However, we expect
that the lower renormalization scale yields a softerET spec-
trum because the lower scale weights lowET events more
than the highET events.

The details of the data and theory comparison for the>1
jet sample are better seen in Fig. 22. This plot shows (data
2theory)/theory using the low renormalization scale. The
error bars represent the statistical uncertainty while the band
represents the systematic uncertainty on the data due to the
background corrections and the jet energy uncertainty. We
notice deficits in the theory at lowET and highET . The low
ET and highET regions of the jetET distribution are regions
where we expect the theory to be sensitive to higher order
corrections.

A detailed examination of theW1>1 jet ET distribution
reveals several important features. Specifically, the ratio is
flat between about 30 GeV and 100 GeV, indicating that the
theory accurately predicts the shape of the data in this region.
The offset from 0 is caused by the normalization and the
deficit of events in the theory outside of this range. One
limitation of the theory that causes this deficit can be seen in
Fig. 23 which plots the fraction of events with exactly 1 jet
as a function of theET of the highestET jet. In the data, as
the jetET increases, the number of events with exactly 1 jet
decreases. In the region where the theory shows a deficit,
above 100 GeV, the>2 jet events are dominant. Therefore
we expect that higher order corrections will be significant in
this highET region.

Partial higher order corrections are provided by the
HERWIG parton shower model. Multijet events in the ELO

theory receive the extra jets fromHERWIG added radiation.
Figure 23 also shows the 1-jet fraction for the theory. The
first feature to notice is that the addition ofHERWIG radiation
decreases the fraction of 1-jet events just as in the data. A
LO 1-parton calculation alone can not reproduce this feature
since all the events have exactly one jet. The second feature
to notice is that the partial higher order corrections provided
by HERWIG begin to fail at about theW boson mass energy.
The flattening of the 1-jet fraction at high jetET can be
partially related to the fragmentation scale which limits the
energy of the added radiation.

The fragmentation scale we use is a high scale and is
equal toA(MW

2 1PTW
2 ). The variation of the fragmentation

scale was examined in the previousZ1 jet analysis @26#
where high (AMW

2 1PTW
2 ) and low @A(^PT&2)# scales were

tested with theZ1 jet kinematic distributions. The results fa-
vored the higher scale in reproducing the angular distribu-
tions of jets inZ events. We examine the effect of the higher
fragmentation scale on the comparison of theW1 jet ET
distributions by looking directly at theET distribution of the
jets produced byHERWIG. Figure 24 shows theET of the
highestHERWIG-jet in theW1>1 jet Monte Carlo calcula-
tion. The results are shown for the default fragmentation
scale and for~effectively! unlimited added gluon radiation,
which has a limit~300 GeV! high enough that a higher limit
would make no difference on the distribution shown in the
figure. The two scales show agreement up to an energy
equivalent of theW mass which is whereHERWIG begins to
limit the radiation in our predictions. Although the unlimited
fragmentation scale better reproduces the data~i.e., it would
partially correct the theory curve in Fig. 23!, there remains a
deficit of events in the highET region. Additionally, the
choice to add unlimited radiation is not guided by any phys-
ics scales in theW1 jet events. A more coherent approach

FIG. 23. The fraction of51 jet events in>1 jet events versus
the ET of the highestET jet. FIG. 24. ET of highest ET jet from HERWIG. The histogram

shows the distribution withQFRG
2 5MW

2 1PTW
2 . Here we used

QFRG
2 5(300 GeV)2 which is essentially no limit on the radiation

since a larger limit does not change the distribution.
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would be to obtain the true higher order corrections for the
W11 jet calculations.

The shape of the jetET distribution at low jetET is sen-
sitive to backgrounds and the jet energy scale uncertainty.
We have studied the variation of the shape due to these ef-
fects and find that they can not account for all of the deficit
in the theory~Fig. 22!. The shape of the theory distribution is
also sensitive in this region for two reasons. The added initial
state radiation can have a higherET than that from the jet
initiated from matrix-element parton. This introduces a sen-
sitivity to the fragmentation scale, particularly in regions
where the matrix element partonPT is low. Additionally,
hard HERWIG radiation cannot only supersede the matrix-
element parton but can promote an event into the sample
which previously would be rejected due to the lowPT of the
matrix-element parton. This effect introduces an ambiguity
in the partonPT requirement used to generate the LO calcu-
lation. All of these effects are smaller above 25 GeV where
the data and theory are in good agreement, noting that the
data below 25 GeV has affected the normalization of the
points above 25 GeV.

Summarizing the comparisons of data to theory for the jet
ET distributions, we see that the theory reproduces the data
over a large range of jetET for all jet multiplicities. Focusing
on theW1>1 jet predictions, the theory accurately repro-
duces the data in those regions where we expect that higher
order corrections are small. The partial higher order correc-
tions provided byHERWIG are insufficient in the regions that
are dominated by higher order QCD production mechanisms.

2. Angular and mass distributions

The angular correlations of jets are studied with two vari-
ables: the dijet invariant mass (M j j ) and the dijet angular
separation (DRj j ). In Fig. 25 we show the invariant mass of
the two highestET jets in theW1>2 jet sample~top-left!
and theW 1>3 jet sample~bottom-left!. On the right side

of this figure is the jet-jet separation (DRj j ) for the two
highestET jet events in theW1>2 jet sample~top! and
W1>3 jet sample~bottom!.

