Phycodnaviruses: A peek at genetic diversity

David Dunigan
University of Nebraska - Lincoln, ddunigan2@unl.edu

Lisa Fitzgerald
University of Nebraska - Lincoln

James L. Van Etten
University of Nebraska - Lincoln, jvanetten1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/plantpathpapers
Phycodnaviruses: A peek at genetic diversity

David D. Dunigana, c, Lisa A. Fitzgeraldb, and James L. Van Ettena, c

aDepartment of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722
bDepartment of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
cNebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0722

Abstract: The family \textit{Phycodnaviridae} encompasses a diverse collection of large icosahedral, dsDNA viruses infecting algae. These viruses have genomes ranging from 160 to 560 kb. The family consists of six genera based initially on host range and supported by sequence comparisons. The family is monophyletic with branches for each genus, but the phycodnaviruses have evolutionary roots that connect with several other families of large DNA viruses, referred to as the nucleocytoplasmic large DNA viruses (NCLDV). The genomes of members in three genera in the \textit{Phycodnaviridae} have recently been sequenced and the purpose of this manuscript is to summarize these data. The viruses have diverse genome structures, some with large regions of non-coding sequence and others with regions of single-stranded DNA. Typically, phycodnaviruses have the coding capacity for hundreds of genes. The genome analyses have revealed in excess of 1000 unique genes, with only 14 homologous genes held in common among the three genera of the phycodnaviruses sequenced to date. Thus, the gene diversity far exceeds the number of so-called “core” genes. Little is known about the replication of these viruses, but the consequences of these infections of the phytoplankton have global affects, including altered geochemical cycling and weather patterns.

Keywords: Algae, Genome, Phycodnavirus, Genetic diversity, Evolution, Nucleocytoplasmic large DNA virus

1. Introduction

Members and prospective members of the family \textit{Phycodnaviridae} constitute a genetically diverse, but morphologically similar, group of viruses with eukaryotic algal hosts from both fresh and marine waters. The family name derives from two distinguishing characteristics: (i) “phyco” from their algal hosts, and (ii) “dna” because all of these viruses have ds-DNA genomes (Wilson et al., 2005b). The phycodnaviruses are among the viroplankton recently recognized as important ecological elements in aqueous environments (Chen et al., 1996). More than 50% of the carbon dioxide fixed on the planet is by phytoplankton which includes cyanobacteria and eukaryotic microalgae. The phycodnaviruses, along with other viruses, play important roles in the dynamics of algal blooms, nutrient cycling, algal community structure, and possibly gene transfer between organisms.

The discovery phase of aquatic viruses, including the phycodnaviruses, is just beginning with new viruses continually being discovered as more environmental samples are examined. Ongoing metagenomic studies involving massive DNA sequencing indicate a greater viral diversity than could have been imagined just a few years ago (Hambly and Suttle, 2005 and Wommack and Colwell, 2000). The ease with which new viruses are found suggests that aquatic viruses may represent the greatest source of un-characterized genetic diversity on Earth (Hambly and Suttle, 2005). The genetic diversity that exists in the phycodnaviruses, albeit with only a few completed sequences, indicates that the limits of diversity are nowhere in sight. Our appreciation for this diversity is limited, in part, because phycodnaviruses have only been identified in about 0.1% of the ~40,000 known eukaryotic algal species (Guiry and Rindi, 2005). Paradoxically, it may turn out that both biological and genetic diversity are the unifying themes of the phycodnaviruses.

The phycodnaviruses are probably ancient. Accumulating genetic evidence indicates that the phycodnaviruses together with the poxviruses, iridoviruses, African swine fever virus (ASFV), and the recently discovered Mimivirus (Raoult et al., 2004) have a common evolutionary ancestor, perhaps arising at the point of eukaryogenesis, variously reported to be ca. 2.0–2.7 billion years ago (Han and Runnegar, 1992, Feng et al., 1997, Brocks et al., 1999 and Glansdorff, 2000). All of these viruses share nine gene products and 33 more gene
products are present in at least two of these five viral families (Iyer et al., 2001 and Raoult et al., 2004). Collectively, these viruses are referred to as nucleocytoplasmic large DNA viruses (NCLDV) (Iyer et al., 2001).

The purpose of this review is to present the common and distinguishing characteristics of the Phycodnaviridae family. The genomes of a few members of the family have been sequenced and this information is contributing to our understanding of the relationships of virus members within the family, as well as with other large DNA viruses and cellular organisms. We have limited most of our discussion to those viruses whose genomes have been sequenced.

2. General characteristics and taxonomy

Phycodnaviruses are big (mean diameter of 160 ± 60 nm) icosahedrons, that encapsidate large (160–560 kb) dsDNA genomes. Where known, the viruses have an internal membrane that is required for infection. Phylogenetic analyses of their δ-DNA polymerases indicate that they are more closely related to each other than to other dsDNA viruses and that they form a monophyletic group, consistent with a common ancestor (Wilson et al., 2005b). However, the viruses fall into six clades which correlate with their hosts and each has been given genus status. Often the genera can be distinguished by additional properties, e.g., lytic versus lysogenic life styles or linear versus circular genomes (Wilson et al., 2005b). Members of the genus Chlorovirus infect fresh water algae; whereas, members of the other five genera (Coccolithovirus, Phaeovirus, Prasinovirus, Prymnesiovirus, and Raphidovirus) infect marine algae. The general characteristics of the six genera were reviewed recently (Brussaard, 2004), and Table 1 summarizes selected properties of genera. Viruses in three genera have been sequenced and are described below, followed by a comparison of their genes.

2.1. Chloroviruses

2.1.1. Biology

Chloroviruses are large, plaque-forming dsDNA viruses that infect certain, unicellular, chlorella-like green algae (see reviews, Kang et al., 2005, Van Etten, 2003, Van Etten et al., 2002 and Van Etten et al., 1991). The chlorella hosts are normally endosymbionts with protists including the protozoan...
Paramecium bursaria and the coelenterate Hydra viridis. When the symbiotic chlorella (also called zoochlorella) are in the paramecium, they are resistant to virus infection because the chlorella are enclosed in individual host-derived vacuoles that exclude the viruses. Fortunately, some zoochlorella can be grown in the laboratory free of the paramecium. Chloroviruses are ubiquitous in nature and have been isolated from fresh water collected throughout the world. Typically, the virus titers in native waters are 1–100 plaque-forming units (PFU)/ml, but titers as high as 100,000 PFU/ml of native water have been obtained. Titers fluctuate with the seasons with the highest titers occurring in the spring.

Several hundred plaque-forming chloroviruses have been characterized to various degrees. They infect either Chlorella NC64A cells (NC64A viruses), an endosymbiont of P. bursaria isolated from North America, or Chlorella Pbi cells (Pbi viruses) that are endosymbiotic with a paramecium isolated in Europe. The most studied chlorella virus and the first phycodnavirus to be sequenced was P. bursaria chlorella virus 1 (PBCV-1) which infects Chlorella NC64A (Li et al., 1997).

