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Pediatric psychologists are often interested in finding 
patterns in heterogeneous longitudinal data. Latent Vari-
able Mixture Modeling is an emerging statistical ap-
proach that models such heterogeneity by classifying in-
dividuals into groupings with similar patterns, called 
latent classes. The purpose of this second article is to of-
fer a nontechnical overview and introduction to longi-
tudinal mixture modeling to facilitate applications of la-
tent variable mixture models (LVMM) within the field 
of pediatric psychology. In part 1 (Berlin, Williams, & 
Parra, 2013) we provided an overview of LVMM, high-
lighted the strengths of this analytic approach, and re-
viewed strategies for determining the optimal num-
ber of observed subgroups. Step-by-step examples were 
provided illustrating two prominent types of cross-sec-
tional mixture modeling: Latent class and latent profile 
analyses. This companion article builds off the founda-

tional knowledge presented in part 1 and provides step-
by-step examples illustrating closely related LVMMs of 
longitudinal data: A latent class growth analysis (LCGA) 
and two variants of a growth mixture model (GMM). 

As described in part 1, LVMMs focus on categorical 
latent variables representing latent classes. LVMM is a 
person-centered approach that probabilistically assigns 
individuals into latent classes based upon similar pat-
terns of observed cross-sectional and/or longitudinal 
data. LVMM groups individuals into subpopulations by 
inferring, based on the data, each individual’s member-
ship in latent classes. As a byproduct of mixture mod-
eling, every individual in the data set has their own 
probabilities calculated for their membership in all of 
the latent classes estimated. Latent classes are based on 
these probabilities. Individuals are allowed fractional 
membership in all classes, reflecting the varying degrees 
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Abstract
Objective — Pediatric psychologists are often interested in finding patterns in heterogeneous longitudinal data. Latent 

Variable Mixture Modeling is an emerging statistical approach that models such heterogeneity by classifying indi-
viduals into unobserved groupings (latent classes) with similar (more homogenous) patterns. The purpose of the 
second of a two article set is to offer a nontechnical introduction to longitudinal latent variable mixture modeling. 

Methods — 3 latent variable approaches to modeling longitudinal data are reviewed and distinguished. 
Results — Step-by-step pediatric psychology examples of latent growth curve modeling, latent class growth analysis, 

and growth mixture modeling are provided using the Early Childhood Longitudinal Study-Kindergarten Class of 
1998–99 data file. 

Conclusions — Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish to 
find groupings of individuals who share similar longitudinal data patterns to determine the extent to which these 
patterns may relate to variables of interest. 
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of certainty and precision of classification (Asparouhov 
& Muthén, 2007; Muthén, 2001). 

In this article, we illustrate examples of longitudi-
nal LVMM, which includes latent class growth analy-
sis (LCGA) and growth mixture modeling. Given space 
limitations, longitudinal latent class, models such as 
hidden markov models, mover-stayer models (Lange-
heine & van de Pol, 2002), and latent transition analy-
ses (LTA) will not be covered; however, an introduc-
tion to and book length treatments of LTA are available 
are available for those interested (Collins & Lanza, 2009; 
Lanza, Flaherty, & Collins, 2003). We begin by briefly re-
viewing latent growth curve models (LGCMs), which 
serve as the foundation for both LCGAs and GMMs. 
We then present examples of LCGA and GMMs using 
the four steps recommended by Ram and Grimm (2009) 
with considerations from Jung and Wickrama (2007): (a) 
problem definition, (b) model specification, (c) model 
estimation, and (d) model selection and interpretation. 

Latent Growth Curve Modeling
To distinguish LCGA and GMMs it is helpful to briefly 
review LGCMs and the parameters of this type of 
model. LGCM is a multivariate application of SEM that 
examines how individuals change on one (or more) ob-
served outcome variable over time. In LGCM repeated 
measurement of observed variables are used as indica-
tors of latent variables that represent different aspects 
of individual’s change (see Figure 1, circles labeled in-
tercept and slope). Most often, there are two latent vari-
ables (sometimes called random coefficients). The first is 
an intercept, which represents the level of the outcome 
when time is equal to zero and the second is a slope, 
which represents the rate of change in the outcome over 
time. In LGCM each participant has his/her own esti-
mated intercept and slope, and these are allowed to vary 
across individuals. In Figure 1, this variability across in-
dividuals is estimated as the variance of the latent inter-
cept and slope and is represented as a double-headed 
arrow originating from and pointing to the same vari-
able. If the slope and intercept are believed to relate to 
one another, their covariance can be modeled to reflect 
how an individual’s start value relates to his/her rate of 
change. Latent variables also have means, reflecting the 
average of all individuals’ intercepts and slopes. These 
means are depicted in Figure 1 as the paths leading from 
the triangle to the intercept and slope. In addition, par-
ticipants have their own deviations from these means at 
each time period, called residual/error variance, as well 
as residuals, and/or random effects, which are depicted 
graphically with the smaller circles with double-headed 

