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Abstract

This report reviews the applications of decision+elated theories (decision theory, utility theory,
probability theory, and game theory) in various aspects of multi-agent systems. In recent years,
multi-agent systems (MASs) have become a highly active research area as multi-agent systems
have a wide range of applications However, mog of rea-world environments are very complex
and of uncertainty. An agent’s knowledge about the world is rather incomplete and uncertain.
The actionsof the agent are non-deterministic with a range of possible outcomes. The agent may
have many desires that conflict each other. The agent a'so needsto know aboutother agents and
decide how to interact with others. These aspects may be handled by the application of
techniques provided by decisiontelated theories. In this repont, the mechanisms of decision-
related theories are introduced especially a series of typical concepts and methodobges. The
decision problems existing in multi-agent systems tha can be handled by decision+elated
theories are discussed from different aspects. A variety of applications of decision+elated
theories in multi-agent systems are presented especially the application of the series of typica
conaepts and methodobgies.
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1. Introduction

In recent years, multi-agent systems (MASs) have beconghby lsictive research area as multi-
agent systems have a wide range of applications involving industaialifacturing, traffic and
transportation, electronic commerce, information management, et@hgrantertainment, and
others [Weiss 1999]. In a multi-agent system, there are mudtgeats who operate in a specific
environment and can interact with some others. An agent is a coropataéntity (or a
computer system) that situates in some environment to pursue dooh@asals or perform some
set of tasks, and that is autonomous in that its behavior at |letistlypaepends on its own
experience rather than being merely the result of the intéowenf humans or other entities
[Wooldridge 1999]. Its function is to interact with its environment, @ge the state of the
environment, and make decisions about how to respond to it [Parsons26802). For the
individual agents in a multi-agent system, their function is not oalynteract with the
environment but also to interact with other agents, perceive tles sthbther agents, and make

decisions on how to respond to other agents’ actions.

As a modern approach to distributed artificial intelligence IjDéne of the long-term goals of
multi-agent systems is to develop mechanisms and methods tha agabts to understand and
interact with other entities in the system as well as hurf@reven better). This goal is centered
around agents’ decision making about when and how to interact with vdnguarsuing specific
goals or performing specific tasks [Weiss 1999]. Thus when a agéti system is designed, an
important objective is to ensure that agents make right and goaiotiedike humans, typically
the best decision that they can do given what is known. Therefecesion making, in some

degree, is at the very heart of building multi-agent systems [ParsonsGAZjl. 2

In simple environments such as blocks-world scenarios studied Iy wark on artificial
intelligence [Gupta and Nau 1992, Parsons et al. 2002], making rightothscisirelatively easy.
The status change of the environment is certain and an agent’s égewte beliefs) about the
environment is complete and correct. An agent has a set of dasdes set of actions each of
which has a single possible outcome that is deterministicef td achieve a single goal and
there are no other agents disrupting it as there is only oné @&gea result, all of what the agent

needs to do is to figure out a plan (i.e., a sequence of acti@tsyill take it from the current



known position to the specified goal position. Simply executing thosenadh sequence will

transform the initial state to the goal state and definitely lead to théejog achieved.

However, most of real-world environments are more complex than bloaktd-scenarios. The
real-world environment generally changes dynamically, uaicgyt and even is noisy. In such a
complex environment, the initial states that prompt the agentsioleanaking process in the
first place may dynamically change while the decision n@krocess is still going on. An agent
may not know the properties of the environment or other agents wighnter The actions of an
agent are non-deterministic with a range of possible outcomesodtteme of an agent’'s
performing an action might be influenced by other agents’ behaviatifeeyent from the
expected. In a noisy environment, an agent’'s knowledge about the wortdh, slacquired by
the agent through sensors, may not be described accurately @tkder incomplete, uncertain,
and even incorrect. An agent may hold many desires that conftictather. In addition, in a
multi-agent system, there are multiple agents operating am& £nvironment and they might
have to interact with each other to exchange information and coordmeitedehavior. These
agents’ goals may conflict and the outcome of an agent’s actionbmanyfluenced by other
agents. Thus an agent needs to know about other agents and decidewarw tiogether with
others, which makes the decision making process of an agent in isagauit system more

complex than in a single agent environment.

Decision theory concerns the use of reason in human decision making and can be usgzkto anal
which options should be taken when it is uncertain exactly what thenogitabtaking the option
will be [Lee 1971, Raiffa 1968]. Utility theory rests on decision m@kand it concerns the use
of profit or cost as the reason upon which the decision is to be basedN@tonann and
Morgenstern 1947]. Both theories provide the analytical method for decisikimgn Now it is
widely believed that the crucial issue in designing autonomoussagehbw to provide these
agents with the ability to select the best action from a rafigeossible actions. To enable
agents, the computational entities situated in complex environmemnsyrkolike humans, the
techniques from decision and utility theory can be applied to haémelldecision making issues
in multi-agent systems to some degree. In addition, game theory [von Neumann gedston
1947], a close relative of decision theory, studies the interadiiategy between entities and

can be applied to help autonomous agents make decisions thteiragtion since in multi-agent
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systems, the issue of designing interaction strategies arftamsis is very important. In fact,
there are many concepts and tools in these theories used iragantisystems. These concepts
and tools include probability distribution, multi-attribute utility ftinas, expected utility
functions, decision trees, Bayesian networks, influence diagram&oWalecision processes
(MDPs), partially observable Markov decision processes (POMDRsh Mquilibria, Pareto

equilibria, and so forth (see Section 2.5).

Although there have been numerous applications of decision-related sheomeulti-agent
systems (e.g., [Gmytrasiewicz and Lisetti 2002], [Banerje aml2902], [Bazzan et al. 2002],
[Excelente-Toledo and Jennings 2003], [Stone and Veloso 1998], [VassilevauaigalN2002],
[Nair et al. 2004b]), no review work has yet been conducted to expletheoretic background
of the applications and build up a close relationship between themgeapplications. This
report summarizes the applications of decision theory, utility theony other decision-related
theories in multi-agent systems. We take a thorough exploratiothiatarea through presenting
related issues in decision theories with multi-agent systemsusdislg decision-theoretic

requirement in multi-agent systems, and describing some typical appigatio

The rest of this report is organized as follows. Section 2 introdiemsion-related theories, and
presents a series of typical theoretic concepts and methoddiogiiesay be applied into multi-

agent systems. Section 3 lists some decision problems existinglti-agent systems that may
be handled in decision-related theories. Section 4 presents a wdragiglications of decision-

related theories in multi-agent systems. Section 5 concludes the report.

2. Decision-Related Theories

A decisionis an allocation of resources under control of the decision makevi{Het al. 1988].
Decision theory applies mathematical and statistical methodslégibelp provide information
on which decisions can be made. It is based on the axiom®lohbility and utility. To some
degree, it is a combination of probability theory and utility thed@ame theory is tightly
relevant to decision theory and to a certain degree decision tteofye regarded as the study
on the special case of game theory (see Section 2.4). Takingcrtuard the roles of these

theories in decision making, we call them together as decidiameddheories. In this section we



present the basic mechanisms of these decision-related thaodeslso describe some typical

concepts and methodologies provided in these theories.

2.1. Decision Theory

Decision theoryis a body of knowledge and related analytical techniques ofdlitfelegrees of
formality designed to help a decision maker choose among & ak¢matives in light of their
possible outcomes [White 1969, Lee 1971]. It deals with the issues involteddecision
making and concentrates on identifying the “best” decision option. s tecision option

generally is one that maximizes the expected benefit to the decision maker.

2.1.1. History of Decision Theory

The history of decision making originated from the emergencanohals. But the formal
decision theory can be said to start with the 1938 Battle of Brdaring World War 1
(W.W.II). The English War Department banded together to a groupplofsicists,
mathematicians, logic experts, crossword puzzle experts, androhstss to solve the problem
of locating positions for a new but limited technology calledl&rd. This group of professionals
were successful enough to be retained thereafter to solveraasimgly more diverse number of
logistic and allocation problems during W.W._II. After the war, thiéi€r Government continued
to use this group that they called the “Operational Research” g@ther governments and
industry also saw the advantages of using this type of profeds in improving their
operations. From then on, the decision theory and its applications developedpiely [White
1969].

2.1.2. Elements in Decision Problems

There are three primary elements in all decision theory prablelternatives, states of nature,
and payoffs [White 1969].

Alternatives (also called “choices”, “actions”, or “courses of actions™@ #ne independent
decision variables. They represent the alternative action chitiaeslecision makers choose
from. A decision making problem is either a pure choice problem whenooelalternative is

allowed to be selected, or a mixed choice problem when portions ofikalternatives can be

selected at one time. For example, suppose a girl wants to spend a goattveeskewhere and



she has three choices: to the beach, to the zoo, and at home. If stimas® only one place

from the three alternatives, it is a pure choice problem. Baligfwould like to spend different
portions of time at two places, the problem transforms to adkeice problem because she
can select two places at one time from all the three, fangbes, to the beach in the morning

and to the zoo in the afternoon. Obviously, the pure choice problem is a special case ofdhe mixe

choice problem.

States of natur€also called “states of the world”) are independent eventsateaassumed to
occur in the future. The occurrence of these events is uncontroliables lwecision maker. In
the weekend example, the weather states (sunny, cloudy, e&inlycan be considered as states
of nature. The girl can choose places from alternatives basedeostates of nature but she

cannot control which event will occur in the future.

Payoffs(also called “outcomes” as the results of “actions”) areeddent parameters that are
assumed to occur given a particular alternative is selected gandi@ular state of nature occurs.
Payoff values may be in terms of profit or cost. In the wadkexample, payoff is the happy
degree. There are many possible payoffs corresponding to diftenerinations of alternatives
and states of nature. For example, generally, the paygfbiof to beach is higher than staying
at home in the sunny weather yet lower than staying at home mithyeweather or lower than

going to zoo in the cloudy weather.

In complex decision problems, how to select a specific action or a specifseadflactions from
multiple alternatives is complex since the payoff of the actioag be not obvious and even not
foreseeable at the point of decision making. So in most case®thent$ of a decision problem
is not limited within the above three. Thgategiesthat conduct the selection of alternatives are
also an important element in decision problems [Raiffa 1968, White 1968¢h can be
regarded as the extension of the “alternatives” element.

2.1.3. Types of Decision Environments

Decision theory can apply to three primary types of environmentsr gedainty, under risk,

and under uncertainty.



Decision undecertainty means that each alternative leads to one and only one outcone, and
choice among alternatives is equivalent to a choice among outddnes. this environment the
decision maker knows clearly what the alternatives are to cHomseand knows clearly the
payoffs that each choice will bring with certainty if tHeemative is chosen. In the weekend
example, if the girl definitely knows the weather status, simedecide which place to go in a

certain manner to maximize her happiness.

In decision underisk, each alternative will have one of several possible outcomes, and the
probability of occurrence for each outcome is known. Therefore, eachatie is associated
with a probability distribution, and a choice among probability distrmsti Under this
environment some information on the states of nature and correspondaifs pgayvailable but

is presented in a probabilistic fashion. In the weekend exampthe girl knows the occurrence
probabilities of different weather states, she can make a decision under risk.