2.1.2. Virion structure

Chlorella virus particles are large (molecular weight ~1 × 10^9 Da) and complex. The PBCV-1 virion contains more than 110 different virus-encoded proteins (Skrdla et al., 1984; Dunigan et al., manuscript in preparation). The PBCV-1 54-kDa major capsid protein is a glycoprotein and comprises ~40% of the total virus protein. The major capsid protein consists of two 8-stranded, antiparallel β-barrel, jelly-roll domains related by pseudo six-fold rotation (Nandhagopal et al., 2002). This structure resembles the major coat proteins from some other dsDNA viruses which infect all three domains of life including bacteriophage PRD1, human adenoviruses, and a virus STIV infecting the Archaea, Sulfolobus solfataricus. This finding led to the suggestion that these three viruses may also have a common evolutionary ancestor with the NCLDVs, even though there is no significant amino acid sequence similarity among their proteins (Benson et al., 2004).

Cryo-electron microscopy and three-dimensional image reconstruction of the PBCV-1 virion indicate that the outer capsid is icosahedral and covers a lipid bilayered membrane (Yan et al., 2000). This membrane is required for infection because the virus loses infectivity after exposure to organic solvents. The outer diameter of the viral capsid ranges from 1650 Å along the two- and three-fold axes to 1900 Å along the five-fold axis. The capsid shell consists of 1680 donut-shaped trimeric capsomers plus 12 pentameric capsomers at each icosahedral vertex. The trimeric capsomers are arranged into 20 triangular facets (trisymmetrons, each containing 66 trimers) and 12 pentagonal facets (pentasymmetrons, each containing 30 trimers and one pentamer at the icosahedral vertices). Assuming all the trimeric capsomers are identical, the outer capsid of the virus contains 5040 copies of the major capsid protein. The virus has a triangulation number (T number) of 169 (note: PBCV-1 is not the largest phycodnavirus; Phaeocystis pouchetti virus (PpV01) has an icosahedral capsid with a triangulation number of 219 (Yan et al., 2005)).

Structural proteins of many viruses, such as herpesviruses, poxviruses, and paramyxoviruses, as well as the chlorella viruses, are glycosylated. Typically, viral proteins are glycosylated by host-encoded glycosyltransferases located in the endoplasmic reticulum (ER) and golgi and then transported to a host membrane (Olofsson and Hansen, 1998). Nascent viruses acquire the glycoprotein(s) and only become infectious by budding through the membrane, usually as they are released from the cell. Consequently, the glycan portion of virus glycoproteins is host specific.

However, glycosylation of PBCV-1 major capsid protein differs from this paradigm. Accumulating evidence indicates that PBCV-1 encodes most, if not all, of the enzymes involved in constructing the complex oligosaccharides attached to its major capsid protein and that the process occurs independently of the ER and golgi (Markine-Goriaynoff et al., 2004). Furthermore, five of six putative PBCV-1 encoded glycosyltransferases are predicted to be located in the cytoplasm.

2.1.3. Life cycle

PBCV-1 infects its host by attaching rapidly, specifically, and irreversibly to the external surface of the algal cell wall (Meints et al., 1984). Attachment always occurs at a virus vertex, possibly with hair-like appendages (Van Etten et al., 1991), and is followed by degradation of the host wall at the attachment point. The determinants for host range are associated with attachment. NC64A viruses do not attach to Chlorella Pbi cells and Pbi viruses do not attach to Chlorella NC64A cells. The PBCV-1 virion-associated protein A140/145R is conserved in the NC64A viruses and a homolog from the chlorovirus CVK2 interacts with the host cell wall (Onimatsu et al., 2004). Thus, the A140/145R protein and homologs may be responsible for facilitating virion attachment. No homologs of A140/145R exist in the other phycodnaviruses.

Electron micrographic studies reveal that the cell wall is degraded at the point of virus attachment (Meints et al., 1984). The chloroviruses are unique among the phycodnaviruses in that they are the only genera known to encode enzymes involved in polysaccharide degradation, which may be involved in cell wall digestion. Following host cell wall degradation, the internal membrane of the virus probably fuses with the host membrane resulting in entry of the viral DNA and viron-associated proteins into the cell, leaving an empty capsid on the surface. Infection results in rapid depolarization of the host membrane (Mehmel et al., 2003 and Frohns et al., 2006) and we hypothesize that this rapid depolarization is caused by a virus-encoded potassium ion channel (called Kev) located in the internal membrane of the virions. Presumably, Kev is activated when the virus membrane fuses with the host membrane and this depolarization may aid in the release of DNA into the cell and/or limit subsequent infection by additional viruses.

Circumstantial evidence indicates that the viral DNA and suspected DNA-associated proteins quickly move to the nucleus where early transcription is detected within 5–10 min p.i. (Schuster et al., 1986). However, experimental data have shown that within minutes of infection, host chromosomal DNA begins to be degraded, possibly due to virion-associ-
ated site-specific endonucleases (Agarkova, et al., manuscript in preparation). This degradation could aid in the recycling of nucleotides from the host DNA into newly replicating viral DNA, as well as inhibit host transcription.

In the immediate-early phase of infection, the host is reprogrammed to transcribe viral RNAs. Very little is known as to how this occurs, but chromatin remodeling may be involved. PBCV-1 encodes a 119 amino acid SET domain containing protein (referred to as vSET) that di-methylates Lys27 in histone 3 (Manzur et al., 2003). vSET is packaged in the PBCV-1 virion and accumulating evidence indicates that vSET could be involved in repression of host transcription following PBCV-1 infection (Manzur et al., unpublished results).

Viral DNA replication begins 60–90 min after infection and is followed by transcription of late virus genes (Schuster et al., 1986 and Van Etten et al., 1984). Ultrastructural studies of PBCV-1 infected chlorella suggest that the nuclear membrane remains intact, at least during the early stages of virus replication (Meints et al., 1986). However, a functional host nucleus is not required for virus replication since PBCV-1 can replicate, albeit poorly and with a small burst size, in UV-irradiated cells (Van Etten et al., 1986). Approximately 2–3 h p.i., assembly of virus capsids begins in localized regions in the cytoplasm, called virus assembly centers, which become prominent at 3–4 h p.i. (Meints et al., 1986). By 5 h p.i., the cytoplasm is filled with infectious progeny virus particles (~1000 particles/cell (Van Etten et al., 1983)) and by 6–8 h p.i. localized lysis of the host cell releases progeny. Of the progeny released, 25–50% of the particles are infectious, i.e., each infected cell yields ~350 PFUs (Van Etten et al., 1983). Intact infectious PBCV-1 particles accumulate inside the host 30–40 min before release. Other chlorella viruses have longer replication cycles than PBCV-1. For example, NC64A virus NY-2A requires approximately 18 h for replication and consequently forms smaller plaques.