The dijet invariant mass spectra of Fig. 25 are qualita-
tively well reproduced by the QCD predictions. We do note
a harder mass spectrum for both renormalization scale
choices. The distribution is better reproduced by the low
renormalization scale. Since the mass distribution is not
completely uncorrelated with theET distributions that were
discussed earlier, a more reliable test of the angular correla-
tions is given by theDRj j distributions. The jet-jet separation
is insensitive to the renormalization scale and shows excel-
lent agreement with the data for both theW1>2 jet data
andW1>3 jet data. Uncorrelated jets will peak at a value
of DRj j equal to aboutp. Therefore the low region of the
DRj j distribution provides the clearest test for QCD predic-
tions. This region consists of 2 jets separated by a small
angle. These are referred to as small angle jets. We can ob-
serve small angle jets to a small separation of 0.52 because
we use the small clustering cone for identifying jet clusters.
In Fig. 25, we see that the theory predictions for the rate of
small angle jets remains valid to the resolution limit of jet-jet
separation for our analysis.

X. CONCLUSIONS

We have measureds(W)•BR(W→en ) as a function of
the jet multiplicity for W bosons produced in 1.8 TeVp̄p
collisions. Generally, the ELO QCD predictions~the LO ma-
trix element forW1n jets enhanced with initial and final
state radiation fromHERWIG! reproduced the main qualitative
features of the data for cross sections and jet kinematics.

TheW1 jet cross section measurements and jet kinematic
distributions were directly compared to enhanced leading or-
der QCD calculations ofW1 jets. The comparisons show
agreement between data and theory for theW1>n jet cross
section measurements withn>2. Then51 predictions are
low by a factor of 1.2860.16 (̂ PT&2) and 1.65
60.20 (MW

2 1PTW
2 ). However, the large variations with the

renormalization scale indicate that the higher order correc-
tions to the LO cross sections are substantial.

The ratio of theW1>n jet cross section to theW1
>(n21) jet cross section (sn /sn21) is measured more ac-
curately than the absolute cross sections. For the data we find
that the cross section drops by a factor of 5.260.3 for each
additional jet that we require. The predictions for this ratio
have a smaller dependence on the renormalization scale than
the predictions for the cross sections. Comparing the ratio
removes the normalization difference between the data and
theory and focuses on the influence of the strong coupling.
The data and theory showed good agreement across all mul-
tiplicities where calculations were available (n51 to 4! with
the higher renormalization scale matching the data particu-
larly well.

The enhanced leading order QCD predictions accurately
reproduced the main features of jet kinematics. QCD prop-
erly predicted the rate of collinear jets to the smallest angles

FIG. 25. The plots on the left show the distributions for the
invariant mass of the two highestET jets inW1>2 jet events~top!
and W1>3 jet events~bottom!. The plots on the right show the
separation (DRj j ) in h2f space for the two highestET jets in W
1>2 jet events~top! and W1>3 jet events~bottom!. DRj j

5(Df21Dh2)1/2.
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observed. As with the cross section comparisons the kine-
matic distributions indicated that some distributions could
benefit from true higher order corrections. Specifically, the
W1>1 jet data provided sufficient statistical accuracy for
an examination of events with a highest jetET up to and
above 100 GeV. The highestET region is where one might
expect perturbative QCD to perform best. It was shown that
this region contained a high concentration of multijet events
which probably require higher order QCD production dia-
grams for their description.

ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the
participating institutions for their vital contributions. We also
thank Walter Giele for many useful discussions. This work
was supported in part by the U.S. Department of Energy and
the National Science Foundation, the Italian Istituto Nazion-
ale di Fisica Nucleare, the Ministry of Science, Culture, and
Education of Japan, the Alfred P. Sloan Foundation, and the
Grainger Foundation.

@1# F. Abeet al., Phys. Rev. Lett.76, 2015~1996!.
@2# F. Abeet al., Phys. Rev. Lett.70, 4042~1993!.
@3# S. Abachiet al., Phys. Rev. Lett.75, 3226~1995!.
@4# F. Abeet al., Phys. Rev. Lett.79, 4760~1997!.
@5# F. Abeet al., Phys. Rev. Lett.75, 1017~1995!.
@6# S. Abachiet al., Phys. Rev. Lett.75, 1023~1995!.
@7# S. Abachiet al., Phys. Rev. Lett.77, 3303~1996!.
@8# F. Abeet al., Phys. Rev. D51, 4623~1995!.
@9# F. Abeet al., Phys. Rev. Lett.74, 2626~1995!.

@10# S. Abachiet al., Phys. Rev. Lett.74, 2632~1995!.
@11# D. Cronin-Hennessy, Ph.D. thesis, Duke University, Durham,

NC 27708, 1998, also available at http://www.phy.duke.edu/
research/hep/pubs/Hennessy_thesis.ps

@12# F. Abe et al., Nucl. Instrum. Methods Phys. Res. A271, 387
~1988!.

@13# F. Abe et al., Phys. Rev. D44, 29 ~1991!, our selection cuts
are the same as those in this reference except for~i! 0.5
,E/p,2.0 and~ii ! xstrip

2 ,10.
@14# F. Abeet al., Phys. Rev. D45, 1448~1992!.

@15# F. Abeet al., Phys. Rev. D47, 4857~1993!.
@16# Particle Data Group, C. Casoet al., Eur. Phys. J. C3, 1

~1998!, 1999 off-year partial update for the 2000 edition avail-
able at http://pdg.lbl.gov/
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