arrows (labeled rv1–rv6). Significance tests for all these 
parameters are available to determine whether these 
estimates differ from zero and can be used to answer 
questions such as “is the amount of change, on average, sig-
nificantly different than zero?” or “is there significantly vari-
ability in individuals’ rate of change?” 

The exact interpretation of the intercept and slope de-
pend on how the researcher fixes or estimates the rela-
tions between these latent variables and their indicators. 
By fixing the observed variable factor loadings (e.g., the 
values of F1 to F6 in Figure 1), different hypothesized 
relations can be tested about the origin (zero point) and 
the rate or shape of change. This assumes that individ-
uals were assessed at roughly the same intervals (later 
we will show an example when there are individually 
varying times of observations). Typically, the intercept 
factor loadings are all fixed to one (a “constant”) in tan-
dem with fixing the first slope loading to zero (e.g., F1 
in Figure 1) such that the intercept can be interpreted as 
the individual’s estimated start value. Interpretation of 
the slope depends on how the remaining slope factors 
are specified. To model linear change, the slope loadings 
then are fixed to reflect the time since (or until) the zero-
point. In Figure 1, children’s body mass index (BMI) z-
scores are measured six times over the course of eight 
years: Fall and spring of kindergarten, and the spring 
of first, third, fifth, and eighth grades. To interpret the 
slope as the annual linear rate of change in BMI z-scores, 
the factor loadings of F1–F6 would be fixed at 0, 0.5, 
1.5, 3.5, 5.5, and 8.5, representing the time in years since 
zero. If the desired metric of time was months, these val-
ues could be fixed at 0, 6, 18, 42, and 102. Other inter-
cept values might also be of interest, and can be mod-
eled by altering which slope factor loading is fixed to 
zero. For example, by fixing the slope loading of the 
last time point (e.g., F6) to zero (and F1 = −8.5, F2 = −8, 
F3 = −7, F4 = −5, F5 = −3), the mean intercept is inter-
preted as the average value of the youth’s BMI z-score 
during the spring of eighth grade, and the mean slope is 
interpreted as the average annual rate of change in the 
youth’s BMI z-score. 

Two of the benefits of a SEM approach to model-
ing change is the flexibility it offers in terms of model-
ing time and the available tools to evaluate these mod-
els. As a structural equation model, Figure 1 represents 
the researcher’s hypothesis about the relation between 
time and the outcome, and as such, goodness-of-fit sta-
tistics and other indices can be used to establish the 
best way of modeling relationships and/or change 
over time. Figure 1 hypothesizes that changes in BMI 
z-scores are linear, but alternative models can be tested 
by adding additional latent variables, changing/freely 
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Figure 1. A Graphical Representation of a LGCM (above dashed box), and Longitudinal LVMM (above and below dashed box).
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estimating the slope factor loadings, and/or imposing 
various constraints within the model. Alternative mod-
els include no-change (an intercept only model), poly-
nomial change with one (quadratic function), two (cu-
bic function), three (quartic) or more curves, piecewise 
(breaking growth into specific segments) and/or other 
complex and nonlinear models (Barker, Rancourt, & 
Jelalian, 2013; Grimm & Ram, 2009; Ram & Grimm, 
2007). For example, if researchers believed that the 
amount of BMI z-score change either accelerates or de-
celerates with the passage of time, a third latent vari-
able representing the quadratic slope could be added 
to the growth model. Factor loadings for this quadratic 
slope would be fixed to correspond to the square of the 
linear slope’s loadings (i.e., 0, 0.25, 2.25, 12.25, 30.25, 
and 72.25). We encourage those interested in an over-
view of SEM specific to pediatric psychology to review 
Nelson, Aylward, and Steele (2008). 