2.1.4. PBCV-1 genome

The PBCV-1 genome is a linear 330 kb, nonpermuted ds-DNA with 35 nucleotide-long, partially base-paired, covalently closed hairpin termini (Girton and Van Etten, 1987 and Zhang et al., 1994). A 2221 bp inverted repeat region is adjacent to each termini (Strasser et al., 1991); however, the rest of the genome consists primarily of single copy DNA. PBCV-1 has ~700 open reading frames (ORFs) of 65 codons or larger, of which ~370 are probably protein encoding. The putative protein-encoding genes are evenly distributed on both strands and the intergenic space is minimal, 275 ORFs are separated by less than 100 nucleotides. One exception is a 1788-bp sequence near the middle of the genome. This region contains 11 tRNA genes. In this review, we use “ORF” to mean a predicted protein-coding gene, as well as the noted tRNA genes.

Approximately 50% of the 370 PBCV-1 gene products have been tentatively identified; they consist of both prokaryotic- and eukaryotic-like proteins, many of which have not been associated with viruses before. Eighty-four ORFs have paralogs within PBCV-1, forming 26 groups. The size of these groups ranges from two to six members. The PBCV-1 genome contains three types of introns: a self-splicing intron in a transcription factor TFIIS-like gene, a splicosomal-processsed intron in a DNA polymerase gene, and a small intron in one of the tRNA genes.

Three additional chlorella virus genomes have been sequenced recently. The largest, the 370 kb NY-2A virus, contains ~400 protein encoding genes (Fitzgerald et al., manuscript in preparation). Most common genes in viruses PBCV-1 and NY-2A, which infect the same host chlorella, are co-linear. However, there is almost no co-linearity between common genes in Pbi virus MT325 and those in PBCV-1 and NY-2A, suggesting a high degree of plasticity in these genomes.

One unusual feature of PBCV-1 DNA, as well as other chlorella virus DNAs, is that they contain methylated bases. Genomes from 37 chlorella viruses contain 5-methylcytosine (5 mC) in amounts varying from 0.12 to 47.5% of the total cytosines. Twenty-four of the 37 viral DNAs contain 5mC-methyl-adenine (6 mA) ranging from 1.5 to 37% of the total adenes (Van Etten et al., 1991). This led to the discovery that many chlorella viruses encode multiple DNA methyltransferases, as well as site-specific endonucleases (Nelson et al., 1998).

2.1.5. PBCV-1 encoded proteins

Many PBCV-1 encoded enzymes are either the smallest among the smallest proteins of their class. In addition, homologous genes in the chloroviruses can differ in nucleotide sequence by as much as 50%, which translates into amino acid differences of 30–40%. Therefore, comparative gene sequence analyses can identify conserved amino acids in proteins as well as regions that tolerate amino acid changes. The small sizes and the finding that many virus-encoded proteins are “user friendly” have resulted in the biochemical and structural characterization of several PBCV-1 enzymes. Examples include: (i) the smallest eukaryotic ATP-dependent DNA ligase (Ho et al., 1997), which is the subject of intensive mechanistic and structural studies ((Sriskanda and Shuman, 2002) and references cited therein). (ii) The smallest type II DNA topoisomerase (Lavrukhin et al., 2000). This PBCV-1 enzyme cleaves dsDNAs about 30 times faster than the human type II DNA topoisomerase (Fortune et al., 2001); consequently, the virus enzyme is being used as a model enzyme to study the topoisomerase II DNA cleavage process. (iii) An RNA guanylyltransferase (Ho et al., 1996) that was the first enzyme of its type to have its crystal structure resolved (Hakansson et al., 1997 and Hakansson and Wigley, 1998). (iv) A small prolyl-4-hydroxylase that converts Pro-containing peptides into hydroxyl-Pro-containing peptides in a sequence-specific fashion (Eriksson et al., 1999). (v) The smallest protein (94 amino acids) to form a functional K+ channel (Plagge et al., 2000). These minimalistic enzymes may represent precursors of contemporary proteins, but it is also possible that they are products of evolutionary optimization during viral evolution.

Some of the chloroviruses are also unusual because they encode enzymes involved in sugar metabolism. Three PBCV-1 encoded enzymes glutamine:fructose-6-phosphate aminotransferase (GFAT), UDP-glucose dehydrogenase (UDP-GlcDH), and hyaluronan synthase are involved in the synthesis of hyaluronan, a linear polysaccharide composed of alternating β-1,4-glucuronic acid and β-1,3-N-acetylglicosamine res-
idues (DeAngelis et al., 1997 and Landstein et al., 1998). All three genes are transcribed early in PBCV-1 infection and hyaluronan accumulates on the external surface of the infected chlorella cells (Graves et al., 1999). The predicted amino acid sequences of the PBCV-1-encoded GFAT and UDP-GlcDH enzymes most closely resemble bacterial enzymes, whereas the amino acid sequence of the PBCV-1-encoded hyaluronan synthase has the strongest resemblance to vertebrate enzymes. These observations suggest that the viruses may have acquired the GFAT and UDP-GlcDH genes separately from the hyaluronan synthase gene.

Two PBCV-1-encoded enzymes, GDP-D-mannose dehydratase and fucose synthase, comprise a three step pathway that converts GDP-D-mannose to GDP-fucose (Tonetti et al., 2003). The function of this putative pathway is unknown. However, fucose, a rare sugar, is present in the glycans attached to the major capsid protein.

PBCV-1 encodes four enzymes involved in polyamine biosynthesis: ornithine decarboxylase (ODC), homospermidine synthase, agmatine iminohydrolase, and N-carbamoylpseudocine amidohydrolase (Van Etten, 2003). Ornithine decarboxylase catalyzes the decarboxylation of ornithine to putrescine, which is the first and the rate limiting enzymatic step in the polyamine biosynthetic pathway. The PBCV-1-encoded ODC is the smallest characterized ODC (Morehead et al., 2002). The PBCV-1 enzyme is also interesting because it decarboxylates arginine better than ornithine (Shah et al., 2004).

2.1.6. Diversity of Chlorovirus genomes

Not all PBCV-1 genes are required for virus replication in the laboratory. For example, four spontaneously derived PBCV-1 mutants were isolated that contain 27- to 37-kb deletions at the left end of the 330-kb genome (Landstein et al., 1995). Two of these mutants have deletions beginning at nucleotide coordinates 4.9 or 16 kb and ending at 42 kb. In total, these two deleted regions, which probably resulted from recombination, encode 28 putative proteins. The other two mutants, which probably arose from nonhomologous recombination, lack the entire left terminal 37-kb of the PBCV-1 genome, including the 2.2 kb terminal inverted-repeat region. The deleted left terminus was replaced by the transposition of an inverted 7.7- or 18.5-kb copy from the right end of the PBCV-1 genome. These regions encode 26 single-copy ORFs, of which 23 are common to those deleted in the first two mutant viruses. Taken together, ~40 kb of single-copy DNA encoding 31 ORFs at the left end of the genome, or 12% of the PBCV-1 genome, is unnecessary for PBCV-1 replication in the laboratory. However, replication of the PBCV-1 deletion mutants is attenuated, i.e., their burst sizes are about half of wildtype virus.