Decision undemuncertaintyoccurs when the probability distributions are unknown. Under this
environment no information about the likelihood of states of nature occusrangpilable. The
decision maker can only assume that a particular payoff willroéca given state of nature
occurs. In the weekend example, if the girl has no any ideheofveather, the payoffs of
alternatives might be estimated, but are only assumed to occur in an uncesit@nreent. They

are not known with any degree of certainty.

The three environments are on a linear continuum ranging from ceanipietvledge (under
certainty), to partial knowledge (under risk), and finally to no Kedge (under uncertainty).
Indeed, the uncertainty cases can be reduced to the risk cases by assiggjngl probability to
each state of nature, or using subjective probabilities basedpern assessments or on analysis
of previous decisions made in similar circumstances. Hence, ioltbeing sections, we use a

unified term, uncertainty, to refer to both uncertainty cases and risk cases.

2.2. Probability Theory

The foundations of probability theory extend at least as far batke agventeenth century in the

works of Pascal, Bernoulli, and Fermat [Apostol 19&9bbability theoryconcerns the analysis

of random events. The outcome of a random event cannot be determinedtbefoues, and it

may be any one of several possible outcomes. The actual outcdaterimined by a probability
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[Wendt and Vlek 1975]Probability is the numerical expression of the possibility of event
occurrence, measurable in an uncertain situation. The notion for the pitglzdtihe occurrence

of an eveniX conditioned on a state of informati®may be specified aB(X |S) . A classical

axiomatization of probability contains the following definitions wheéie also an event likX:

0<=P(X|S) <=1
P(X|S) +P(notX|9=1
PXorY|$=P(X|S)+ P(Y|S)-P(XandY |}
PXandY|$=P(X]Y,S)* P(Y|S)

Probability theory and the more encompassing decision theory proviugppes for rational
inference and decision making under uncertainty [Horvitz et al. 1988pability provides a
language for making statements about uncertainty and thus magbsit ethe notion of
incomplete information. Decision theory extends this languagelltov gpeople to make
statements about what alternative actions are and how alteroatogenes are valued relative to

one another.

Decision theory adds probability measures that indicate thiehtkel of each possible outcome
for each alternative into the belief (the knowledge about thte sfanature) of the decision
maker. Decision theory supposes that the decision maker does not knaetuidlesituation, but
does have beliefs or expectations about the consequences of a choifferemtdstates. A
probability of 100% corresponds to the absolute belief on a certainquams=e of the choice, a
probability of 0% to belief on the impossibility of the consequence athib&e, and intervening
values to partial belief or knowledge on the consequence of the choicetHtsguerspective, in
decision theory, probabilities are properties of the state of laumel of the decision maker
rather than properties of the event occurrence. Sets of badighasents that are consistent with
the axioms of probability theory are said todmherent A rational person would wish to make

decisions based on coherent beliefs.

2.3. Utility Theory

In economicsutility means the real or expected ability of a good or servicetigfysa human
want. In decision theorytility is a measure of the desirability of outcomes of coursestiohac

8



that applies to decision making under uncertainty with known probedi[iVhite 1969]. The
utility of an action is usually some function of the cost, bene§k, and other properties of the
action. Utility theory [von Neumann and Morgenstern 1947] is an analytical method for making
a decision concerning an action to take, given a set of multiple criteria upcim tve decision is

to be based. Utility theory originated from the eighteenth centuryhamdignificantly grown up

from the beginning of the twentieth century [Fishburn 1970].

Decision making serves as the foundation on which utility theosts fyon Neumann and
Morgenstern 1947]. Among a set of alternatives, a decision maker wathlkel implement a
more preferred alternative than one that is less preferredprEffierences refer to the ordering
relationship among alternatives in the opinion of the decision makemay be represented in

terms ofutilities for outcomes angrobabilitiesfor states of nature.

2.3.1. Utility Functions
We may represent the set of preferences by means of aiocaimdiity function U (x,d)

[Horvitz et al. 1988], one of the central issues in utility thearyich assigns a number on a
cardinal scale instead of an ordinal scale (on preferencesacto amitcomex and decision
alternatived, indicating the relative desirability, and ranks the alternatimea linear order

according to degrees of desirability, so tHa{(x,,A) <U(xs,B) whenever x, <x; and
U (X4, A) =U (X5, B) wheneverx, ~ x5, wherex, and x; are the outcome of decisidnand the
outcome of decisioB respectively,x, ~ x; means the same desirability degreexpfand x;,

and x, < Xg meansxg is more preferred (desirable) than. By working with utility functions

instead of sets of preferences, the rational choiGedecision maker is to maximize utility. The
same set of preferences may be presented by méeyedt utility functions, as any strictly
increasing transformation of a utility function iyprovide the same choices under maximization.

2.3.2. Expected Utilities

Amounts of cardinal utility can be added and sudbé@ to produce other amounts of utility. This
makes it possible to combine the utilities forese@endifferent possible outcomes into the

expected utilitythe utility of all possible outcomes weightedthgir probability of occurrence.

Formally, the expected utility can be represente&d (X,d)|S] = Z P(x|S)U (x,d), whereX

xOX
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is the set of all possible outcomes generated frendecisiord andSis the state of information.
When a decision maker has multiple decision alteres and there is risk or uncertainty about
their individual outcomes, the preferred decigibis the one that maximizes the expected utility
E[U (X,d)|S] over the probability distribution fof.

The concepts of utility function and expected tytican be integrated to get expected utility
functions (see Section 2.5.2).

2.4. Game Theory

Game theory [von Neumann and Morgenstern 1947 f&RaB68, Binmore 1992], a theory of
interdependent choice founded by von Neumann ir8,182a close relative of decision theory.
Game theorystudies interactions between self-interested iestitin particular, it studies the
problems of how interaction strategies can be desighat will maximize the welfare of an
entity in an encounter, and how protocols or memas can be designed that have certain

desirable properties.

Decision theory is often claimed to enable an ertt make the most rational choice, so it
provides a means of making rational decisions undeertainty [Raiffa 1968]. Similarly, game
theory provides a rational means of analyzing adtons between entities. Decision theory can
be considered as the study of games against ndiueegame against nature is the simplest type
of games, where a single player makes a decisiahanface of nature and the nature is an
opponent that just acts randomly without the desirgaining the best payoff or defeating the
opponent [Binmore 1992].

Game theory concerns games of strategy [von NeuraadrMorgenstern 1947, Burger 1959].
The elements of such a game include: flayerd] decision makers in the game, (2)
actiond] choices available to a player, (B)formatioril knowledge that a player has when
making a decision, (Htrategies§] rules that tell a player which action to take athepoint of the
game, (5)outcomesl results that unfold, (6payoff$] utilities that each player realizes for a
particular outcome, and (€quilibrial] stable results. Here stable results mean that glager

behaves in the desired manner and will not chatsgeecision.
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In contrast to pure games of chance (e.g., thesggase in which one player guesses whether
there is something in another player's hand), taeeamne of the games of strategy does not
depend on chance alone, but also on certain desiglmat the players must take during the
course of play. These decisions and certain rarelents determine the course of play. A player
can be an individual, or a group of individuals dtioning as a decision making unit. The
strategies available to players to bring abouti@agr outcomes can be decomposed into a
sequence of decisions called choices. Playerssatareed to be able to evaluate and compare the
consequences associated with the set of possibternas and assign utilities to each outcome
indicating a preference relationship among them.

The concept of equilibria constitutes a viable 8oluto games [Stirling et al. 2002]. An
equilibrium for a game corresponds to a vectorgifoms (one element for each player)jant
option such that each player’s individual option is g@table to it according to some criterion.
There are three most widely used equilibrium coteegpminant equilibria, Nash equilibria, and
Pareto equilibria [Sandholm 1999]. A joint optiamadominant equilibriumif each individual
option is best for the corresponding player, notenathat options the other players choose. A
joint option is aNash equilibriumif, were any single agent to change its decisibayould
reduce its level of satisfaction. A joint option asPareto equilibriumif no single agent, by
changing its decision, can increase its level téfation without lowering the satisfaction level
of at least one other agent. We will discuss thisme types of equilibria further in Section 2.5
where we present a series of typical theoreticstool

Obviously, game theory is closely related with dexi theory and utility theory. Compared to
the three primary elements of a generic decisimblpm (alternatives, states of nature, and
payoffs) described in section 2.1.2, the compasittd a game is more complex than the
composition of a generic decision problem. On oaadh a game has all the elements of a
generic decision problem such as playetisis element is hidden and relatively simple in a
decision problem where the players are decisionenigkand the nature (or the world in which
decision maker(s) work), actions (the element t#rahtives in a decision problem), information
(the element of states of nature in a decision Ipm)y outcomes and payoffs which are
expressed as one single element “payoffs” in asttiproblem. On the other hand, the basic

elementstrategiesof a game is just an advanced element appearingomplex decision

11



problems, and a decision problem does not conterrelementquilibria which stabilizes the

opponents’ strategies.

2.5. Decision-Theoretic Concepts and Methodologies

Based on the previously described mechanisms,rdsepted decision-related theories provide a
series of concepts and methodologies that can pkedpnto varieties of areas involved with
decision making such as economics, sociology, amjlistrategy, and so forth. The following are

some typical concepts and methodologies.

2.5.1. Probability Distribution

Probability distributionis an important component in probability theorgl[€r 1968]. It is also
calledprobability functionthat describes all the values that the randonmakibeican take and the
probability associated with each. The term of plolig distribution covers both discrete
probability distribution (function) and continuopsobability distribution (function).

Discrete probability functionsre referred to as probabilitpassfunctions. The mathematical

definition of a discrete probability functionp(x), is a function that satisfies the following
properties: (1) the probability thak can take a specific value isp(x), that is,
PIX =x]=p(x) =p,, (2) p(x) is non-negative for all read and (3) the sum op(x) over all

possible values of is 1, that is,z p, = lwherei represents all possible values thatan have
and p, is the probability atx . One consequence of properties (2) and (3) ishtkat p(x) <= 1.

Continuous probability functionsare referred to as probabilitdensity functions. The

mathematical definition of a continuous probabilityction, f(X), is a function that satisfies

the following properties: (1) the probability that is between two pointsa and b is

pl[a< x<Db] :J':f(x)dx, (2) f(x) is non-negative for all reat, and (3) the integral of the

probability function is 1, that isf f(x)dx= .1

12



Probability distribution provides a quantitative ywaf estimating the occurrence chance of an
event and the possible outcome of an action. Ithess widely used in a variety of uncertain

situations.

2.5.2. Multi-Attribute Utility Functions and Expected Utility Funct ions
Multi-attribute utility theory (MAUT) [Hill et al.1982, Keeney and Raiffa 1976, Sycara 1988]

provides a formal basis for describing or presogbichoices between alternatives whose
consequences are characterized by multiple atésbdt is based on the fundamental axiom that
a decision maker attempts to maximize some ufilinctionU =U(g,,g,,---) which aggregates
all the different viewpoints currently taken intocaunt. In the utility function, each parameter,

g,, represents an estimated value for a specificbate. Such aggregation into a single

numerical measure allows classical optimizationoalgms to be applied to multi-criterion
problems [Barber et al. 2000].