Two additional models warrant brief mention: Piece-
wise growth and latent basis models. With six or more 
time points, it is possible to estimate separate patterns of 
change for different phases of the study period (piece-
wise model). For example, inspection of the individual 
raw data and the mean level data may suggest a rela-
tively flat pattern of change over the first three time 
points followed by a steep increase between the fourth 
and sixth time points. These models are also useful for 
clinical trials in which there is a period of improvement 
and/or symptom reduction followed by a maintenance 
period that has relatively little change. A benefit to the 
piecewise model is that it allows the researcher to esti-
mate both trajectories simultaneously. The most flexible 
modeling of time is the latent basis framework (Grimm 
& Ram, 2009; Meredith & Tisak, 1990). This framework, 
along with fixing at least two time points, allows re-
searchers to freely estimate the remaining factor load-
ings to reflect time that may not follow a standard math-
ematical shape. Often, the first loading is fixed to zero 
and the last is fixed to one. This allows for interpreta-
tion of the estimated factor loading as the relative per-
cent of growth achieved by the last time period. Latent 
basis models may be the best choice for data that do not 
seem to fit typical linear, quadratic, or cubic patterns. 

It is important to note that the number of time points 
available will influence how change over time can be 
modeled. With three time points, it is possible to model 
a linear pattern and a latent basis model; with four time 
points, linear and quadratic patterns can be modeled as 
well as a latent basis model; and with five time points, 
linear, quadratic, and cubic patterns can be modeled as 
well as a latent basis model. We encourage those inter-
ested in learning more or seeking technical details to re-

view the work of Duncan, Duncan, and Strycker (2006), 
Preacher, Wichman, MacCallum, & Briggs (2008), and 
Bollen and Curran (2005) and we refer readers to De-
lucia and Pitts (2006) and Singer and Willett (2003) 
for coverage of the multilevel approach to modeling 
change. We now turn our attention to modeling longitu-
dinal data using LVMM. 

Latent Class Growth Analysis and Growth Mixture 
Models
Both LCGA and GMMs are closely related to one an-
other and are specific types of LGCMs. A major analytic 
goal of LCGA and GMM is to understand and predict 
individual differences (or variability) in parameters re-
flecting participants’ change in outcomes over time. In-
dividuals are classified into latent classes based upon 
similar patterns of data. The observed distribution of 
values may be a “mixture” of two or more subpopula-
tions whose membership is unknown. As such, the goal 
of both LCGA and GMM is to probabilistically assign 
individuals into subpopulations by inferring each indi-
vidual’s membership to latent classes from the growth 
model data. The conceptual basis for these models is de-
picted graphically in Figure 1, in which the arrows from 
the categorical latent variable “C” to the latent means, 
variances, covariances, and residual variances, signi-
fies that these parameters can vary across latent classes 
(to decrease clutter in the figure these arrows point to 
the names of the various parameters, rather than to the 
graphical depiction of every possible parameter). 

The primary difference between LCGA and GMM is 
which values are allowed to vary within and across la-
tent classes. LCGA is a special type of GMM, in which 
the variance of latent slope and intercept are fixed 
to zero within class, and allowed to vary only across 
classes. Because there is no within class variability there 
is no covariance between the slope and intercept, and 
there are far fewer parameters to estimate. With these 
constraints, it assumes that all individual growth tra-
jectories within classes are homogeneous (Nagin, 1999). 
This approach may be particularly helpful when work-
ing with smaller sample sizes or when more complex 
models fail due to nonconvergence, out of range esti-
mates, or other statistical problems, or as an initial mod-
eling step prior to specifying a GMM model (Jung & 
Wickrama, 2007). 

Unlike LCGA, GMM is a more flexible approach that 
allows researchers to determine which of the parame-
ters depicted in Figure 1 (latent variables means, vari-
ances, covariances, and residuals, etc.) can vary both 
within and across classes. In the context of a LGCM 
model, researchers may attempt to account for vari-
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ability in slopes and intercepts by adding predictors of 
change and baseline values to the growth model. This 
approach assumes that the sample is drawn from a sin-
gle population that can be adequately characterized by 
a single set of parameters (i.e., those depicted in Fig-
ure 1; Ram & Grimm, 2009). In cases where subpopula-
tions are observed, such illness type, sex, race, geographic 
regions, etc., this is typically handled using multiple 
population or multiple group approaches to LGCM 
(Duncan, Duncan & Strycker, 2006; Ch. 5). When hetero-
geneity in growth parameters may be due to the mix-
ture of two or more unobserved subpopulations whose 
membership is unknown a priori, LGCM may not be the 
best approach. If these unobserved memberships are be-
lieved to be distinguished by different growth parame-
ters, than LVMM may be an excellent approach to iden-
tify these individuals. 