The deletion mutants also indicate that the size of the inverted terminal repeats in PBCV-1 can vary. This conclusion is consistent with the finding that the size and sequence of the inverted repeat region is not conserved among chlorella viruses (Strasser et al., 1991 and Yamada and Higashiyama, 1993). This lack of conservation is somewhat surprising because one predicts that the DNA termini might be essential for either virus DNA replication and/or DNA packaging. These results also indicate that the virus DNA packaging machinery tolerates significant differences in genome size, e.g., the largest deletion in PBCV-1 creates a genome of ~302 kb whereas, chlorella virus NY-2A has a genome of ~370 kb. Similar large deletions occurred in the left terminus of the chlorella virus CVK1 genome (Songsri et al., 1997).

Large insertions also occur in the chlorella viruses. Comparison of PBCV-1 and CVK2 genomes revealed that an ~15 kb region in the PBCV-1 left terminal region is absent in the CVK2 genome. However, CVK2 contains a 22.2 kb insert in this region that contains five gene copies of a homolog of PBCV-1 glycoprotein Vp260; this 22.2 kb sequence is absent in the PBCV-1 genome (Chuchird et al., 2002 and Nishida et al., 1999b).

The sizes and locations of the deletions and transpositions in the chlorella viruses resemble poxviruses (Turner and Moyer, 1990) and ASFV (Blasco et al., 1989) deletion mutants. Like PBCV-1, poxviruses and ASFV genomes have inverted terminal repeats and covalently closed hairpin ends. Models to explain the generation of deletions and deletion/transpositions in the poxvirus genomes (Shchelkunov and Totmenin, 1995 and Turner and Moyer, 1990) may be relevant to the chlorella viruses.

Several other observations reflect the diversity of chlorella virus genomes. (i) The NC64A virus NY-2A genome is about 40 kb larger than the PBCV-1 330-kb genome and contains ~30 more genes (Fitzgerald et al., manuscript in preparation). Some of these additional NY-2A genes encode ubiquitin, chitin synthase, N-acetylglucosaminyl transferase, 6 transposases, and 28 homing endonucleases. Furthermore, inteins exist in two of the NY-2A gene products, the alpha-subunit of ribonucleotide reductase and a putative helicase. (ii) Southern hybridization and DNA sequence analyses indicate that not all PBCV-1 genes exist in all of the NC64A virus isolates. Also an extra ORF is often inserted between co-linear genes. The insertion of extra genetic elements, referred to as “morons” (for more DNA), between adjacent genes also occurs in related lambda phages (Hendrix et al., 2000). (iii) PBCV-1 carries a polycistron of 11 tRNAs genes with less than 33 intergenic nucleotides; other NC64A viruses carry polycistronic tRNAs of up to 16 tRNA genes (Cho et al., 2002 and Nishida et al., 1999b). Clustering of tRNAs is common in bacteria and rare in eukaryotes. Some of the chlorella virus tRNA genes probably reflect gene duplications. Also some tRNA genes contain introns as large as 1 kb (Nishida et al., 1999b). (iv) Sequence analyses of a gene (pdg) encoding a UV-specific DNA repair enzyme from 42 NC64A viruses revealed that 15 of them contain a 98-nucleotide splicingosomal-processed intron that is 100% conserved; four other viruses contain an identically positioned 81-nucleotide intron that is nearly 100% identical (Sun et al., 2000). In contrast, the nucleotides in the pdg coding regions (exons) from the intron-containing viruses are 84–100% identical. The 100% identity of the 98-nucleotide intron sequence in 15 viruses and the near 100% identity of an 81-nucleotide intron sequence in another four viruses imply that either the intron was acquired recently or that there is strong selective pressure to maintain the DNA sequence of the intron once it is in the pdg gene. However, the abilities of intron-containing and
intron-lacking viruses to repair UV-damaged DNA in the dark were indistinguishable (Sun et al., 2000). These findings contradict the dogma that intron sequences are more variable than exon sequences. (v) Yamada and his colleagues (Nishida et al., 1998 and Yamada et al., 1994) reported that 8% of the NC64A viruses isolated in Japan contain a self-splicing group I intron. This intron is inserted in the gene encoding either transcriptional elongation factor TFIIIS (~60% of the viruses) or an unidentified ORF encoding a 14.2 kDa polypeptide (~40% of the viruses); however, in a few viruses the intron is in the major capsid protein gene. Yamada et al. (1994) suggested that the self-splicing intron might function as a mobile genetic element, e.g., transferring genes between algae and protists.

To summarize, considerable variation occurs in the chlorovirus genomes and the total number of genes in the chlorovirus gene pool exceeds that of a single isolate. The different sizes of the chlorovirus genomes as well as the large deletions and insertions, suggest that dynamic and frequent rearrangements of virus genomes occur in natural environments. The fact that the left end of the chlorella virus genome is tolerant to deletions/insertions/rearrangements suggests that a recombinational “hotspot” in this region allows viruses to exchange genes among themselves and possibly with their host(s).

2.2. Coccolithoviruses

2.2.1. Biology

The marine coccolithophorid Emiliania huxleyi is a unicellular alga found throughout the world. It is best known for its immense coastal and mid-oceanic blooms at temperate latitudes which cover 10,000 km² or more. The size and intensity of these blooms make E. huxleyi important in nutrient and CO₂ cycling, as well as biogenic sulfur production (in the form of dimethylsulphide (DMS) (Malin et al., 1994)). Consequently, E. huxleyi is a key species in global biogeochemical cycles and climate modeling (e.g., Charlson et al., 1987, Westbrook et al., 1993 and Westbrook et al., 1994).

E. huxleyi blooms are visible with low-orbit satellite imagery due to the reflectance of calcium carbonate scales, called coccoliths, which cover the algal surface. During a bloom, the alga constantly produces and sheds coccoliths into the surrounding water. However, the bloom is most visible in satellite images when the E. huxleyi cells die and shed their remaining coccoliths, ultimately resulting in a large movement of coccoliths to the sea-floor. This process represents one of the largest long-term sinks of inorganic carbon on Earth. One of the primary mechanisms for terminating E. huxleyi blooms is viral lysis (Bratbak et al., 1993, Bratbak et al., 1996 and Wilson et al., 2002). The fact that the coccolithoviruses play a major role in the demise of these blooms has only recently been appreciated.

2.2.2. Virion structure

Morphologically, the coccolithoviruses have an icosahedral capsid ranging from 160 to 200 nm that encapsidates a single copy of circular dsDNA. SDS-PAGE of sucrose gradient purified virions reveals at least nine proteins with a 54 kDa protein being the major capsid protein (Castberg et al., 2002). Given the high number of proteins detected in chlorovirus vi-
associated with the phaeoviruses appears to vary. For example, EsV infection of *E. siliculosus* has no detrimental impact on photosynthesis or growth of the alga (del Campo et al., 1997). However, photosynthesis in a virus infected *Feldmannia* species is reduced significantly, implying that virus infection contributes to the stunted growth observed in these virus-infected brown algae (Robledo et al., 1994).

