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Fig. 8. Landscape maps of biomass were generated from LVIS before (a) and after species stratification of AVIRIS imagery (b), using equations in Tables 4 and 5. Forests dominated by
pine and hardwood species (e.g. black rectangle) show more spatial variations in predicted biomass.

The overlap of confidence intervals of the coefficients of
determination before and after species stratification suggests that
overall predictive power for biomass was not significantly higher at
the species level for our study area. Part of the reason for this could be
the relatively small sample size used in this study. The dominance of
high biomass mixed conifers and low abundance of deciduous
species in the study area could have also affected the results. Yet
another factor could be the relatively coarse spatial scale of 1 ha used
in our study, one that is large enough to encompass various species
and canopy configurations. These limitations aside, stratification
seemed to perform better at lower biomass levels. Increased
prediction accuracy, lower RMSE values, and narrow confidence
intervals suggest a small improvement with species stratification
(Fig. 7).

We tested both linear and non-linear variables for all regression
models. Best-fit models were obtained with linear combinations of
variables. Although there is an apparent non-linear trend in Fig. 6a
and Fig. 6¢, it is because of the poor predictive power of the models in
low biomass plots (<50 Mg/ha). The RMSE values from the regression
models should be interpreted in terms of model-to-model compar-
isons rather than an absolute measure of accuracy in a mapping
perspective.

Spatial predictions of biomass from LVIS were quite different
before and after species stratification by AVIRIS. Relative to species-
level equations, a single lidar equation underestimated values in the
lower ranges and overestimated it in the higher ranges of biomass,
particularly for hardwoods and pines. Using a different lidar equation
for hardwoods and pines reduced apparent errors in lower ranges of

biomass for both these vegetation types (Fig. 9b and d). The trend
towards reduced error and improved prediction accuracy was clear
(Fig. 7) even at stand level analysis for hardwoods but not for pines.

Fusion of lidar and hyperspectral sensors at species level and in areas
with low biomass is an important remote sensing research requirement
(Bergen et al,, 2006; Rosenqyvist et al., 2003; Treuhaft et al., 2004). Our
study shows that species stratification could potentially improve
predictions from sparse lidar samples, in low biomass regions better
than fusion with spectral metrics. More work is needed to confirm these
results over larger samples and homogenous stands. Improving
classification accuracies for individual species by using field spectra
may further refine spatial prediction of biomass from AVIRIS. Also the
optimum level of classification (plant functional type, genera or species)
and scale (1 ha or less) must be studied further.

Intuitively, we would expect species stratification to provide an
improvement because the data used for biomass ground truth is
routinely derived from forestry tables on a species-level, just as we did
in our research here. However, there is the larger, and unanswered
question, of whether lidar metrics are sensitive to species-level
differences in canopy vertical structure, canopy gap spatial pattern,
stem density and stem spatial pattern, among others, that should be
predictive of biomass, and at what spatial scales. While species-
specific predictions as applied in this study could improve estimates
over other forested areas, the true impact of a priori stratification may
never be known unless this problem is explored thoroughly.

We did not expect a significant change in species composition
within the time lag between lidar and hyperspectral data acquisition.
However, some uncertainty in spectral metrics related to changes in
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Fig. 9. Histograms showing differences between biomass predicted before (a and c) and after (b and d) species stratification of AVIRIS imagery. Stratification for hardwoods and pines
increased predicted values in low (<50 Mg/ha) ranges and decreased values in high ranges (>200 Mg/ha) of biomass.

structure and stress may have affected the outcome. Another limitation 10 cm dbh but were not included in this study because of increased
was that only large trees (>76 cm dbh) were measured in 1 ha plots. geolocation errors between reprocessed LVIS data and 2000/2001 field
Footprint level plots (0.07 ha) included measurements of all trees above plot centers. Better geolocation of field, lidar, and hyperspectral data
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Fig. 10. Landscape maps of biomass, canopy cover, NDWI and D1GVI used for detecting water and chlorophyll stress in high biomass forests.
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Fig. 11. Map showing high and low stresses in stands with high biomass (>200 Mg/ha).
Height of bars represents biomass values.

may help, but this may also only increase correlation between metrics
rather than improve biomass estimates.

Spatial maps of various AVIRIS metrics in combination with LVIS
maps showed increased water stress in many high biomass red fir (A.
magnifica) and mixed conifer stands. High values of NPV fractions
within canopies in addition to low vegetation and water band indices,
suggests increased stress and mortality in these areas. Moisture stress
was high in open stands with more canopy gaps as well as in dense
stands, consistent with findings from Smith et al. (2005). Our results
are similar to recent studies linking water stress and increased tree
mortality in the Sierra Nevada (Lutz et al., 2009; Van Mantgem et al.,
2009).

Areas within the Teakettle Experimental Forest (North, 2002),
where red fir was the dominant vegetation type also showed a large
number of NPV spectra in the 2003 AVIRIS images. Subsequent field
observations in 2008 showed abundant dead trees as well as evidence
of logging in these areas. Further analysis is required to confirm
whether stress maps from 2003 AVIRIS images showed early

NPV fraction (%)
0

>30

Fig. 12. Spatial distribution of non-photosynthetic vegetation (NPV) fractions within
canopies for one AVIRIS image (1 ha level). Stands with high biomass and stress
(Fig. 11) also showed high NPV values.

indications of the tree mortality observed in 2008. Presumably,
lidar/hyperspectral data could be used to map areas of high stress and
mortality in response to climate change as suggested by Van Mantgem
et al. (2009).

8. Conclusion

Species stratification may improve predictions from lidar, a result
only suggested by our work, as overall predictive ability did not
improve significantly; however, confidence intervals were narrowed
and biomass showed very different spatial variability when mapped
across the landscape. Extrapolating structure from lidar samples with
stratified optical data can be a promising strategy for mapping low
biomass forests from future space borne lidar sensors such as
DESDynl. Such species-specific biomass maps have the potential to
be exceptionally useful for carbon and ecosystem modeling.

AVIRIS indices and MESMA fractions provide quantitative mea-
sures of canopy condition and can be of considerable value in
ecological applications, when combined with lidar. We demonstrated
one such application here, by mapping stress in high biomass forests
of Sierra Nevada. Stress maps can serve as early indicators of
mortality, drought, and fire susceptibility in old growth forests and
help improve forest management practices. Classified vegetation
maps can be further used to study regeneration from fire or combined
with small footprint lidar data to map individual tree biomass/
mortality.

Lidar can provide measures of vertical structure such as canopy
height, understory cover, and foliage diversity while species compo-
sition, stress, and decadence can be obtained from hyperspectral data.
Fusion of the two sensors is therefore, powerful for biodiversity and
habitat studies. Future research will focus on combining the two
sensors for mapping potential habitats for rare and endangered bird
species.
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