Four-Step Framework

Consistent with recommendations (Ram & Grimm, 
2006), we follow a four step process to estimate LVMMs: 
Problem definition, model specification, model esti-
mation, model selection and interpretation (see part 
1 for an overview). The procedures unique to estimat-
ing longitudinal LVMMs are described briefly below. 
Example syntax is available for all models as an online 
supplement. 

Problem Definition
When conducting LVMMs with longitudinal data, a 
key step in the problem definition stage is determin-
ing the best way of modeling change over time. Re-
searchers must identify a change function (straight line 
[linear function], one curve [quadratic function], two 
curves [cubic function], or two or more separate trajec-
tories [piecewise model)] that best represents patterns 
of change in the data. This single-group model will be 
used as the base model for the mixture analyses. The-
ory and prior research should be used to guide selec-
tion of the base, single-group model. In addition, in-
spection of individual-level raw data and mean level 
patterns over time can provide clues on how best to 
model change. If several single-group models seem 
plausible, a separate latent growth curve analysis 
should be conducted for each pattern of change. The 
statistical fit can then be used to evaluate each of the 
models and establish the best way to model change 
over time. To evaluate the goodness-of-fit of the single-
group models, excellent models generally have the fol-
lowing values: CFI ≥.95, RMSEA <.05, and SRMR <.05 
(Hu & Bentler, 1999). 

Model Specification
In the model specification stage of estimating longitu-
dinal LVMMs, hypotheses about the number of classes 
should be generated. Again, theory and prior research 
should be used to inform this decision. Researchers can 
also take an exploratory approach and estimate as many 
classes possible that yield proper solutions. In estimat-
ing longitudinal LVMMs, researchers must make initial 
decisions about whether they will fix the variances for 
the latent intercepts and latent slopes/change functions 
to be equal within each class. If so, a LCGM will be es-
timated. If the researchers want to allow within group 
variability for the latent intercepts and latent slopes/
change functions for each class, a GMM will be esti-
mated. In conducting a GMM, decisions about whether 
means and variances for latent variables (e.g., intercept 
and slope), variances and residual variances for observed 
variables, and covariances among latent variables will be 
freely estimated or fixed to be equal across classes (e.g., 
the parameters in Figure 1). All of these decisions can 
be based on theory, prior research, and/or practical con-
siderations (model convergence, etc.). 

Model Estimation
In this step, researchers select the estimation method that 
will be used and evaluate the statistical and conceptual 
fit of these models. The same strategies for cross-sectional 
data apply to longitudinal data (see part 1 for details). 

Model Selection and Interpretation
The final model is chosen based on the various fit sta-
tistics and model considerations. The same strategies 
for cross-sectional data apply to longitudinal data (see 
part 1 for details); however, a critical step here is exam-
ining the output for nonconvergence and/or nonplau-
sible values that might include correlations >1 and/
or residual variances that are negative (which cannot 
be negative as the computation requires squaring val-
ues). LVMMs are known to be “finicky” and research-
ers using these techniques will invariability encoun-
ter such problems. Although there are many reasons 
for these types of errors, they are especially common if 
you have variables with variances that exceed 1 to 10, a 
group with a ceiling or floor effect, small sample/latent 
class sizes, and/or misspecified models. Techniques to 
remedy there errors have been strongly debated and in-
clude checking the tech output, increasing starts/itera-
tions, and providing new start values. If these strategies 
do not resolve the problem, researchers often fix nonsig-
nificant negative residual variances to a positive value 
close to zero, use a different estimator (i.e., Bayes) and/
or specify a different model. These “new” models may 
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include fixing variances and residual variances to be 
equal within/across classes or freeing previously fixed 
parameters. In these cases it is especially important for 
researchers to have a clear conceptual and statistical ra-
tionale for their remedy. 

Example Data
Participants
Data were obtained from the Early Childhood Longi-
tudinal Study, Kindergarten Class of 1998–99 (ECLS-
K). The ECLS-K is a nationally representative sample of 
US children, their parents, teachers and schools. Base-
line data were collected in the fall and the spring of chil-
dren’s kindergarten year (1998–99). Subsequently, data 
were collected in the fall and spring of first grade (1999–
2000), the spring of third grade (2002), the spring of fifth 
grade (2004), and the spring of eighth grade (2007). The 
examples presented in this article focus exclusively on 
nonHispanic black participants given their elevated risk 
for overweight and obesity (Ogden, Carroll, Kit, & Fle-
gal, 2012). At baseline, there were 3169 nonHispanic 
black children (50.2% male) and during the eighth grade 
assessment there were 951 (50.4% male). 