Phaeoviruses are the only viruses in the family *Phycodnaviridae* reported to infect more than one species, e.g., EsV infects two additional algae. When EsV infects *Feldmannia simplex*, it initially induces pathological symptoms, which later subside. Because EsV is not able to produce additional virus particles in this host, this may be a dead-end for this virus (Müller et al., 1996a and Müller and Parodi, 1993). However, EsV is able to infect *Kuckuckia kylintii* and complete an infection cycle. The nascent EsV particles produced in *K. kylintii* still infect its original host, *E. siliculosus* (Müller, 1992).

Ectocarpus fasciculatus virus (EfasV) is another example of a phaeovirus that is able to infect more than one host. EfasV infects *E. siliculosus* (Müller et al., 1996b) and *Myriotrichia clavaeformis* (Maier et al., 1997). In both cases, there are morphological changes associated with infection, however, no progeny virions are produced (Müller et al., 1998). The ability of a virus to infect more than one host provides a conduit for transferring genes between different algal species.

2.3.2. Virion structure

Phaeoviruses are icosahedrons with diameters ranging from 120 nm for *F. simplex* virus 1 (FlexV-1) (Friess-Klebl et al., 1994) to 180 nm for *M. clavaeformis* virus 1 (MclaV-1) (Kapp et al., 1997). The particles have one or two electron dense layers surrounding an electron dense core which may represent a lipid membrane (Kapp et al., 1997). The internal membrane appears to be derived from the endoplasmic reticulum as capsids bud from the cisternae (Wolf et al., 1998 and Wolf et al., 2000). SDS-PAGE of proteins from four phaeoviruses revealed significant differences (Kapp et al., 1997 and Klein et al., 1995). However, one common feature in viruses which infect *F. simplex* or *E. siliculosus*, is the presence of glycoproteins (Friess-Klebl et al., 1994, Klein et al., 1995 and Lanka et al., 1993).

2.3.3. Life cycle

EsV initiates its life cycle by infecting free-swimming, wall-less gametes of its host. Virus particles enter the cell by fusion with the host plasma membrane and release a nucleoprotein core particle into the cytoplasm, leaving remnants of the capsid at the surface. The viral core moves to the nucleus within 5 min p.i. (Maier et al., 2002). One important feature that distinguishes the EsV-1 life cycle from the other phycodnaviruses is that the viral DNA is integrated into the host genome and is transmitted mitotically to all cells of the developing alga (Brautigam et al., 1995, Delaroque et al., 1999 and Müller, 1991b).

Not surprisingly, EsV-1 encodes a putative integrase. The viral genome remains latent in vegetative cells until it is expressed in the algal reproductive cells, the sporangia or gametangia. Massive replication of viral DNA occurs in the nuclei of these reproductive cells, followed by nuclear breakdown and viral assembly that continues until the cell becomes densely packed with virus particles (Lanka et al., 1993, Müller et al., 1998, Wolf et al., 1998 and Wolf et al., 2000). Virus release is stimulated by the same factors that induce discharge of gametes from the host, i.e., changes in temperature, light, and water composition (Müller, 1991a). This synchronization facilitates interaction of viruses with their susceptible host cells.

2.3.4. EsV-1 genome

The EsV-1 sequence was reported in 2001, the largest virus genome to be sequenced at the time. The 335 kb genome has a 52% G + C content with low levels of methylated cytosines (1% 5 mC) and adenines (3% 6 mA) (Delaroque et al., 2001 and Lanka et al., 1993). Tandem repeats are located in several regions of the genome, which make up ~12% of the genome (Delaroque et al., 2001). In addition to these repeats, the EsV-1 genome has the unusual property of containing several single stranded DNA regions of various lengths (Klein et al., 1994 and Lanka et al., 1993). Studies on the structure of the genome have produced an enigma. Pulsed field electrophoresis, DNA restriction mapping, and electron microscopy experiments indicate that the EsV-1 genome is a circular molecule (Kapp, 1998, Lanka et al., 1993 and Müller et al., 1998). However, the DNA sequencing results produced one 335-kb linear contig with termini containing almost perfect inverted repeats of 1.8 and 1.6 kb (Delaroque et al., 2001). Attempts to link the termini (i.e., to complete a circle) by PCR using primers corresponding to sequences within the inverted repeat regions were unsuccessful. Thus, the inverted repeats apparently mark the ends of a linear molecule. These conflicting results can be resolved if the complementary inverted terminal repeats anneal with each other to form a cruciform structure that effectively closes the DNA circle (Delaroque et al., 2001).

Analysis of the genome revealed 231 major ORFs of 65 codons or larger. Forty-eight percent of the major ORFs had sequence similarities to another protein in the public databases. EsV-1 differs from other algal viruses by encoding six hybrid His-protein kinases, including one that is located in the virion internal membrane (Delaroque et al., 2001). Hybrid His-protein kinases are members of a large family of two component signaling systems that serve as stimulus-response coupling mechanisms in many organisms (Stock et al., 2000).

Due to the life style of EsV-1 it is not surprising that the genome also encodes proteins involved in integration/transposition (Delaroque et al., 2001). In addition to these predicted proteins, EsV-1 also encodes several proteins involved in replication, nucleotide metabolism, transcription, and sugar/lipid metabolism (Fig. 1).

2.3.5. Diversity of Phaeovirus genomes

Among the phycodnaviruses, the phaeovirus genomes exhibit the greatest range in size. FsV-1 is another well-studied phaeovirus which infects an unclassified *Feldmannia* species. Although the FsV-1 180-kb genome sequence is incomplete, enough genomic fragments have been sequenced to allow comparisons with the 335 kb EsV-1 genome: (i) like EsV-1, FsV-1 contains numerous repeat regions, however, the sequences of these repeat regions differ from EsV-1. (ii) The similarity between FsV-1 and the EsV-1 genes is low. For ex-
ample, the EsV-1 DNA polymerase only has 45% amino acid identity to the FsV-1 enzyme (Delaroque et al., 2001).

Recently, another phaeovirus genome was sequenced. The FirrV-1 (endemic to *Feldmannia irregularis*) genome consists of a 180 kb linear dsDNA plus smaller fragments of 10–170 kb which are probably degradation products of the 180 kb fragment (Delaroque et al., 2003). Although the FirrV-1 genome is approximately half the size of the EsV-1 genome, there is some sequence similarity between these viruses, including genes involved in nucleic acid metabolism, sugar metabolism, integration, and transduction. EsV-1 has several genes with redundant functions; whereas, FirrV-1 has very few redundant genes. One-third of the FirrV-1 genes have no orthologs in the EsV-1 genome. EsV-1 has 75 more genes than FirrV-1. These related viruses may have evolved from a more complex common ancestor via loss-of-genes and recombination mechanisms, resulting in highly divergent genome structures (Delaroque et al., 2003).