Multi-attribute utility theory has been widely uséd situations where the decision making
depends on multiple factors and the utility caltola of decision alternatives is based on
multiple attributes. Thenulti-attribute utility functionsare used more often than genesialgle
attribute utility functionsn complex environments where a decision makedsiée evaluate the

alternatives from different viewpoints (i.e., ditrtes).

Based on the description of the concegpected utilityin Section 2.3.3, thexpected utility
function provides a formalized method to combine the id8itforeseen in different possible
outcomes into the expected utility, the utility afl possible outcomes weighted by their

probabilities of occurrence. Formally, the expeatétity function of a decisior is represented

as EU() = ZP(X| S)U(x,d), whereX is the set of all possible outcomes generated fiten

xOX
decisiond and S is the state of information. When a decision makas multiple decision
alternatives and there is risk or uncertainty abihir individual outcomes, the preferred

decisiond is the one that maximizes the expected utilityrdkie probability distribution foX.

2.5.3. Decision Trees

Decision treesare the graphical representation of decisionslu@&bin the choice of statistical

procedures [Horvitz et al. 1988]. A decision treeaimap of the reasoning process. It can help
13



decision makers form an accurate, balanced pictutiee risks and rewards that can result from
a particular choice and help them to wbat-if analysis or predict the unseen behavior in the
future. Figure 2.1 shows the example structureesfsion trees, where a small square indicates a
decision and a circle represents an uncertain tre$uiaking the decision. Starting from the
leftmost square and going along any series of Im@scthe decision maker can estimate the
results of the corresponding choices and take raftilbat can achieve the goal or maximize the

benefit.

Decision trees are excellent tools for making nunid@sed decisions where a lot of complex
information needs to be taken into account. Theyige a framework to quantify the values of

outcomes of alternatives and the probabilitiesobieving them.

O E
o
— Q
O
——
— O O
Figure 2.1. The structure of a decision tree. Figure 2.2. The strudtarBayesian network.

2.5.4. Bayesian Networks

Bayesian networkgalso calledbelief networksBayesian belief networksausal probabilistic

networks or causal networKs[Pearl 1988, Neapolitan 1990] are directed acygiiaphs in

which nodes represent random variables and araesem direct probabilistic dependences
among them. They model the distribution of obseéovat (prior knowledge) and represent
probabilistic relations among uncertain variablesalibing the domain at hand. The structure of
a Bayesian network follows the causal structureéhef modeled domain. The causal structure
gives a modular insight into the interactions amdmg variables and allows for prediction of

effects of manipulation. Figure 2.2 shows the exXarsfructure of Bayesian networks.

Bayesian networks are built up&ayes’ theoremBayes’ theorem allows people to reverse the

direction of inference. Given a state of informati® and the influence of hypothest$ on

14



observable evidencE, expressed a®(E|H,S), the influence ofE on H can be computed,

expressed aP(H | E,S) . Bayes’ theorem can be simply written as:

P(E|H,S)P(H |S)

P(H|E,S)= PE|S) :
pE[H,9)= ~H |PE(L|S)|';§E|S)

This bi-directionality is a consequence of Bayekédrem. The inferential symmetry of
probability reasoning can be useful when probaéditare available in one direction but are

required in the reverse direction.

Bayesian networks are an important methodology ideav by decision theory and probability
theory. They are very useful in showing the striectaf the domain (i.e., the structure of the
decision problem), probabilistic inference, and szdurelationship learning. Based on the
network, a decision maker can assess and refinkeapildy distributions, and learn causal
relationships between nodes. They have been widsdyl in applications where inference is
needed. Compared to decision trees, Bayesian rietvaoe more complex and more powerful in
representing complex decision problems, especialgn a decision problem exhibits many
symmetries where bi-directional reasoning is veayural and easy to implement in Bayesian

networks.

2.5.5. Influence Diagrams (IDs)

Influence diagramgalso calledorobability influence diagramslecision influence diagramsr
relevance diagrams[Howard and Matheson 1984, Neapolitan 1990, Sleach988] are
Bayesian networks extended with utility functiomsl avariables representing decisions. They are
especially suited for modeling decision problemie oal of influence diagram modeling is
choosing such a decision option that will lead e tighest expected utility. An influence
diagram is a directed acyclic graph which contaimsr types of nodes (decision, chance,
deterministic, and value) and two types of arcfiu@nces and informational arcs). Figure 2.3
shows the example structure of influence diagramigre rectangles represent decision nodes,
ovals represent chance nodes, double ovals reprettarministic nodes, and diamonds

represent value nodes.
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Figure 2.3. The structure of an influence diagram.

In Figure 2.3,decision nodesnclude a specification of the decision optionsikble to the
decision makerChance nodesre random variables and they represent uncegaamtities
relevant to the decision problem. They are quadifoy conditional probability distributions.
Deterministic nodesepresent either constant values or values detedrfrom the states of their
parent nodes. It means if the values of its parar@known, the value of a deterministic node is
also known with certainty. Deterministic nodes guantified similarly to chance nodes. The
only difference is that their probability tablesntain all zeros or ones as there is no uncertainty
about the outcome of a deterministic node oncésapjarents are knowiValue nodesepresent
utility, which is a measure of desirability of tloeitcomes of the decision process. They are
guantified by the utility of each of the possiblentbinations of outcomes of the parent nodes.
Normally, an arc in an influence diagram denotesfinence which means that the node at the
tail of the arc influences the value (or the proligidistribution over the possible values) of the
node at the head of the arc. So they have a causahing. However, the arcs coming into
decision nodes have a different meaning. These aresnformational ones representing
temporal precedence (in the sense of informatiow)fl The outcomes of all nodes at the tail of

informational arcs should have been known befoeedtttision is made.

The influence diagram is an important tool providisddecision theory, probability theory, and
utility theory together. They can represent muitipbjectives and allow tradeoffs in one area
against costs in another. Similar to Bayesian netsyanfluence diagrams are very useful in
showing the structure of the domain, i.e., thecétme of the decision problem. Different from
the qualitative illustration of the structure ofetldomain provided by Bayesian networks,
influence diagrams allow accounting for uncertaiayl are able to represent it in a quantitative

way. Unlike decision trees, influence diagrams @b grow exponentially and they support
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reverse inference very easily. They also suppresaltdetails and hence are suitable for getting

an overview of a complex problem.

2.5.6. Markov Decision Processes (MDPs)

Markov decision process¢®IDPs) [Howard 1960, Boutilier et al. 1999] wereveéloped within

the context of operations research. In essenceraoMalecision process is an iterative set of
classical decision problems. At a conceptual lewegst decision problems involved with
sequential actions and states can be viewed asnges of Markov decision processes. A
Markov decision process can be described with ghgraA state of the world (or an
environmental state) can be represented as a naggraph. Carrying out an action in that state
will result in a transition to one of a number tdtes, each connected to the first state by an arc,
with some probability, and will incur some costiékfa series of transitions a goal state may be
reached. The sequence of actions carried out isdca policy, which is a mapping from
environmental states to actions. Solving an MDP w@amsto finding a minimal cost policy for

moving from some initial state to a goal state.

Formally, an MDP is defined as a tupteS, A, T,R>[Cassandra et al. 1994], whe®és a finite

set of environmental states that can be reliabdntified by the decision makek is a finite set

of actions; T is a state transition model of the environmentjctvhis a function mapping
elements of Sx A into discrete probability distributions ov& andR is a reward function
mapping to the real numbers that specify the ingateeous reward that the agent derives from

taking an action in a state. The state transitimdehT can be written ad (s,a,s) for the

probability that the environment will make a traimsi from the previous stateto the current

state s when actiona was taken. The reward function can be written R{s,a) for the

immediate reward to the decision maker for takingioa a in states. The policy 77, mapping

from Sto A, specifies an action to be taken in each situation

MDPs can capture many of the facets of real-worltblems and are often used in decision
making based on the history up to now. An envirominie regarded as holding Markov property
if the environment’s response at tittel depends only on the state and action represemsadin

time t. If an environment has the Markov property, thenadne-step dynamics enable us to
predict the next state and expected next rewarehgive current state and action. Iteratively one
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can predict all future states and expected rewiaots knowledge of the current state as well as
the complete history up to the current time. lpdisllows that Markov states provide the best
possible basis for choosing actions. That is, &8t policy for choosing actions as a function of a
Markov state is just as good as the best policgfmosing actions as a function of the complete

history.

MDPs can be used to formalize the domains in whitiions have probabilistic results and the
decision maker has direct access to the stateeoktivironment. An important aspect of the
MDP model is that it provides the basis for aldons that provably find optimal policies given a
stochastic model of the environment and a goal [&towL960]. MDP models play an important
role in research on planning and learning. Butabgumption of complete observability to the
states provides a significant obstacle to theitiegtion to real-world problems [Cassandra et al.
1994].

2.5.7. Partially Observable Markov Decision Processes (POMDPS)

As a generalization of MDPs, thmartially observable Markov decision processE©OMDPS)
also originated in the operation research liteeatMDPs apply to the decision problems where
the state information can be observed completelynbst real-world decision problems like
machine maintenance and quality control, however problem settings are of state uncertainty
where the state information is partially observaBldOMDP permits uncertainty regarding the
state of an MDP and allows state information adtjois[Cassandra et al. 1994]. When the state
is not completely observable, a model of observatust be added to represent the uncertainty
of the state acquired. The model of observatiotudes a finite set of possible observations for
the decision maker and an observation functionessprting the probability distributions over

observations.

Formally, a POMDP is defined as a tuple&s, A, T,Q,0,R > [Cassandra et al. 1994], whe3eA,
T, and R are similar to those in the definition of an MDEY is a finite set of possible
observations for the decision maker; addis an observation function mappingxS into
discrete probability distributions ové® . The observation function can be written@&, s, )
for the probability of making observatiaa from the current stateafter having taken actiom

The policy 7, mapping fromQ to A, specifies an action to be taken in each situation
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POMDPs are used for describing planning tasks iichvithe decision maker does not have
complete information as to its current state. TRVIDP model provides an elegant solution to
the decision problem of acting in partially obséeadomains, treating actions that affect the
environment and actions that only affect the denisnaker’s state of information uniformly. As

a result, the POMDP model provides a convenient afageasoning about tradeoffs between

actions to gain reward and actions to gain inforomat

2.5.8. Nash Equilibria and Pareto Equilibria

Game theory assumes that one has opponents whadpigting their strategies according to
what they believe everybody else is doing. The elae| of sophistication of the opponents
should be part of one’s strategy. Sometimes ibssible for a player to take a dominant strategy
to be best off no matter what strategies othergskayse. However, often a player’s best strategy
depends on what strategies other players choossudn settings, dominant strategies do not
exist, and other stability criteria are needed fiBatm 1999]. If the players are disposed to
cooperate, they may seek a Pareto equilibrium.lfAirgerest player in a game, however, would
have no incentive to choose a Pareto equilibriufeasit would join a coalition. The concept of
Nash equilibria [Nash 1950] is consistent with #itiade of exclusive self-interest and it is the
most basic one of the stability criteria. If thesea set of strategies with the property that no
player can benefit by changing her strategy while bther players keep their strategies
unchanged, then that set of strategies and theespmwnding payoffs constitute the Nash

equilibrium.