Measures
Body Mass Index
Heights and weights were assessed at all six time points. 
These data were used to calculate BMI percentile scores 
that are standardized for the child’s age and gender us-
ing tables provided by the Centers for Disease Con-
trol and Prevention/National Center for Health Statis-

tics (CDC, 2010). In this study, youth with BMI values 
≥85th to <95th percentile were classified as overweight, 
and youth with BMI values ≥95th percentile were clas-
sified as obese, per existing guidelines (CDC, 2010). In 
addition, a standardized BMI score (BMI z-score) was 
calculated for each participant following guidelines es-
tablished by the CDC. Biologically implausible BMI z-
scores were coded as missing. 

Longitudinal Latent Variable Mixture Model 
Examples
Problem Definition
The first step in estimating a LVMM is identifying a sin-
gle-group (nonmixture, LGCM) model that best repre-
sents change over time. Theory and prior research sug-
gests that three to four BMI patterns will likely exist 
(Danner & Toland, 2013; Li, Goran, Kaur, Nollen &, Ah-
luwalia, 2007; Ventura, Loken and Birch 2009). Inspec-
tion of individual-level raw data (Figure 2) indicates 
that substantial heterogeneity that appears to be nonlin-
ear in nature. The mean values across the six time points 
also suggest a nonlinear pattern of change. To ensure 
that we identify the model of change that best repre-
sented the six waves of data, we conducted several sin-
gle-group LGCMs. These included intercept only, lin-
ear, quadratic, cubic, piecewise quadratic, and latent 
basis models. 

Prior to conducting the LGCMs, we had to decide 
how to code time. For this study, data were collected 
at the following assessment points: Fall of kindergar-
ten (1998–99), spring of kindergarten (1998–99), spring 

Figure 2. Observed individual African American Children’s BMI z-scores kindergarten to eighth grade. 
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of first grade (1999-2000), spring of third grade (2002), 
spring of fifth grade (2004), and the spring of eighth 
grade (2007). We decided to code time using the fol-
lowing: .0, .05,.15, .35, .55, and .85. We selected this cod-
ing scheme to reflect the average time since the first 
measurement in the fall of kindergarten and divided 
each estimate by 100. In our experience, model con-
vergence issues can result for large factor loadings for 
time, especially at late time points and when higher or-
der change terms are modeled. Given that the exact 
date of BMI measurement was available for each par-
ticipant, we also modeled time with individually-vary-
ing times of observations. This approach combines the 
multivariate SEM and multilevel modeling approaches 
to estimate random slopes and intercepts within a la-
tent variable framework (see the TSCORES approach 
in Mplus; Muthén & Muthén, 1998–2012). Presently, 
this approach only allows for polynomial functions of 
time (linear, quadratic, etc.) and does not provide tra-
ditional SEM goodness of fit statistics or LVMM statis-
tical model comparison tests discussed in part 1, such 
as the Lo–Mendell–Rubin test (LMR; Lo, Mendell, & 
Rubin, 2001) and the Bootstrap Likelihood Ratio Test 
(BLRT; McLachlan & Peel, 2000). All models were esti-
mated in Mplus version 7.11 (Muthén & Muthén, 1998–
2012), under missing data theory using all available data 
and robust (Full Information) maximum likelihood es-
timation. This strategy for handling missing data is an 
appropriate, modern method of modeling with missing 
data that makes use of all available data points (Little et 
al., 2013) and adjusts the standard errors and scales chi-
square statistics to account for nonnormally distributed 
data. Alternative modern approaches to handling miss-
ing data were considered; however, these approaches 
were not chosen because they are not available within a 
mixture modeling framework (i.e., using auxiliary vari-
ables to predict missingness in conjunction with Full In-
formation Maximum Likelihood) or would limit the 
availability of indices to help choose the optimal num-
ber of classes (e.g., model comparison likelihood ra-

tio tests discussed later are not currently available with 
multiple imputation techniques). To evaluate the good-
ness-of-fit of the single-group models, excellent models 
generally have the following values: CFI ≥.95, RMSEA 
<.05, and SRMR <.05. We used (robust) maximum likeli-
hood estimation with adjusted standard errors and chi-
square test statistics that are robust to nonnormality. We 
selected this estimator because of the skewed nature of 
the BMI z-scores. 