3. Comparison of EhV-86, EsV-1, and PBCV-1 genomes

PBCV-1, EsV-1, and EhV-86 genomes each have distinguishing structural and functional characteristics (Table 2). One common characteristic is their large dsDNA genomes. The PBCV-1 genome is a linear molecule with hairpin ends, EsV-1 has a linear genome with apparent sticky ends, and the EhV-86 genome is circular. PBCV-1 and EhV-86 replicate autonomously as episomes, while EsV-1 integrates into a host chromosome and reactivates its genome in response to developmental cues.

Table 2. Genome data of sequenced phycodnaviruses

<table>
<thead>
<tr>
<th>Genus</th>
<th>Virus</th>
<th>Host</th>
<th>Genome size (bp)</th>
<th>% G + C content</th>
<th>ORFs</th>
<th>tRNAs</th>
<th>MCP (aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorovirus</td>
<td>PBCV-1</td>
<td>Chlorella NC64A</td>
<td>330,743</td>
<td>40.0</td>
<td>366</td>
<td>11</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>NY-2A</td>
<td>Chlorella NC64A</td>
<td>368,683</td>
<td>40.7</td>
<td>394</td>
<td>7</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>AR158</td>
<td>Chlorella NC64A</td>
<td>344,690</td>
<td>40.8</td>
<td>357</td>
<td>6</td>
<td>437</td>
</tr>
<tr>
<td></td>
<td>MT325</td>
<td>Chlorella Pbi</td>
<td>314,335</td>
<td>45.3</td>
<td>333</td>
<td>10</td>
<td>433</td>
</tr>
<tr>
<td>Pheovirus</td>
<td>EsV-1</td>
<td>Eincaulis silicousa</td>
<td>335,593</td>
<td>51.7</td>
<td>231</td>
<td>0</td>
<td>476</td>
</tr>
<tr>
<td></td>
<td>FirrV-1*</td>
<td>Feldmannia irregularis</td>
<td>191,667</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>435</td>
</tr>
<tr>
<td>Coccolithovirus</td>
<td>EhV-86</td>
<td>Emiliania huxleyi</td>
<td>407,339</td>
<td>40.2</td>
<td>472</td>
<td>5</td>
<td>533</td>
</tr>
</tbody>
</table>

ND, not determined.

* Genomic sequencing and annotation incomplete.

3.1. Transposition and horizontal gene flow

One unexpected outcome of the sequencing projects was the discovery of several virus encoded gene products which could contribute to DNA rearrangements and/or transposition. PBCV-1 encodes two proteins that resemble bacterial transposases. In addition, PBCV-1 encodes 12 ORFs that contain motifs found in homing endonucleases (Kowalski et al., 1999). As mentioned previously, the recently sequenced chlorovirus NY-2A encodes six putative transposases and 28 homing endonucleases (Fitzgerald et al., manuscript in preparation). EsV-1 encodes two ORFs that resemble bacterial transposases and two ORFs with a homing endonuclease motif, while EhV-86 encodes one ORF that resembles a homing endonuclease.

The EsV-1 genome has three large dispersed repeat regions, termed R1, R2, and R3, that contain ORFs which currently are not considered to be genes because they lack upstream AT-rich sequence elements. These ORFs do not match any proteins in the databases. Interestingly, the R1 and R2 repeats are located downstream of genes encoding putative bacterial IS4 family transposases (IS, insertion sequence; (Rezsohazy et al., 1993)). The R1- and R2-transposase units are bracketed by imperfect inverted repeats of 20 bp that resemble the ends of bacterial IS4 elements. Furthermore, R1 and R2 frame a genomic ~29 kb segment forming a transposon-like structure. Like bacterial transposons, the EsV-1 transposon could confer advantages to the host.
In summary, the phycodnaviruses encode several proteins that could be involved in DNA rearrangements either within or between virus genomes. These enzymes could contribute to the plasticity that appears to exist in the virus genomes. In the laboratory, the chlorella virus genomes are quite stable with few spontaneous mutants observed. It should be noted, however, that none of the putative phycodnavirus transposases and homing endonucleases have been tested for function.

4. Comparison of gene content

Collectively, the PBCV-1, EsV-1, and EhV-86 genomes have in excess of 1000 unique ORFs based on sequence similarity to public databases (Delaroque et al., 2001, Li et al., 1997 and Wilson et al., 2005a). Many of these ORFs have no significant similarity to any of the database entries and therefore, are classified as unknowns. Interestingly, we find there are only 14 ORFs that are homologous between these three viral genomes (note: using other methods Iyer et al. (2006) have identified a greater number of common genes in the phycodnaviruses, which include the set we present here). One hundred twenty-three putative ORFs are arranged by their metabolic domains in Fig. 1. Some ORFs encode for the same function; however, their evolution and origin are unclear. For example, replication factor C (large subunit) is found in both PBCV-1 and EsV-1, yet the sequence similarity falls below the threshold of E = 0.001 in a blastp search analysis. Nevertheless, Fig. 1 represents functional grouping, and in most cases the relationships are homologous. The similarities between the different genomic ORFs were determined by using blastp (E < 0.001, blosum62 matrix) (Altschul et al., 1990).

There are 12 (~10%) ORFs of common functionality encoded by all three phycodnaviruses, of which 10 are homologous between these three viruses. It is not surprising that several of these 12 ORFs are involved in DNA replication, such as δ-DNA polymerase, large and small subunits of ribonucleotide reductase, PCNA, superfamily II and III helicases, and the newly recognized archaeo-eukaryotic primases (Iyer et al., 2005). In addition to the 10 homologs that have been assigned a putative function, there are three homologous ORFs that are not found in public databases, suggesting these genes are unique to the phycodnaviruses. These unknown homologs have amino acid sequence identities of 19–33%. We assume these homologs are involved in important processes associated with the phycodnavirus life cycle otherwise they would have been eliminated. Another common ORF among the three phycodnaviruses is the major capsid protein, which has amino acid sequence identities of 26–30%. Overall, the amino acid identity between the common protein homologs ranges from 19 to 53%.

PBCV-1 and EsV-1 have 28 homologs that are absent in EhV-86. Seven are listed in Fig. 1 and the remaining 21 have unknown functions. The average amino acid identity between the unknown ORFs is 30% with a range of 22–37%. PBCV-1 and EhV-86 have 10 homologs that are absent in EsV-1. Interestingly, most of the PBCV-1 homologs found in EsV-1 are unknown; whereas, only one of the 10 PBCV-1 homologs in EhV-86 is unknown.

There is no co-linearity of the common genes in the three viruses. However, this is not surprising because very little co-linearity exists between two viruses that infect different isolates of chlorella (Fitzgerald et al., manuscript in preparation).