3. Decision-Theoretic Requirement in Multi-Agent Sgtems

Multi-agent systems are composed of a group ofreutmus and distributed entities called
agents, operating in an environment and interadtiitiy one another to collectively achieve their
goals [Weiss 1999]. In this section, we will dissule decision-theoretic requirements in multi-
agent systems from the perspective of BDI (Beliekite-Intention) architectures [Rao and
Georgeff 1995, Wooldridge 1999]. Specifically, wesaliss from the perspective of agents’
attitudes such as the beliefs of agents to thesststthe world, what the agents desire to do, and

how the agents are intended to act in differeniasibns, which consist of the BDI architecture.
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The range of requirements discussed varies widedyn fan individual agent’'s knowledge

representation to the coordination among multigienss.

The research work on multi-agent systems involvesréety of aspects. We can discuss the
decision-theoretic requirements in multi-agent elyst from many perspectives like logic-based
architectures and layered architectures [Wooldrid@99]. Here we discuss the decision-
theoretic requirements in multi-agent systems ftom perspective of BDI architectures as the
central issues of multi-agent system design inclindev should an agent represent knowledge,
and how should the agent operate on it to arriveugboseful actions [Newell 1981]. The BDI
architecture, very popular in the multi-agent systeommunity, focuses on these issues. It
evolves from a philosophical model of human pratticeasoning (originally developed by
Michael Bratman [Bratman 1987], see Section 3.2 & intuitive—we all recognize the
processes of deciding what to do and then how ta, dehich are closely related with decision
theory. In addition, the BDI architecture givesauslear functional decompaosition [Wooldridge
1999], which indicates the design requirement afdng an autonomous agent in multi-agent

systems. This enables us to discuss the decisemrdhc requirement clearly and systematically.

In this section, we will address the relationshgiween decision-related theories and agents’
beliefs, desires, and intentions, and discussykeific decision-theoretic requirements from the

above aspects.

3.1. Agents and Multi-Agent Systems

Fundamentally, an agent is an active entity withdhility to perceive, reason, and act in order to
satisfy its design objectives. An agent has thditaltio communicate. This ability is part

perception (the receiving of messages) and paibra¢the sending of messages) [Huhns and
Stephens 1999]. An agent has a set of goals (@rediscertain capabilities to perform actions
(conducted by intentions), and some knowledge @diefs) about its environment. Agents are
assumed to have explicitly represented knowledgermaechanism for operating on or drawing
inferences from their knowledge. As an autonomaugye frequently, an agent needs to make
decisions based on currently held beliefs (statesabure) to take specific actions (select

alternatives) and achieve specified goals (maxinpagoffs or utilities) even in the simplest
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environment. In complex environments of such charatics as dynamism and uncertainty,

decision making is especially important and neaggssa

The behavior of agents operating in multi-agentesys may beeactive or rational [Weiss
1999]. Being reactive means that the agent is dapdbmnaintaining an ongoing interaction with
the environment, and responding in a timely fashimrthanges that occur in it; while being
rational means that the agent behaves in a way ishguitable or even optimal for goal
attainment. When there are multiple alternativessétect, decision making is necessary no
matter whether in a reactive manner or in a ratiomanner the agent behaves. For the rational

behavior, strategy-related long-term decision mgisnmore important.

Multi-agent environments provide an infrastructfme communication and interaction among

agents. Agents in multi-agent systems communicatei@teract in order to achieve better the
goals of themselves or of the society/system inctvithey operate [Huhns and Stephens 1999].
The environments are typically open and have niarakzred designer. The designers of a multi-
agent system may not know others’ design objectwezg well. Since the design of an agent’s

characteristics and behavior eventually dependdgtrdesigner, the non-centralized design
makes the agents not know other agents in thersygéey well. Even if the system design is

centralized, the autonomous behavior of agents male others operate in an unpredictable,
and hence dynamic and uncertain, environment. T¢arebe multiple actions possibly to take at
the moment and one same action can result in neulppssible outcomes. To perceive the
environmental states, act and interact in uncegduations, decision-theoretic tools are useful

for agents.

3.2. The BDI (Belief-Desire-Intention) Architecture

The BDI architecture originated from the philosagaitradition of understandingractical
reasoning—the process of deciding moment by moment whichoacto perform in the
furtherance of thgoals(i.e., a mutually consistent set of desires [Kraual. 1998, Singh et al.
1999]) [Bratman 1987, Wooldridge 1999]. Practi@dsoning involves two important processes:
deciding what goals to achieve, and how to achibgee goals. The former process is known as
deliberation the latter asneans-ends reasoningor a specific procedure of practical reasoning

of an agent, the decision process typically bedinpsthe agent’'s trying to understand what
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options available given the current situation. Afjenerating the set of alternatives, the decision
maker must choose among alternatives, and comrsirtee. These chosen options will become
intentions, which then determine the agent’s astidntentions then feed back into the agent’s
future practical reasoning. We will further deserthe practical reasoning and its two processes

later in this section.

There are seven main components in a generic Bibitacture [Wooldridge 1999]: (1) a set of
currentbeliefs representing information the agent has abowduteent environment; (2) laelief
revision functionwhich takes a perceptual input and the agentientibeliefs, and on the basis
of these, determines a new set of beliefs; (@tion generation functigrwhich determines the
options available to the agent (its desires), oa Mbasis of its current beliefs about its
environment and its current intentions; (4) a sktcarrent options desire$, representing
possible courses of actions available to the ag@jta filter function which represents the
agent’s main deliberation process, and which detersthe agent’s intentions on the basis of its
current beliefs, desires, and intentions. The desariginally generated may be inconsistent
while the goal set is a consistent subset of desirke agent forms intentions to make the goals
true; (6) a set of currembtentions representing the agent’s current foci—those stateaffairs
that it has committed to trying to bring about; af¥d an action selection functignwhich
determines an action to perform on the basis ofeatirintentions. Figure 3.1 illustrates the

schema of a generic BDI architecture of the abosarmomponents.

From Figure 3.1, we see that the basic compondrasBelief-Desire-Intention architecture are
data structures representing the beliefs, desagd, intentions of an agent, and functions
representing its deliberation (deciding what intemg to have—i.e., deciding what to do) and
means-ends reasoning (deciding how to achieve—ha@y, to do) where the belief revision
function is the basis of the agent’s deliberatioocpss. Beliefs represent what the agent knows
about the states of the world, desires describspkeific states of the world the agent prefers to
achieve, and intentions lead to the agent’s actidieey are represented as sets (i.e., as
unstructured collections) respectively. Bl be the set of all possible belieBgsbe the set of

all possible desires, ardt be the set of all possible intentions. Their valaee acquired from

the corresponding functions. Representing an agententions as a set is generally too
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simplistic in practice [Wooldridge 1999]. A moreaptical way is to associate a priority with

each intention, indicating its relative importance.

Sensor
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Beliefs

»| Option generation functiop

Deliberation Desires
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Means-ends
reasoning
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Figure 3.1. Schematic diagram of a generic BDI architecture [Wooldridge 1999].

An agent’sbelief revision functioms a mapping from the current perception and afetirrent
beliefs to a new set of belief§l(Bel)xP - [0(Bel). The option generation functions a
mapping from a set of beliefs and a set of inter#tioto a set of desires:
(Bel)x(Int) - O (Deg. We can regard an agent’s option generation psoessone of
recursively elaborating a hierarchical plan streetgonsidering and committing to progressively
more specific intentions, until finally it reach#®e intentions that correspond to immediately
executable actions. THater functionis a mapping from the previously held intentionsl ghe
current beliefs and desires to the updated intestial (Bel) x[J(Deg x[J(Int) - O (Int). It
represents the agent’s deliberation process (deridhat to do). Thaction selection functiors
assumed to simply return any executable intentione-tbat corresponds to a directly executable

action: J(Int) - A. Combining these four functions together, we cah an outlined action

function of an agent, which is a mapping from pptioms to actions:P — A [Wooldridge
1999].
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Taking into consideration of the basic componefts generic BDI architecture, what need to be
concerned in the design of BDI agents correspordedwo central issues of multi-agent system
design mentioned before: how should an agent reptdsowledge, and how should the agent
operate on it to arrive at purposeful actions? Slenitheory provides an answer by postulating
that probability (to represent what an agent knoeus)l utility (to represent what an agent
prefers) be combined to define the agent’'s behathat maximizes its expected utility or

achieves its goals.

3.3. Decision Theory and Agents’ Beliefs

In this section, we will discuss the decision-tlegiar requirement in multi-agent systems based
on the issues related with agents’ beliefs. Ourudision involves the first two components of the

BDI architecture: the belief revision function, aie generated beliefs.

In a complex environment, which may be noisy andnge dynamically and uncertainly, the
perceived information by an agent may be inaccuaatean agent is inherently uncertain about
the environment as well as other agents. Eveneifetvironment itself is noiseless, static, and
certain, other agents’ behavior may make the ageetating in an unpredictable thus uncertain
environment. Formally, the information the agens hhout the state of the current world (both
the environment and agents) is calbsdief Each agent has its own beliefs about how thedwvorl
is. These beliefs come from the agent’s percegimhcognition of the states of the world. In an
uncertain environment, an agent cannot exactlyidistate among the states of the world. The
fact that the actual state may be unknown to tlemtagan be formalized by specifying the set of
all possible states of the worl8, together with a family of probability distributis, P(S), over
these states. Each of these distributions speaifiésh of these states are currently possible and

how likely they are. Thus the probability distrilmts can be used to describe the information the

agent has about the present state of the world.

As a result, decision theory, especially probapithieory, can play a significant role in the
definition of agents’ belief revision functions atiee formalization of agents’ beliefs. Further, to
model the distribution of knowledge and represenbabilistic relations among them, Bayesian
networks and influence diagrams can be appliedréate the possible relationship between

beliefs for causal reasoning. Based on the belidfslds, an agent will generate a set of options
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possible to achieve and decide what actions tarddind an optimal sequence of actions from
the present state to a goal state, Markov decipraicesses (MDPs) can be applied. MDPs
assume that it is possible to measure some aspdot evorld and from this measurement the
state of the world can be known precisely. In st@lisituations, however, from the measurement
something can be uncertainly inferred about thddvdn such a situation, the states of an MDP
are replaced by beliefs about those states, reguiti the application of partially observable

Markov decision processes (POMDPS).

3.4. Decision Theory and Agents’ Deliberation

In this section, we will discuss the decision-tlediar requirement in multi-agent systems from
the aspect of agents’ deliberation processes. Bauskion involves the three components of the
BDI architecture: the option generation functioasides, and the filter function, which compose
an agent’s deliberation process (deciding whatojo @Gompared to th&ctical decision making

on specific action selection possibly involved le tsucceeding means-ends reasoning process,
the decision making in this processigategic In this process, courses of actions (plans) all
decided.

In the agent’s deliberation process, a set of desare generated and the agent has the will to
fulfill these desires. At any given time, the ageatects a consistent subset of its desires. This
serves as its set of current goals. The set ofsgoativates the agent’s planning process which
filters out its intentions [Kraus et al. 1998]. Qdiscussion will focus on the decision-theoretic
requirement in agents’ desires and goals generdiimividual) planning, and the coordination

to (individual) planning, which is crucial in multigent systems [Huhns and Stephens 1999].