As noted, we estimated the following models to iden-
tify the best single-group model that will serve as the 
base model for the mixture analyses: Intercept, linear, 
quadratic, cubic, piecewise quadratic, and latent basis 
(Table I). For the intercept only model, one latent fac-
tor was defined representing initial (Baseline) levels of 
BMI z-scores. Factor loadings for the intercepts for the 
six observed measures of BMI z-scores were fixed to 1. 
For the linear model, two latent factors were defined: 
One representing initial (Baseline) levels of BMI z-scores 
and one representing linear change in BMI z-scores (i.e., 
slope). Factor loadings for the intercepts for the six ob-
served measures of BMI z-scores were fixed to 1; factor 
loadings for the slope factor were set to .0, .05, .15, .35, 
.55, .85). For the quadratic model, an additional latent 
variable was added to the linear model. It represented a 
quadratic pattern of change for BMI z-score (factor load-
ings fixed to .0, .0025, .0225, .1225, .3025, .7225). When 
estimating the quadratic model, we received a message 
about a negative residual variance for the eighth grade 
BMI z-score. Since residuals cannot be negative, we ad-
dressed this problem by fixing the residual variance for 
sixth time point to a small number (i.e., .00001). This so-
lution fixed the problem and no additional warnings 
were generated. For the cubic model, an additional la-
tent variable was added to the quadratic model. It repre-
sented a cubic pattern of change (factor loadings fixed to 
.0, .000125, .003375, .042875, .166375, .614125). 

We also estimated a piecewise growth model. It in-
cluded a linear slope for Time 1 through Time 3 and 
a quadratic function for Time 3 through Time 6 (the 

Table I. Fit Statistics for Single-Group (Nonmixture) Models. (Ns = 2543) 

Model of Change	 CFI	 TLI	 RMSEA	 SRMR	 χ2	 df	 χ2/df	 AIC

Intercept	 0.67	 0.74	 0.11	 .14	 554.78	 19	 29.20	 23,334.88
Linear	 0.93	 0.93	 0.05	 .04	 132.55	 16	 8.28	 22,318.98
Quadratica	 0.99	 0.99	 0.02	 .02	 28.08	 13	 2.16	 22,081.74
Cubic	 0.99	 0.99	 0.02	 .01	 12.88	 7	 1.84	 22,059.32
Piecewise Quadratic	 0.997	 0.994	 0.02	 .01	 11.61	 7	 1.66	 22,057.74
Latent Basis	 0.96	 0.95	 0.05	 .06	 76.95	 12	 6.41	 22,152.07

a. The residual variance for the sixth time point was fixed to .00001. CFI = Comparative Fix Index; TLI = Tucker–Lewis Index; RM-
SEA = Root Mean Square Error of Approximation. SRMR = Standardized Root Mean Square Residual. AIC = Akaike Informa-
tion Criterion. 
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following Mplus code was used: i s1| ZC1BMI@0 
ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.15 ZC6BMI@.15 
ZC7BMI@.15; i s2 q1| ZC1BMI@0 ZC2BMI@0 
ZC4BMI@0 ZC5BMI@.2 ZC6BMI@.4 ZC7BMI@.7). Fi-
nally, a latent basis model was estimated. For this 
model, factors loadings for the intercept for the six ob-
served measures of BMI z-scores were fixed to 1. Factor 
loadings for the factor representing change were set to 
0, *, *, *, *, 1 (asterisks indicate that a particular factor 
loading was freely estimated). 

Based upon review of the fit statistics provided in 
Table I, the intercept only and linear models provided 
a poor fit to the data. These fit statistics also suggested 
that freely estimated time (latent basis), and quadratic, 
cubic, and piecewise models of growth all were ac-
ceptable models of nonHispanic black children’s BMI 
z-scores from kindergarten to eighth grade. To further 
highlight how growth was estimated in these models, 
Figure 3 compares the means of the estimated BMI z-
scores with the observed mean values. Visual inspection 

Figure 3. Observed and Estimated Mo del Means of African American Children’s BMI z-scores. 
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of these graphs reveals that those models with better 
fit statistics tend to have a higher proportion of over-
lapping lines. One can see what is tested statistically, 
namely the discrepancy between the observed and es-
timated values or how well our modeled data “fit” with 
the actual data. Based on these findings, it was not clear 
which model would serve as the best base model for the 
growth mixture analyses. We decided to run the mix-
ture analyses for each of the single-group models that 
provided an acceptable fit to the data (i.e., quadratic, cu-
bic, piecewise quadratic, and latent basis models). 