5. Phycodnavirus genes are probably very old

As mentioned in Section 1, accumulating evidence indicates that at least some of the phycodnavirus genes, and by implication the viruses themselves, have a long evolutionary history, possibly dating back to the time that prokaryotic and eukaryotic organisms separated, ca. 2.0–2.7 billion years ago. This evidence includes: (i) phylogenetic analysis of δ-DNA polymerases place the phycodnaviruses near the origin of all the eukaryotic δ-DNA polymerases (Villarreal and DeFilippis, 2000). (ii) Phylogenetic analyses of several other PBCV-1 gene products place the virus gene products near the base of the trees. These products include ornithine decarboxylase, potassium ion channel protein, and GDP-d-mannose-4,6 dehydratase. (iii) Many of the PBCV-1 encoded proteins, including histone H3-lysine27 dimethylase, ornithine decarboxylase, DNA topoisomerase type II, and the potassium ion channel protein are among the smallest of their type and are possibly the ancestor of their larger relatives. Traditionally, one thinks that viruses acquire genes from their host and that these gene products become less complex with time. However, the reverse seems possible, i.e., the precursor proteins were simpler and that during evolution the proteins added domains to fill their specialized roles in more complex organisms (e.g., gaining regulatory capabilities). (iv) Some PBCV-1-encoded enzymes are more flexible than those from other eukaryotic organisms. For example, some virus enzymes carry out two functions whereas more “advanced” organisms require two separate enzymes to accomplish the same tasks. One interpretation is that these virus proteins may be progenitor enzymes and thus more precocious than their highly evolved homologs in eukaryotes, where two separate enzymes carry out the function of one PBCV-1 enzyme. This dual functionality in the PBCV-1 enzymes does not result from gene fusion. Examples include: (a) ornithine decarboxylase which decarboxylates arginine more efficiently than ornithine (Shah et al., 2004). (b) dCMP deaminase which also deamidates dCTP and dCDP, as well as the expected dCMP (Zhang et al., manuscript in preparation). The catalytic site of the PBCV-1 dCMP deaminase appears to be more flexible than the enzyme from other organisms (note: the Km of the virus enzyme is similar for dCMP and dCTP but it is higher than dCMP deaminases from other organisms). (c) GDP-d-mannose 4,6 dehydratase not only catalyzes the formation of GDP-4-keto-6-deoxy-d-mannose, which is an intermediate in the synthesis of GDP-l-fucose, the enzyme can also reduce the same intermediate to GDP-d-rhamnose (Tonetti et al., 2003). We expect that other phycodnavirus enzymes will have dual functions, consistent with their presumed ancient origin. (v) Indeed, phycodnavirus genomes are mosaics of prokaryotic and eukaryotic genes. The phycodnaviruses encode an amazing variety of proteins, some of which are prokaryotic-like, e.g., the DNA methyltransferases and restriction endonucleases. Other proteins are very eukaryotic-like, e.g., the mRNA capping enzymes. The genes encoding these proteins could have been acquired from
<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA replication, recombination and repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archaeal nucleotide-primase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATPaseα</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA 5' nick endonuclease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA topoisomerase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA duplex-ligase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eukaryotic helicase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicase-Like BC/CD-like</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helicase-Supernatant III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nucleic acid-binding protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNApolD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymorphic tRNA-specific glycosylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication factor C (gag subunit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replication factor C′ (cm subunit)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNApolyA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA polymerase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein synthesis, modification, and degradation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP-dependent protease C proteolytic subunit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esterase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclease-4 hydroxylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease-Cysyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease-OTU-like cysteine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease-Sertio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease/disulfide isomerase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKP1 protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiol oxidoreductase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Translation elongation factor-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubiquitin C-terminal hydrolase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Za mito-philolysin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RNase)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration and transposition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-inverse of IAY sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endonuclease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herring-endonuclease GIV, VIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herring-endonuclease UNV, GSP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repressor of IAY sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transposase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugar & lipid manipulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alginate mannuronuclease epimerase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-lactate dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acid dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphatase-2, 5-bisphosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purine monophosphate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP-D-mannose dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucosamine synthetase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucosephosphoryl dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose/transporter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrolase synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipid phosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycosyltransferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-acetylated phosphorylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyalcohol phosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphingolipid transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sterol dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar lyase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transcription of fatty acid elongation protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UDP-glucose dehydrogenase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>PBCV-1</td>
<td>EαV-1</td>
<td>EBV-86</td>
</tr>
<tr>
<td>ABC transport protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartate aminotransferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia nitrilase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co peroxidase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enterotoxin A protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-acetylated phosphorylase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystic fibrosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline-phosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serine-phosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr-OH transfer protein</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tryptophan-tryptophyl transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine-leucine transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y-aminolevulinic acid synthase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G-protein specificity phosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catecholate oxidase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyrosine kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphoadenylate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphodiester transferase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser/Thr protein kinase</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present in all 3 viruses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBCV-1 + EαV-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBCV-1 + EBV-86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EαV-1 + EBV-86</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description</th>
<th>PBCV-1</th>
<th>EαV-1</th>
<th>EBV-86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Enzyme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virion Associated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains information about gene expression in different virus strains and includes various enzymatic activities and roles in viral life cycles.
their hosts over time, but another possibility is that the genes existed at the time that prokaryotic and eukaryotic organ-
isms separated. This implies that the progenitor organism(s) lost genes as it evolved into a virus. (vi) Finally, one of the
earliest eukaryotic cells could have resembled a single celled
algae (Yoon et al., 2004), and viruses of their progenitors may
have co-evolved with their hosts. Certainly, the suggestion of
the antiquity of the phycodnavirus proteins is speculative (al-
though not without support), but additional viral genomes are
being sequenced which may help resolve any ambiguities re-
sulting from the current studies.

6. Perspectives

Sequence analyses of three phycodnaviruses suggest that
this family may have more sequence diversity than any other
virus family. There are in excess of 1000 unique ORFs, and
only 14 homologous ORFs are common in these three viruses.
To begin to appreciate the potential diversity in the phycod-
naviruses world-wide, one estimates that there are 10^7 to 10^8
phycodnaviruses per ml of water (this number is derived from
estimates of 10^7 virus-like particles per ml of seawater and
that 0.01–1% of these particles are phycodnaviruses (Bergh
et al., 1989 and Proctor and Fuhrman, 1990)). Given the cur-
rent estimates of fresh and oceanic waters having a volume of
10^24 ml, and assuming recombination and mutation frequen-
cies similar to their eukaryotic host (~10^-6 nucleotide changes
per replication cycle), genome sizes of 10^5 kb, infection inci-
dences of 10%, a 10% sequence change being enough to cre-
ate a new virus, and one infection cycle per day, then we es-
timate that 10^19 new phycodnaviruses could be formed each
day. Much of the genetic change would be selected against
result in defective viruses; nevertheless, these estimations
suggest that the phycodnaviruses may be exploring sequence
space more extensively than any other eukaryotic virus. This
phenomenon is primarily due to the vast numbers of hosts and
viruses constantly engaged in fresh and marine/coastal waters.