3.4.1. Agents’ Desires and Goals Generation

An agent’sdesiresrefer to the states of affairs toward which therdadhas a positive disposition
[Wooldridge 1999]. A desire represents some de®ratistate of the world based on the agent’s
current beliefs. Each agent has its own desirestaimw it would like the world to be like. The
concept of desire is closely related with anotlmrcept ofpreferenceas the desires of an agent
to do something indicate its preferences over tesiple outcomes or states. The preferences
refer to the ordering relationship among alterresgtiin the agent’s opinion. The preferences and

desires come from the agent’s user or owner. Smerulti-agent systems an agent’s behavior
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motivation is to maximize the expected benefitifself (if it is self-interested) or for a group of
agents (if it is cooperative) (see Section 3.4tR¢ need to maximize payoffs of preferences
essentially requires that there be a scalar reptatsen for all the preferences of an agent. In
other words, all of the preferences must be reduceal single scalar with which they can be
precisely compared. This requires identificationaleation, and comparison of alternative
solutions before the best solution is selected.i@isly, utility theory, especially utility functign
can play a significant role in this task. When gard needs to select some alternatives from a set
of alternatives, it can evaluate the utility of leaalternative following specific criterion.
Sometimes this evaluation procedure is very sinfpde.example, if the agent only considers the
cost to achieve a desire, it can just select the with the minimal cost. So this is a single
attribute utility function. If the agent needs &ke into account multiple factors, the use of multi
attribute utility functions is necessary and theragheeds to assign corresponding weight values

to those factors according to the different coniiidns of the factors to the utility computation.

The set of an agent’s desires may not always bsistent. For example, an agent (or a person)
may desire to get a doctoral degree, do lifelorsgaiech, enjoy parties everyday, interact with
kinds of people as often as possible, and so oweler, the first two desires and the succeeding
two desires lead to a contradiction generally d@nsl mot possible to get all desires satisfied. The
agent needs to select a consistent subset ofsiseede-goal set—to achieve. For all the goal sets
in this example ({get a doctoral degree, do lifgjarsearch}, {enjoy parties everyday, interact
with kinds of people as often as possible}, etthg agent may ascribe different degrees of
importance to them. Then he can select one withnidigest importance degree from all the goal
sets [Kraus et al. 1998]. Since each goal set roagist of more than one desire, it is not certain
that the utility values of all desires in one gset are higher than the utility values of all desir

in another goal set. Otherwise, the agent can gisglect the goal set in which each desire has a
higher utility value than any desire in any otherlgset. To compare the importance degrees of
all goal sets, it is necessary to apply the utilityction into the computation of the importance
degrees (utilities) of goal sets, which is simtiarthe application of utility function in desires

generation.

However, it is not enough for an agent to genegatals only depending on the importance

degrees of different goal sets. Such an agent tidg to achieve the most important goals
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irrespective of the possibility of achieving thagaals. In the above example, even if the agent
realizes that the first goal set is the most imgrrone, he needs to give up those goals if his
academic record is always very bad and he hasfifgeyears old. To build sensible agents, the
probability of achieving goals needs to be taketo imaccount together with the utility
computation, which results in the application of #xpected utility theory. The expected utility
of a goal set can be calculated with the produdhefprobability of achieving the goals and its

utility (importance degree), which can be formalizes EU(GS) = Pr(GS)U (GS ) where GS

is a goal set of all possible goal sets. The usexpicted utility can avoid agents trying to

achieve the goals with the greatest utility irretjwe of the possibility of achieving them.
After a set of goals is selected, these goalsmaitivate the agent’s planning process.

3.4.2. Agents’ Planning

The design of a multi-agent system is to implenspecified functions and achieve specified
goals. Agents in such a system are assumed tol&¢oaperceive the environment and carry out
actions to implement the design objectives. Theesy's current state and the agents’ choice of
action jointly determine a probability distributiaaver the system’s possible next states. An
agent prefers to be in certain system states (@o@l, states) to others. To achieve its goals, an
agent must reason about its environment (as wdbdlehavior of other agents) and determine a
strategy(i.e., the agent’'s mapping from state history ¢tom [Sandholm 1999]; also called a
plan, a course of action, or a policy) that is ljkéo lead to the goals, possibly avoiding
undesirable or inconsistent states along the wag. dgent may not know the system'’s state
exactly in making its decision on how to act, hoem\vt may have to rely on the current beliefs

and base its choice of action on a probabilisticrege of the state.

The deliberation process hidden in the filter fimctof a BDI agent is indeed a planning
procedure, resulting in a set pathsthe agent having selected or preferred. Intentoars be
regarded as the conditions that inevitably holdeanoh of the selected path [Singh et al. 1999].
To generate such a set of paths, the agent hdart@series of strategies that provide long-term
consideration for selecting actions towards speafals. Each strategy “attacks” a solution
space in a different manner. The agent has totdble@ppropriate strategy from the alternatives.
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The capability of agents’ strategy selection cahagce the flexibility and adaptability of a

multi-agent system to dynamic and uncertain enviremnts. To achieve this objective, there are
several issues to be addressed, including: (1)n&orm representation of various strategies to
assist the agent’'s comparison and evaluation psp¢2sa meta-level reasoning mechanism for
strategic decision making, (3) a set of charadiesighat agents use to evaluate alternative
strategies, and (4) adaptability or learning apitia improve the decision making required to

select a strategy [Barber et al. 2000].

Basically, for the first and second issues addcessgove, Bayesian networks, influence
diagrams, decision trees, and expected utilitytions can be applied to represent the structures
of strategies, model their causal reasoning meshanand compare and evaluate various
strategies. For the third issue, multi-attributditytfunctions and expected utility functions can
be applied and the characteristics to be considectdde requirement imposed by the strategy,
cost of strategy execution, solution quality, domegquirements, and so forth. For the fourth
issue, decision trees, Bayesian networks, influeliagrams, MDPs, or POMDPs are applicable
which provide continually learning ability. Specdily, for any strategy, given a probability
distribution over the possible outcomes of an actio any state, and a reasonable preference
function over outcomes, we can define an expectédily function on outcomes such that
whenever the agent would prefer one strategy timemhar, the preferred strategy has higher
expected utility. The task of the agent then sesim@sghtforward—to find the strategy with the
maximum expected utility. To calculate the expeatslity of a strategy, all actions need to be
concerned. For a course of action, the expectaidyutf the current action depends upon the

expected utility of next action.

3.4.3. Coordination to Agents’ Planning

In order to solve goals which require the actiomaitiple agents, coordination mechanisms are
needed that can coordinate the agents’ planningepses and integrate the resulting individual
plans.Coordinationis a choice of action that takes into accountahgcipated actions of the
other agents [Huhns and Stephens 1999, Gmytragieamid Noh 2002]. Agents can coordinate
their activities in a cooperative or a self-intéeesmanner. Beingooperativemeans that the
agents are non-antagonistic and they can cooptragterform tasks or achieve desired goals.
Being self-interestedneans that the agents are competitive and eattreof tries to maximize
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its own benefit. Note that an agent may be botlpetative in some cases and self-interested in
other cases. No matter whether in a cooperativengraor in a self-interested manner the agent
behaves, since they are in a shared environmeey, ieed to coordinate their activities to
achieve their goals.

Cooperative coordination can be implemented in fiven of teamwork [Tambe 1997] or
coalition formation [Luce and Raiffa 1957, Sandha@nd Lesser 1997].eamwork(or coalition
formation) in multi-agent systems is a process where adentsteams (or coalitions) and work
together to solve a joint problem via coordinatthgir actions within each team (or coalition)
[Sandholm 1999]. Teamwork takes place among cotiperagents and the agents’ objective of
forming a team is to maximize the system benefilevboalition formation takes place among
self-interested agents and each agent’s objecfiyeiing a coalition is to maximize its own
benefit although they show cooperative behavia esalition.

Self-interested coordination is generally implensenthrough negotiation (agents also can form
a coalition through negotiation in the case of itimal formation). Negotiationis a process by
which two or more agents make a joint decision dordinate their activities, each trying to
reach an individual goal or objective [Huhns andpBens 1999, Raiffa 1982]. The negotiation
protocol is a straightforward iterative procesagénts making offers and counteroffers. From an
individual agent’s point of view, negotiation iglacision problem that requires a decision maker
(agent) to weigh preferences and to choose anmaittad gives the maximum utility from the set
of actions allowed by the negotiation protocol.

In the cooperation case, typically, to cooperatxsssfully, each agent must maintain a model
of the other agents, and also develop a modeltafdunteractions [Huhns and Stephens 1999].
From each agent’s point of view, teamwork or caaiiformation is also a decision problem that
requires the agent to weigh preferences or beraiidsto choose the way of joining and working

in a team or a coalition.

To model the agent’s decision making in the negotiaor cooperation process, Bayesian
networks and influence diagrams can be used. Iitiaddto describe a series of state transition
processes from the original states to the desioatlggates, MDPs and POMDPs can be used.
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In most multi-agent encounters, the overall outcalmpends critically on the choices made by
all agents in the scenario. This implies that ideorfor an agent to make the choice that
optimizes its outcome, it must reason strategicdlllgat is, it must take into account the
decisions that other agents may make, and mustasthat they will act so as to optimize their
own outcome. Game theory gives a way of formalizamgl analyzing such concerns. Game
theory can be used to study what happens whemehtamd self-interested agents with different
goals interact, each making its own decisions enbdisis of what is best for itself, while taking
into account that the others are doing the sames¢Ra et al. 2002]. Nash equilibria and Pareto
equilibria in the game theory can be used to mteieach self-interested agent to behave in the

desired manner.

3.5. Decision Theory and Agents’ Means-Ends Reasoning

In this section, we will discuss the decision-tleiar requirement in multi-agent systems from
the aspect of agents’ means-ends reasoning preceSse discussion involves the last two
components of the BDI architecture: intentions Hreaction selection function, which compose
an agent’s means-ends reasoning process (decidngtdr do). Compared to the decision
making on strategies in the agent’s deliberatiacess, the decision making occurring in this

process can be regarded as tactical decision mémgpecific action selection).

Intentionsplay a central role in the Belief-Desire-Intentiorodel: they provide stability for
decision making, and act to focus the agent’'s macteasoning. The obvious property of
intentions is that they tend to lead to actionsathieve an intention, an agent needs to carry out
some course of actions that it believes would besisfy the intention and this intention will
constrain the agent’s future practical reasoningcé&intentions are inevitably held conditions
on each of strategies, the representation of iiesnt must be incorporated with the
representation of strategies. So Bayesian netwarkaence diagrams, or decision trees can be

applied.

The strategies generated in an agent’s delibergdioness can help the agent to observe the
environment, evaluate alternatives, and schedutmrsc For any given problem, various
strategies may be available. Although a strategy he&dp to achieve success through carrying

out a course of action, it does not guarantee sscdée failure of goal achievement may result

30



in iterative intention filtering and replanning tihe strategic deliberation process. However, the

agent also needs to do tactical decision makirigarmeans-ends reasoning process.