Model Specification
In this stage of estimating LVMMs, hypotheses about 
the number of classes are generated. We took an explor-
atory approach and estimated as many classes possible 
that yielded proper solutions. In order to provide useful 
examples we examined three types of LVMM: A LCGA 
(with the slope and intercept variances fixed to zero), 
and two GMMs, one with time-points that were either 
fixed or estimated (i.e., quadratic or latent basis), and 
one with individually varying times of observation. For 
these LVMMs, we opted for a model building approach. 
Specifically, for the initial GMMs that we conducted, we 
allowed means for the latent variables (e.g., intercept and 
slope) to vary across classes; then, we conducted analy-
ses in which we allowed the means and variances for la-
tent variables to vary across classes; then, we let covari-
ances among the latent variable to vary across classes; 
finally, we allowed the variances for the six observed 
variables to vary across classes. 

Model Estimation
As noted above, all models were estimated in Mp-
lus version 7.11 (Muthén & Muthén, 1998–2012), un-
der missing data theory using all available data and 
robust (Full Information) maximum likelihood estima-
tion. Again, we decided to run growth mixture analy-
ses for each of the single-group models that provided 
an acceptable fit to the data (i.e., quadratic, cubic, piece-
wise quadratic, and latent basis models). We encoun-
tered several issues when estimating the quadratic, cu-
bic, and piecewise GMMs. One issue that emerged 
across each of the models was strong associations be-
tween intercepts and change functions and/or strong 
associations between change functions (e.g., slope and 
quadratic latent variables) for some classes. Our analy-
ses often yielded messages like the following: “WARN-
ING: THE LATENT VARIABLE COVARIANCE MA-
TRIX (PSI) IN CLASS 2 IS NOT POSITIVE DEFINITE. 
THIS COULD INDICATE A NEGATIVE VARIANCE/
RESIDUAL VARIANCE FOR A LATENT VARIABLE, 

A CORRELATION GREATER OR EQUAL TO ONE BE-
TWEEN TWO LATENT VARIABLES, OR A LINEAR 
DEPENDENCY AMONG MORE THAN TWO LATENT 
VARIABLES.” Despite considerable efforts (including 
increased iterations, providing start values, constraining 
error variances to be greater than zero, etc.), we were 
not able to identify a reasonable and proper fitting solu-
tion for the quadratic, cubic, or piecewise models. How-
ever, proper solutions for the latent basis models and 
quadratic model with individually varying times of ob-
servation were obtained and are presented below. 

Proper fitting solutions were generated when using 
the latent basis model as the base model for the GMM 
and LCGA, and the quadratic model for the GMM with 
individually varying times of observation. As noted in 
the model specification section above, we ran several 
sets of models in which we allowed different means, 
variances, and covariances to vary across classes. The 
best solutions were obtained for a model in which the 
following parameters were freely estimated: (a) means 
and variances for latent variables representing intercept 
and change over time, (b) residual variances of six ob-
served variables (BMI z-scores), and (c) covariance be-
tween intercept and change function latent variables. 

Model Selection and Interpretation
We attempted to estimate two through six class solu-
tions for all LVMMs. A five-class model did not con-
verge on a proper solution for the latent basis GMM. 
Findings for latent basis LCGA, latent basis GMM, and 
quadratic GMM are presented in Table II and Figures 
4–6. For each model (k number of classes), replication of 
the best Loglikelihood was verified to avoid local max-
ima. For models with greater than two classes, it was 
verified that the previous model’s loglikelihood was 
equal the to k-1 loglikelihood for the BLRT tests. 

Latent Basis LCGA
Because LCGA are less complex, more clearly identify 
classes, and are less computationally burdensome, it is 
helpful to begin the model building process with a LCGA 
before proceeding with GMMs (Jung & Wickrama, 2007). 
For the present example, increasing the number of latent 
classes resulted in increasingly better (i.e., smaller) AICs, 
BICs, and SSA-BICs, without any detriment to entropy, 
which hovered ~.81 (Table II). The model comparison 
tests suggested that successively adding more classes al-
most always resulted in a better model. Since the BIC and 
BLRT generally perform the best, these results suggest 
that the six class model should be further explored. An 
important caveat is that this is probably a poorly speci-
fied model, given past research finding substantial within 
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class variability. The assumption of zero variance within 
classes (as modeled here) is not likely tenable and might 
account for each successive model (and subsequently 
more variability) seeming to improve the fit of the mod-
els. As such, we only briefly interpret these LCGA find-
ings (and refer interested readers to Nagin, 1999 for more 
details), as the GMMs described next might be a better 
statistical representation of our hypothesized models of 
BMI z-score growth. 