Despite the large genetic diversity in the three sequenced
phycodnaviruses (~1000 unique ORFs), phylogenetic analyses
of δ-DNA polymerases (Chen et al., 1996, Villarreal and De-
Filippis, 2000 and Wilson et al., 2005b) and the superfamily
of archea-eukaryotic primases (Iyer et al., 2005) indicate that
the phycodnaviruses group into a monophyletic clade within
the NCLDVs. A recent analysis using eight concatenated core
NCLDV genes also indicates that the phycodnaviruses cluster
together and are members of the NCLDV “superfamily” (Al-
len et al., 2006). However, it is obvious to us that only the first
steps have been taken in identifying phycodnaviruses. Meta-
genomic studies, such as DNA sequences from the Sargasso
Sea samples (Venter et al., 2004), indicate that many gene prod-
ucts resemble those of the phycodnaviruses. For example, the
PBCV-1 major capsid protein has 213 BLAST hits when us-
ing blastp against the non-redundant and environmental non-
redundant databases at NCBI. One hundred of these hits are
to the unknown environmental sequences from the Sargasso
Sea project. Many of these “unknowns” are more similar to
the major capsid protein of PBCV-1 than the major capsid proteins
from other phycodnaviruses. While the PBCV-1 major cap-
sid protein matches well with the protein coded by the
Hetero-
sigma akashiwa virus 01 (Table 1), 14 “unknown” sequences
are more similar to the PBCV-1 protein than the next protein
from a known phycodnavirus, FirtV-1. These results are inter-
esting because PBCV-1 infects a fresh water alga, whereas the
Sargasso Sea is located in the mid-Atlantic Ocean.

Phylogenetic studies with individual phycodnavirus genes
also suggest that the viruses, or at least some of their genes,
are evolutionary very old. Thus, studies on the phycodnavi-
ruses, as well as other NCLDV members, may reveal informa-
tion on the evolution of genes and genomes. A few evolution-
ary biologists have suggested that large dsDNA viruses, like
the phycodnaviruses, may be the origin of the nucleus in euk-
aryotic cells (e.g., Bell, 2001, Pennisi, 2004, Villarreal, 2004
and Villarreal and DeFilippis, 2000); whereas, another biol-
gist has suggested that the NCLDVs may be members of a
fourth domain of life (Raoult et al., 2004). Even if these in-
triguing hypotheses prove to be incorrect, the study of the
phycodnaviruses will continue to produce many unexpected
and exciting phenomena.

Figure 1. Selected ORFs in the PBCV-1, EsV-1, and EhV-86
genomes are arranged by their metabolic domains. If a genome
encodes a putative protein more than once, the value in the box
indicates the number of genes of this type per genome. Color-coding
is indicated on the figure and is used to depict the relation-
ship between viruses. Red indicates proteins that are encoded by all three viruses; yellow indicates proteins that are encoded by PBCV-1 and EsV-1, but not EhV-
86; green indicates proteins that are encoded by PBCV-1 and EhV-86, but not EsV-1; orange indicates proteins that are encoded by EsV-1 and EhV-86, but not
PBCV-1; and blue indicates there are no shared homologs. Solid colored boxes indicate that the putative proteins are homologs. A diagonally-striped box indi-
cates that the putative proteins are non-homologous, and a checkered box indicates that the putative proteins are a mix of homologous, non-homologous, or
unique ORFs. In this case, a footnote has been added to clarify the specific differences; in parentheses the ORFs has been defined by the gene number and any
ORF beginning with an “A” is from the PBCV-1 genome, an “EsV” is from the EsV-1 genome and an “EhV” is from the EhV-86 genome. Proteins known to be
functional are indicated with a star (*) and proteins known to be associated with the virion are indicated with a plus sign (+). 1ATPase, one homolog between all
three viruses (A392R, EsV-26, and EhV072), one homolog between PBCV-1 and EsV-1 (A565R and EsV-171) and two PBCV-1 ATPases which have no homo-
logs in EsV-1 or EhV-86 (A536L and A554/556/557L). 2Exonuclease, one homolog between PBCV-1 and EsV-1 (A166R and EsV-64) and one unique to EsV-1
(EsV-126). 3PCNA, one homolog between all three viruses (A193L, EsV-132, and EhV020), one homolog between PBCV-1 and EhV-86 (A574L and EhV020).
However, EhV440, another EhV-86 encoded PCNA, has no homologs in PBCV-1 or EsV-1. 4tRNAs, PBCV-1 has 11 tRNA genes, encoding AA Leu, Ile,
Asn, and Arg. 4Homing endonuclease HNH, one homolog between two
viruses (A422R and EhV087). PBCV-1 (A87R) and EsV-1 (EsV-119) are homologous. Four other HNH endonucleases are unique to PBCV-1 (A267L, A354R,
A478R, and A490L). Ser/Thr protein kinase, four PBCV-1, two EsV-1, and one EhV-86 S/T kinase ORFs are homologous (A248R, A277L, A282L, A289L,
EhV-82, EsV-111, and EhV451). The remaining S/T kinase ORFs from the three genomes (A34R, A278L, A614L, A617R, EsV-104, EsV-156, and EhV402) are
unique. 6Superfamily II helicase, PBCV-1 (A153R), and EsV-1 (EsV-66) are homologous. The two additional PBCV-1 encoded helicases (A241R and A363R)
and EhV104 are unique.
Acknowledgements

Research at our laboratory was supported by Public Health Service Grant GM32441 from the National Institute of General Medical Sciences and the National Science Foundation Grant EF-0333197. Partial support was provided to D.D. through a grant from the National Institutes of Health, COBRE Grant P20RR15635. We wish to thank several members of the algal virus scientific community for sharing information and preliminary results from their very interesting viruses, especially Gunnar Bratbak, Corina Brussaard, Nicholas Delaroque, Claire Evans, Gil Malin, Keizo Nagasaki and Willie Wilson. We also would like to thank Dr. L. Aravind for sharing preliminary results, also reported in this special issue on DNA viruses.

References

Brautigam, M., Klein, M., Knippers, R., Müller, D.G., 1994. Persistence of viruses in the algal community for sharing preliminary results, also reported in this special issue on DNA viruses.

Brautigam, M., Klein, M., Knippers, R., Müller, D.G., 1995. Inheritance and preliminary results from their very interesting viruses, especially Gunnar Bratbak, Corina Brussaard, Nicholas Delaroque, Claire Evans, Gil Malin, Keizo Nagasaki and Willie Wilson. We also would like to thank Dr. L. Aravind for sharing preliminary results, also reported in this special issue on DNA viruses.

Glaasendorff, N., 2000. About the last common ancestor, the universal life-tree. World-wide electronic publication, National University of Ireland, Galway.