Due to possible non-determinism, an action of tbena may lead to many possible states
(resulting outcomes). Decision theory provides amseof handling the non-determinism of an
agent’s actions [Parsons et al. 2002]. The likelthof the resulting states can be specified by
probability distribution over the states of the WdoiThe process of determining the probabilities
of different outcomes (i.e., the probability dibtrtion) has been calledpaobabilistic temporal
projection [Boutilier et al. 1999, Gmytrasiewicz and Lise20002]. The projection is a function
from the current information about the state ana thction to the resulting state:

P(S)x A - P(S) where P(S) is the family of probability distributions overl gdossible states

of the world,S andA is the set of all actions currently possible.

In the uncertain environment, an agent may haw afspossible actions to select to take, each
of which has a range of possible outcomes sinceattiens are not deterministic. The various
possible outcomes of non-deterministic actions aagrees of value incurred, so an agent has
preferences among the different outcomes. The vafluaeking a particular action will depend
upon what the state of the world will be after takithis action. To choose an action to
undertake, the agent will need to look at the tytlialue of the state it is in after the action.
Doing this for each possible action, the agenttban choose the action that leads to the state it
values most. The utility function in utility theogan be used as a numerical scalar on agents’
preferences. Nearly in all places where evaluatioth comparison of alternative solutions needs
to be done before the best solution is selectedytitity function can be applied. However, only
building a utility function to order the preferesces not enough. Such an agent only tries to
achieve the most valuable state irrespective ofdiffeeulty and the possibility of achieving it.
To build more sensible agents, the probability mfoatcome occurrence needs to be taken into
account together with the utility computation [Rers et al. 2002]. The expected utility theory
can be used here. The expected utility of an aa#mnbe calculated with a weighted average of
the utility of each possible outcome, where theghkis the probability of that outcome given
the action being performed. Since each outcome tselfi a state, we have

EU(A) = ZPr(Sj | AJU(S;) whereSis the set of all states after executing the actithe

S;08
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agent then selects actioh where A’ = argrESK(EU(A) = argrpgzz Pr(S; | A)U(S,) whereA

Sj as
is the set of all possible actions. The use of etgukutility can avoid agents trying to achieve the
state with the greatest utility irrespective of guessibility of achieving it, and on the other hand
can avoid agents trying to achieve the state, wha$ the greatest chance of being achieved

irrespective of its value.

4. Decision-Theoretic Applications in Multi-Agent §stems

With regard to a variety of decision-theoretic regunents in multi-agent systems discussed in
section 3, it is very natural to see numerous datitheoretic application scenarios in multi-
agent systems. In this section, we will present esdagpical and explicit decision-theoretic
applications from the perspective of the seriescaicepts and methodologies described in
section 2.5: probability distribution, multi-attrite utility functions, expected utility functions,
decision trees, Bayesian networks, influence dragraviDPs, POMDPs, Nash equilibria, and

Pareto equilibria.

4.1. Applications of Probability Distribution

In multi-agent systems, when the environmental ghaand the outcome of an action (or a set of
actions) an agent carries out are certain, thetaganprecisely estimate the states or outcomes,
and does not need to consider any possibility. Hewehe open design paradigm of a realistic
multi-agent system may result in uncertainty. Thessgible reasons include: there may be
perception errors during the interaction betweenagent and its world, there may be multiple
designers in the design of a multi-agent system ddnamot know precisely others’ objectives,
and other agents’ behavior may change the expexttmbme of an agent’s action. In such a
situation, in order to accurately capture the Ihk@bd of states or outcomes, it is very natural for
the agents to estimate the occurrence probabibfiedl the possible environmental states or all
the possible outcomes of carrying out an actiorhwatobability distribution provided by
probability theory. Correspondingly, the use ofhability distribution in multi-agent systems
can be classified into two fields: the computatmm the occurrence probability of uncertain

information in agents’ beliefs, and the estimatorthe non-determinism of actions’ outcomes.
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4.1.1. Probability Distribution and Agents’ Beliefs

The probability distribution on the agents’ belig$sgenerally applied to estimate the accuracy
degree of the agent perceiving the present envieobnand other agents. In an uncertain
environment, the environmental status changes nahspecific range. An agent may know all
the possible occurrences but it does not know tineent occurrence exactly. Even in a certain
environment, the possible noise in the environnteay make an agent’s perception to the
environment and recognition to other agents inceteplor even inaccurate). In these cases, the
agent needs to estimate the current environmetatd sansformation, the completeness degree

and accuracy degree of its knowledge about thedworl

In [Gmytrasiewicz and Noh 2002], Gmytrasiewicz aNdh present the implementation of
knowledge bases of the agents that accommodatetaintg and nested information agents may
have about the world. Their design of the knowlebgse is based on work on frame-based and
object-oriented knowledge representation formalisfBsachman and Levesque 1985]. A
fundamental limitation of the frame formalisms &t they do not support uncertainty. Their
design combines the frame formalisms with Bayesiatworks. The basic idea is to treat the
slots of frames (or attributes of objects) desogtihe properties of objects in the world that may
not be known with certainty as nodes of a Bayesiatwork. Such probabilistic slots allow
values in form of probability distributions. Thisdwledge base design will be described further

in the later section about the applications of Béy networks in multi-agent systems.

In [Gmytrasiewicz and Lisetti 2002], Gmytrasiewiad Lisetti study the role and usefulness of
emotional states and personality in designing ragént systems. The emotional states of an
agent are viewed as the agent’'s decision makingemopredisposing the agent to make its
choices in a specific, yet rational, way. The peadity of an agent consists of the agent's
emotional states together with the specificatiorafsitions taking place among the states. To
enable an agent to model the personalities andienabtstates of other agents that it interacts
with, the authors provide a precise definition gbexsonality model of other agents. From the
perspective of an agefil, a personality model of another agénis a probabilistic finite state

machineP, =< D, IN,A,N >, whereD is a finite set of emotional states of ageniN is a set of

environmental inputsA is a probabilistic state transformation functiagn,D % IN xD - [0]],

and N O Dis an initial (or neutral) emotional state of agenAgentQ, which has a personality
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model of agenR, can use it to probabilistically predigls emotional state, given an initial state
and an environmental input. The state transformafimction is probabilistic to allow for
uncertainty as to the next emotional state of tloeleted agenR. AgentQ assigns a probability
distribution to all the possible emotional staensformations due to an environmental input in
IN. With such a model, an agent can build its bediefthe personality of another agent. The
main advantage of using this probability distribntbased model is that a personality model can
be learned, given limited amount of observationsthed other agent’s behavior. Then the
probability distribution can be dynamically chandlecbugh learning.

4.1.2. Probability Distribution and Outcome of Agents’ Actions

The probability distribution on the outcomes of @igéactions is generally applied together with
the utilities of outcomes, and the application obje is to calculate expected utilities of actions
Generally, an agent cannot precisely predict thodaility distribution of the outcomes of its
action at the beginning but it can track the outesrof the same action and get the probability
distribution from the past experience.

In [Banerje and Sen 2002], Banerje and Sen devalgpayoff-structure model for partner
selection in coalition formation problem. They cioles situations where a rational agent decides
on which partnership to interact with given the tn@mof interactions and possible payoffs. Each
agent interaction is assumed to ultimately genesamee utility for each of the interacting agents.
An agent can get one of several payoffs or utdifier joining a particular coalition, and there is
a static probability distribution that governs whiof the payoffs is received at any particular
interaction. So here the probability distributiamdicates the possible payoff distribution of
agents’ coalition joining actions. The payoff-stture encoding in the form of a probability
distribution over possible payoffs is used as tn@reary information on which the agent must

base to make its decision.

In [Soh et al. 2003], Soh et al. use probabilitstalbbution to evaluate the outcome of negotiation
between agents. This is a simple but typical cdseabability distribution application in multi-

agent systems. The possible outcomes of a negutiatition include success and failure. The
negotiation success means the possible cooperagtmeen agents. An agent profiles the

negotiation outcome with each peer agent in théotyisand gets the dynamic probability
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distribution on negotiation outcomes. Then basedtlos probability distribution and other
factors, the agent can calculate the expectedyutfi selecting each peer agent in the future

cooperation and then decide which agents to appriaaaegotiations.

4.2. Applications of Utility Functions

The use of utility functions (and expected utilityjctions) is very wide in multi-agent systems
since each agent has its own preferences and slesioeit how the world is and the preferences
and desires can be conveniently and formally captiny means of a utility function. Although
in some multi-agent systems the utility functiome aot given explicitly (e.g., [Bazzan et al.
2002]), the agent’s evaluation on different alténes is generally built upon a certain set of
attributes and corresponding weights.

4.2.1. Multi-Attribute Utility Functions

Balogh et al. built a multi-agent system for negttin and decision support [Balogh et al 2000].
The main entity of the system is a negotiation @ewhich uses decision algorithms to rationally
apportion goods and services into parts with eqgtiafies (Cut Cake algorithm) to ensure fair,
fast, and efficient behavior. In order to enable sigstem to compute utilities, negotiation center
needs to know the utility functions of particulanogls and services. Individual utilities are
functions of elements such as price, amount, tebe, This is a simple application example of

multi-attribute utility functions in multi-agent siems.

In [Barber et al. 2000], an application examplestrhtegic decision making is presented. The
planning process requires as input the curreng sifathe world, the actions available, and a goal
state to generate strategies. These three itenmaantained by the agent and dynamically used.
The world state is constantly changing through d@logons of other agents, and the actions
available to achieve any given goal change based tlge agents who are helping to achieve the
goal. For the purpose of conflict resolution durstgategy selection, the multi-attribute utility

function is applied here to evaluate the strateffims different aspects. The attributes include

the quantified states, and payoffs of actions.

An attribute in a utility function can be a domdactor (like time of executing a task) or a
characteristic of the agent (like virtues an agsimbws during interaction with others). In

[Bazzan et al. 2002], one of the attributes conted to the utility computation is the agents’
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moral sentiment (i.e., emotions like generosityaads others and guilt for not having played fair
with someone). The selfish rational agents act &ximize their gain in the short term while

altruistic agents are led by moral sentiments aadifcce rational decisions in some degree.
Based on the Prisoner’'s Dilemma problem [Axelro®@4]9 Bazzan et al. conduct a series of
experiments and show that the selfish rational @geraximize their earnings in the short term
but compromise their performance in the long ruhilevaltruists with moral sentiments may not
have the best performance at the beginning but @brrend up much better than others. This
result indicates that the agent’s emotional stasagsed as one attribute in the calculation of
utility. The moral sentiments make an altruisitertgchoose what is not best for its own goals

but they are long-term utitliy maximizers.

In decision theories desires are usually formaliregrms of utility functions. In [Dastani et al.
2002], the authors study desires represented wility functions in a dynamic environment.
Desires of agents are assumed to reflect theiityutiinctions that in turn reflect their
preferences. They look for a formal model in whikbl utility functions are typically constant,
desires are relatively stable, whereas goals chamgeh more frequently. They model the
agent's dynamic desires in the context of practicabotiations where agents can reach
agreements by influencing other agents’ desiresioRa& agents in negotiation decide what
action to take based on their desires that reflleeir utility functions. Since negotiation is
usually modeled by game theory and in game thdwyutility function is assumed to remain
constant during a game, they have to solve an appaontradiction: on the one hand, it is
reasonable to assume that the agent’s desiresecamainged during negotiation and on the other
hand the utility function which is reflected by thational agent’s desire has to remain constant
during negotiation. They solve this apparent cahtteon by lifting the utility function to a
desirability function and allowing the lifting comidn to change on the basis of some context
parameters. Then agents’ utility functions can femeonstant while their desires can
dynamically change. This makes the agents’ behawimme flexible. The application domain of
the multi-agent system is washing clothes in onshivey machine. There are two utilities in the
utility function: washing time, and certainty oketricity delivery.

In [Kephart and Greenwald 2002], Kephart and Greddwtudy markets consisting of shopbots

and other agents representing buyers and sellevhich shopbots and agents are economically
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motivated, strategically pricing their informatioservices and selecting search strategy
respectively so as to maximize their own profithailever a rational buyer is fully informed by
shopbots, it makes an optimal decision regardinghvBearch strategy to employ to find the
lowest-priced seller among a randomly chosen sesetlers, given the current state of the
market. The optimal decision making is based orudii+attribute utility function that specifies
the expected profit per unit time of a seller. Hiigibutes include the quantified search strategy,

the seller’s price, and the cost of productionsielter.

4.2.2. Expected Utility Functions

In [Li and Soh 2004], Li and Soh create a multiggaoalition formation model integrating
case-based reasoning and reinforcement learninglitido formation is implemented through
argumentation-based negotiations [Soh and Tsa$s@Qb1] between agents. For a negotiation-
responding agent to decide whether to accept,treggecounteroffer a request, it uses a utility
function with the attributes corresponding to themein information, agents’ cooperation
relationship, and so on. To compute the utilityaafase, multiple multi-attribute utility functions
are used and form a hierarchical structure, he.,outcome of one utility function is used as one
attribute in another utility function. To selecteaugs as coalition candidates, the authors build an
expected utility function to compare the expectalitias of the actions of selecting candidates.
They set different utility values for all possibémalition formation outcomes. To get the
corresponding probability values of outcomes, theégpt the neighbor profiling technique. Each
agent keeps track of its coalition formation higtetith others and records each neighbor agent’'s
coalition execution success rate, coalition execufailure rate, negotiation success rate, and

negotiation failure rate, to estimate the probabesiof different coalition formation outcomes.

In [Excelente-Toledo and Jennings 2003], agents dgnamically select coordination
mechanisms based on expected utility functions. Wdeciding which of its coordination
mechanisms to adopt, the agent computes the exiettliey of each of them and selects the one
that maximizes this value. The agent’ aims are #ximize their reward, in particular their
average reward per unit time. Each agent keepk this own average reward, and uses this
reward to decide how much to charge for its owwises and occasionally to approximate the
expected average reward of other agents. Takinguatcof the reward and the success
probability of a coordination mechanism, the agemh compute the expected utility of the
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coordination mechanism. Here the alternative coatibn mechanisms and their success

probabilities are defined at the beginning andcarsstant.

In [Vane and Lehner 2000], Vane and Lehner pro@ms@pproach to the standard two-player
zero-sum single-stage normal game that maximizeea&d gain while quantifying possible
loss. Agents use this formulation to select a jplased on its assessment of an opponent’s intent,
its assessment of an opponent’s unpredictability, its utility model of the situation. The plan
selection problem is represented using an extehgpdrgame formulation and the plans are
evaluated using hypergame expected utility. Eacldidate plan is called a hyperstrategy and
the hyperstrategy can determine a probability maffihis probability matrix represents the
expected probability (a weight) of each entry ia thll game. The hypergame expected utility is
then determined by performing a dot product of thitrix with the utility values in the full
game. Such an expected utility function is more glemthan a generic expected utility function.
The authors conduct a series of experiments toledadhat hypergame expected utility is a

robust, useful evaluation of the desirability ofdryperstrategy.

4.3. Applications of Decision Trees

As a decision making and decision-analysis toalgaision tree can aid the decision maker to
produce policies, and visualize the structuring solding of decision situations. Decision trees
can be used conveniently in multi-agents systemsedhere are mature decision tree algorithms
available (e.g., C4.5 [Stone and Veloso 1998, Gind Webb 1988] and C5.0 [Nair et al.
2004a]).

However, although decision trees are widely usedl@ssification tasks, they are typically not
used for agent control. In [Stone and Veloso 1988&)ne and Veloso use decision trees for agent
control in a complex multi-agent domain, Roboticc&r, based on the confidence factors
provided by the C4.5 decision tree algorithm. Tineprporate a previously trained decision tree
into a full multi-agent behavior that is capablecohtrolling agents throughout an entire game.
Along with using decision trees for control, thishilavior also makes use of the ability to reason
about action-execution time to eliminate optionattiwould not have adequate time to be

executed successfully.
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An agent may model others to predict their futuotioms. But the possible constraints of
inadequate or contradictory relevant historicablewice can result in low prediction accuracy, or
otherwise, low prediction rates, leaving a set afes for which no predictions are made. In
[Chiu and Webb 1988], Chiu and Webb use decisieastr specifically the C4.5 decision tree
algorithm, for agents’ modeling to others, and &nimprove prediction rates without affecting

prediction accuracy. An agent-modeling system basedC4.5 is used to model agents’
competencies with a set of decision trees, tramedll historical data. Each tree predicts one
particular aspect of the agent’s action. Predistidrom multiple trees are compared for
consensus. The agent-modeling system makes nocpoedivhen predictions from different

trees contradict one another. This strategy tradfeseduced prediction rates for increased

accuracy.

Decision trees are often used for agents’ learaimgut own decisions (e.g., [Stone and Veloso
1998]) or for modeling others (e.g., [Chiu and Wdl§I88]) in the presence of large amounts of
data. Unlike these approaches that use decisies &r® a model of prediction of agent behavior
in unseen cases, Nair et al. [Nair et al. 2004a]decision trees as a model to explain observed
agent behavior, i.e., using decision trees as sidaeanalysis tool. They develop an automated
team analyst called ISSAC for post-hoc, off-lineemigteam analysis on agents’ behavior in
teamwork. ISSAC employs multiple presentation téphes that can aid human understanding
of the analyses. Decision trees can help to exkecfeatures that discriminate between success
and failure of critical actions, and extract rutes “what-if” analysis. The user submits logs of
the team’s behavior along with what are considdcetie critical events, and also along with
chosen features. The individual agent model use<C# 0 decision tree algorithm to come up
with rules that explain these examples, and whesea selects a particular rule, show the user all

those cases of examples satisfying the selected rul

In [Sridharan and Tesauro 2002], Sridharan anduresstudy the use of single-agent and multi-

agent Q-learning to learn seller-pricing strategistg a regression tree approximation scheme
to represent the Q-functions. Q-learning is ona wériety of ways of endowing agents with the

“foresight” ability to anticipate long-term consemces of actions for planning strategies to

achieve desirable goals. As a special type of aeTiBees,regression treegBreiman et al.

1984] are used here to represent the Q-functioaswigh all regression techniques it is assumed
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that there is a single response variable and onmase predicator variables. If the response
variable iscategoricalthen classification or decision trees are credfetie response variable is

continuousthen regression trees can be produced. Predivattables can be a mixture of

continuous and categorical variables. The finapouts a tree where the decision maker decides
which branch to follow after applying some tesbtwe or more variables. Sridharan and Tesauro
use axis-parallel splits, select splits that mizenvariance, and approximate the function by
constant values in the leaf nodes. The trees argtrewted in a “batch” mode using a fixed set of
training cases. Each training case has some irnfriliude values, and an associated function
value which may be adjusted during training. Thirotige application of regression trees, stable

seller pricing strategies can be learned out.

4.4. Applications of Bayesian Networks and Influence Diagrams

In recent years, the applications of Bayesian nidsvand their extensions called influence
diagrams in multi-agent systems are becoming podelg., [Gmytrasiewicz and Noh 2002],
[Vassileva and Mudgal 2002]). It is very naturalcg Bayesian networks represent probabilistic
relations among uncertain variables describingdbmain at hand and there are varieties of
relations between an agent and its environmentstlagid are a great amount of uncertainty
factors in these relations. Together with probabidiistribution and utility function, Bayesian
networks and influence diagrams play a significqah in agents’ reasoning and planning based
on Bayes’ theorem (see Section 2.5.4). Bayesiawamnks concern probabilistic relationship
among uncertain variables but do not concern wt#ihd decision variables. They are not
appropriate for modeling complex decision makingcpsses. Generally, an agent’s decision
making processes can be modeled using an infludiageam, a Bayesian network extended with
utility function and decision variables. Here wegent their applications together just because
their application scenarios are very similar. Imsoapplications, the authors do not even clearly
distinguish them and just use the two terms alterglg (e.g., in [Gmytrasiewicz and Noh
2002)).

In [Gmytrasiewicz and Noh 2002], Gmytrasiewicz aNdh present the implementation of
knowledge bases of the agents that accommodatetaintg and nested information agents may
have about the world. As stated in Section 4.héirtdesign of the knowledge base combines
the frame formalisms with Bayesian networks. Thatssbf frames (or attributes of objects)

40



describing the properties of objects in the wohlattmay not be known with certainty are treated
as nodes of a Bayesian network, or an influencgrdm. Such probabilistic slots also contain
information about the slots’ parent nodes in thiduence diagram, as well as the conditional
probability tables that allow the probabilitiesite updated in response to change in the parents’
probabilities. In the implementation, as new olgeate identified by the agent, they are
automatically represented as objects belonging gprapriate classes in the frame-based
knowledge base, and automatically become partefrtluence diagram representation of the
agent's decision making situation. As the authoresved, each influence diagram has a
corresponding and unique payoff matrix representinig same decision making situation.
Through combining the traditional knowledge repneéagon form with Bayesian networks, the
limitation of traditional form in representing umtanty can be overcome. More importantly,
decision theory provides a good theoretical suppmrthe use of Bayesian networks and the
Bayesian representation is more helpful to the sii@ei making of agents in dynamic and
uncertain environments than the traditional fraraeda or object-oriented form as the
application of Bayesian networks makes it possiblgenerate the Bayesian representation of
decision making situation on-the-fly.

In [Vassileva and Mudgal 2002], the influence daagrtechnique is used in agent negotiation
with incomplete and uncertain information, in tlentext of a distributed multi-agent peer help
system supporting students in a university couPsesonal agents bilaterally negotiate on their
behalf to acquire help from other agents. The ageatdcision making takes into account the
preferences of the user, which depend on the dowifaithe negotiation. Ideally (as often is
assumed in cooperative environments) negotiatingiegahave full knowledge about the
opponents. When the agents are self-interestedevewit is unlikely that an agent is willing to
share its private preferences with other agents.cpe with the uncertainty inherent in a
dynamic environment with self-interested particiigaand negotiate more effectively, an agent
models the preferences of the opponent using &memie diagram illustrated in Figure 4.1. The
agents negotiate iteratively and create preferemagels of their opponents during negotiation,
which help them predict their opponents’ actiond amke decisions better. In Figure 4.1, the
only deterministic node represents the certainty@her chance nodes represent the uncertainty.
The right side is a sub influence diagram for thmpanent model. The outcomes of the

opponent’s action node are the probabilities thmabpponent can decide to accept, reject, or
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counteroffer. At every step the agents choose lmtwieese protocol actions by calculating the
maximum expected utility for the actions. The damspecific utility functions are created and
incorporated into the probabilistic inference deagr The utility of a negotiation decision
depends on the role in which the agent is at thenemb of decision making. The utilities of

different roles at different states vary accordimgheir risk behaviors.

Other Componext
Helpers Available
Risk
Attitude Risk
Attitude
Money
Importance

Money
Importance

Decision

Figure 4.1. A practical influence diagram used in agents’ decision making.

The application of influence diagrams is facilithiey its relatively unconstrained dependency
structure at the level of relation. Since in Bagasnetworks the inference based on Bayes’
theorem have obtained wide applications in mangsréhe application of influence diagrams
has a solid theoretical background. To update nferried probabilities to reflect the changing

state of the world, Bayes’ update rule can be tsedcalculate the probabilities.

4.5. Applications of MDPs and POMDPs

Markov decision processes (MDPs) apply to the dmtiproblems where the state information
can be observed completely and have been use@ &ssis for much work in decision-theoretic
planning. In most real-world decision problems, preblem settings are of state uncertainty
where the state information is partially observalffartially observable Markov decision
processes (POMDPs) are more flexible as they pewnuertainty of observations and state

information acquisition.

In multi-agent systems, there have been a variegpplications based on MDPs and POMDPs
such as the multiagent Markov decision process (NPyIBodel [Boutilier 1996], the identical

payoff stochastic game (IPSG) and the partiallyeolable identical payoff stochastic game
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(POIPSG) [Peshkin et al. 2000], the decentralizextkdv decision process (DEC-MDP) model
and the decentralized partially observable Markecision process (DEC-POMDP) model
[Bernstein et al. 2002], the communicative multisigeeam decision problem (COM-MTDP)

model [Pynadath and Tambe 2002], the Dec-POMDP-@urdel [Goldman and Zilberstein

2003], and the distributed POMDP model [Nair e&l04b]. MDPs and POMDPs are applied to
model the state uncertainty in inter-agent cootthna In coordination, the agents may
communicate to exchange information and synchromiebavior dynamically. Here, some
applications integrate communication into the madele others not.

The MMDP model [Boutilier 1996] is a general modelcoordinate the policies of individual
agents im-person cooperative games in which agents sharsatime utility function. Boutilier
adopts MDPs as the underlying (single agent) datisiodel because the research interest is in
planning under uncertainty with competing objectivand (potentially) indefinite or infinite
horizon. An MMDP is formalized as a tuple of (1jimite set of states, (2) a finite set of agents,
(3) a series of finite sets of actions correspogdineach agent, (4) a probabilistic state tramsiti
function, and (5) a real-valued reward functionclEagent has prior beliefs about the policies of
other agents and these beliefs are updated agémsaact and interact. The MMDP model is a
multi-agent extension to the completely observa@P model, so it assumes an individually

fully observable environment. The MMDP model hascammunication.

The IPSG model [Peshkin et al. 2000] is a multiraddDP model and the POIPSG model is a
multi-agent POMDP model. They are developed fortimagent decision making in cooperative
stochastic games, where the agents may have thirirdividual goals and preferences but
share the same payoff structure. The POIPSG madal tuple of (1) a set of states, (2) a
probability distribution over the initial state,)(8 set of agents, where each agent is a 3-tuple of
its discrete action space, discrete observationes@nd observation function, (4) a probabilistic
transition function, and (5) a reward function. §huple is a generic one for multi-agent
POMDPs. In the one-agent case, the model is ealigndame as a generic POMDP model.
When all agents have the identity observation fonctor all states, i.e., each state is uniquely
determined by an observation, the game is completeservable. Then the model is an IPSG

model. The POIPSG model restricts the agents teesiaingle payoff function, appropriate for
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modeling the single, global reward function of team context. There is no communication in

either model.

The DEC-POMDP [Bernstein et al. 2002] model is aegal decentralized model. In this model,
the decision process is controlled by multiple ribsted agents, each with possibly different
information about the state. A DEC-MDP is a DEC-PORwith the restriction that at each time
step the agents’ observations together uniquelgrohene the state. The tuple of a DEC-POMDP
is consistent with the generic tuple of multi-ag&®MDPs described above. There is no

communication in either model.

The COM-MTDP model [Pynadath and Tambe 2002] i®eedtralized POMDP model and its
application domain is the team coordination in te@amk. It is originated from STEAM [Tambe
1997] that is developed based on the BDI (BeliesieIntention) model and extends joint
intentions with decision-theoretic communicatiotestvity. The COM-MTDP model also has
extension to explicitly represent communication.tls® tuple of a COM-MTDP includes a new
component representing communication. The commtiaicas introduced to find locally
optimal joint policies that allow agents to coomtia better through synchronization achieved via
communication. Compared to the previously describedels, the most significant difference of

this model is there is communication.

The Dec-POMDP-Com model [Goldman and Zilberstei®30is a decentralized POMDP

model for the decentralized control of cooperativdti-agent systems. There is communication
in this model for dynamic information exchange begw agents. Within the model, cooperative
agents are represented by finite state controlen®se actions control the process. The model
treats both standard actions and communicatiorxplec choices that the decision maker must
consider. The goal is to derive both action poiceexd communication policies that together
optimize a global value function. In the model there alternate communication and action

phases.

The distributed POMDP model [Nair et al. 2004bgi®lved from the COM-MTDP model and
is also for modeling multi-agent teamwork. Its g very similar to the generic tuple of multi-
agent POMDPs without communication as an explioingonent of the tuple. But there is a

communication action introduced into the tuple tbah be initiated by any agent just like a
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generic action initiated. Unlike the COM-MTDP modahd the Dec-POMDP-Com model,

where there are alternate communication and agi@ases, there is no separate communication
phase in this model. In a particular epoch an aganteither choose to communicate or act. This
setting models the missed opportunity cost thatiscawhen the agents communicate instead of

acting.

4.6. Applications of Nash Equilibria and Pareto Equilibria

In multi-agent systems of self-interested agerdgshegent tries to maximize its own benefits. In
order to solve goals that require the action oftiplé agents, coordination is needed and a joint
option of agents may be arrived in which each dgeption is acceptable to it. Nash equilibria

have been used widely in multi-agent systems tgegela joint option or just used as an analysis
tool for agents’ self-interested behavior. Parejailédoria have also been used in multi-agent

systems to achieve a joint option when self-inteitsgents show a cooperative behavior.

In [Kephart and Greenwald 2002] (also see Secti@h Lephart and Greenwald build a multi-
agent system of a set of self-interested agentsplsits, buyers, and sellers, all of which are
economically motivated to maximize their own prafito get a joint option of sellers seeking to
maximize profit, the authors derive a Nash equililm] a vector of prices at which sellers
maximize their individual profits, and from whiclo rseller has any incentive to deviate. If all
buyers choose sellers at random, the unique Naghbemm is such that all sellers charge the
monopoly price. Otherwise, there may exist multiNiesh equilibria. Specific to such issues as
when there are multiple equilibria and how the &lodan control which equilibrium is reached
regardless of initial conditions, Kephart and Greald point out the trick is to use a time-
dependent pricing strategy to strategically marmifuthe equilibria and their basins of attraction

so as to guide the market towards the desiredibquih.

In [Markopoulos and Ungar 2002], Markopoulos andganexplore the role of shopbot and
pricebot software agents in electronic service mistkThey consider a stream of customers that
arrive in a market and choose a seller from whiey treceive service based on their expected
utility costs. The authors analyze the possibitifygetting Nash equilibrium. They address that
there exists no symmetric pure Nash equilibriuna ione-shot game that the sellers face, since

the sellers are identical and will only set theilc@ once, making such equilibria unrealistic.
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Even pricing at zero is also not an equilibriuncsinstead of making zero profits a seller would
raise his price and increase revenue from buyetsoittasionally come and find all other sellers

with non-zero expected queue waiting time. Consetlyyjehe market cannot be in equilibrium.

In [Scully et al. 2004], Scully et al. present &gion to coalition calculation in a dynamic multi-
agent environment. In order to obtain a true vabmadf any coalition, they use the concept of
Pareto equilibrium. They propose an algorithm chllePareto, which is based on a multi-
objective optimization evolutionary algorithm coming multiple-objective decision making
and evolutionary computation. The combination afeRaequilibria and the evolution algorithm
allows for the approximation of the Pareto optinsat of coalitions. A distance weighting
algorithm is also incorporated to maintain diversithen searching for the Pareto optimal
solution set, and to encourage search in arealafia space that have been previously
successful. The proposed technique is capablei@firey metric importance and adapting to

metric variation over time.

4.7. Summary

In this section, we have listed and described aetyarof application examples of typical
decision-theoretic concepts and methodologies ittiagent systems. It can be seen that their
applications are often interdependent. Differemiogpts and methodologies may be used in a
same scenario at the same time for different p@gand one concept or methodology can be a
part of another one. For example, probability af ae& probability distribution is a key concept
in decision making and it appears in expected tytifunctions, decision trees, Bayesian

networks, influence diagrams, MDPs, and POMDPs.

5. Conclusions

In this report, the basic mechanisms in decisia@omtp, probability theory, utility theory, and
game theory, the main applicable aspects of theseries in multi-agent systems, and their

various applications have been presented.

In a multi-agent system, each agent has its owiefeedbout how the world is, has desires about
how it would like the world to be like, and hasentions about how it can make the world to be

like. An autonomous agent needs to make decisi@sgd on currently held beliefs to take
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specific actions and achieve specified goals. Thepects correspond to the primary elements in

a decision problem: states of nature, decisiomrateres, and payoffs.

Due to the uncertainty in agents’ viewpoint to tevironment and other agents, and the
uncertainty of outcomes of action in real-world omrments, agents often need to make
decisions for the estimation of states of the wopkdiction and evaluation of outcomes of
action, strategy planning, achieving the joint optof multiple agents, and so on. For effective
decision making, special theoretic concepts andchoaetiogies are needed. Up to date, some
typical ones have been applied into multi-agentesgys, for examples, probability distribution,
(expected) utility functions, decision trees, Bagesnetworks, influence diagrams, Markov
decision processes (MDPs), partially observablekilardecision processes (POMDPSs), Nash

equilibria, and Pareto equilibria.

In this report, we have described these conceptsnethodologies, and discussed their
application areas in multi-agent systems from thespective of BDI architectures. The BDI

architecture is consistent with the human practiedsoning and provides the functional
decomposition, which enable us to understand asclds the decision-theoretic requirement in
multi-agents more clearly and more systematicallie also describe a variety of example
applications of these theoretic tools in multi-agegstems. Although these decision-related
theories have been used in multi-agent systemswielgly, some tools are not used sufficiently.
For example, the use of Bayesian networks andenfie diagrams is often limited within the

representation of the specific causal relationshiiper than the bi-directional inference.

What we also need to point out is that some appdica of concepts and methodologies are too
complicated in cases of large sets of data like ube of decision trees, Bayes networks,
influence diagrams, MDPs, and POMDPs. How to magehplex decision problems with
appropriate decision-theoretic concepts and metbgas, how to effectively represent the
complex structure of a diagram of a large set ofsien information, and how to efficiently infer

in diagrams are crucial problems.
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