Latent Basis GMM
Consistent with the steps for selecting a best fitting 
model, we first examined the information criteria (ICs) 
fit statistics. As shown in Table II, IC fit statistics indi-
cated that the four class model was the best fitting solu-
tion. We then looked at the entropy values. As shown, 
entropy was relatively low for all solutions, indicating 
that there is some inaccuracy in the classification of in-
dividuals into their most likely class. Notably, entropy 
values were within the acceptable range, but still quite 
marginal. We then examined the likelihood ratio tests. 

Findings indicated that the four class solution provided 
the best fit to the data. Finally, we considered the sub-
stantive meaning of the solutions, and determined that 
the four class model made the most conceptual sense. 
Taken together, we selected the four class model as the 
best fitting solution. 

Based on the growth patterns, the largest class (Class 
3, 66.0%) was named “Elevated Normal Weight Track-
ing (ENWT). Members of this class began with an av-
erage BMI z-score of .47 (significantly different from 
zero, p <.001), that had total amount of growth across 
the entire time interval that was on ~.28 (“slope/shape” 
p < .001). The estimated slope loading of a latent ba-
sis model reflect the proportion of the total amount of 
change between first (kindergarten) and last (eighth 
grade). Based on these factor loadings, ENWT class 
members had the achieved 0%, 3.5%, 31.6%, 73%, 111%, 
and 100% of the total z-score growth at Fall-K, and the 
Springs of K, first, third, fifth, and eighth grades, respec-
tively. The second largest class (Class 2, 18.9%) named, 
“Rapid Increase Percentile Crossing” (RIPC) had an av-

Table II. ICs, Entropy, Likelihood Ratio Tests for LVMMs of African American Children’s z-BMIs from kindergarten to eighth 
grade

Measure	 1 Class	 2 Class	 3 Class	 4 Class	 5 Class	 6 Class

Latent Basis LCGA						    
    Loglikelihood	 −14,902.10	 −12,732.15	 −11,455.31	 −10,826.38	 −10,432.30	 −10,144.47
    AIC	 29,828.19	 25,514.30	 22,986.62	 21,754.77	 20,992.59	 20,442.92
    BIC	 29,898.29	 25,660.32	 23,208.58	 22,052.66	 21,366.42	 20,892.69
    SSA-BIC	 29,860.16	 25,580.89	 23,087.84	 21,890.62	 21,163.08	 20,648.04
    Entropy	 N/A	 0.80	 0.82	 0.81	 0.82	 0.82
    LMR test	 N/A	 4,297.74	 2,528.87	 1245.63	 785.04	 570.08
    LMR, p-value 	 N/A	 <0.0001	 <0.0001	 0.04	 0.14	 0.0005
    BLRT Test	 N/A	 4,339.90	 2,553.68	 1257.85	 792.75	 575.67
    BLRT p-value 	 NA	 <0.0001	 <0.0001	 <0.0001	 <0.0001	 <0.0001
Latent Basis GMM						    
    Loglikelihood	 −11061.03	 −9543.72	 −9333.53	 9,175.88		
    AIC	 22,152.07	 19,149.43	 18,761.05	 18,473.76		
    BIC	 22,239.68	 19,330.51	 19,035.58	 18,830.06		
    SSA-BIC	 22,192.02	 19,232.01	 18,886.25	 18,636.25		
    Entropy	 N/A	 0.71	 0.77	 0.71		
    LMR test	 N/A	 3,034.63	 420.38	 315.29		
    LMR, p-value 	 N/A	 <0.0001	 =.13	 <0.05		
    BLRT Test	 N/A	 3,034.63	 420.38	 315.29		
    BLRT p-value 	 NA	 <0.0001	 <0.0001	 <0.0001		
Quadratic GMM*						    
    Loglikelihood	 −11,041.044	 −9,513.41	 −9,316.27	 −9,171.83	 −9,063.08	 −8,974.87
    AIC	 22,112.087	 19,088.82	 18,726.54	 18,469.66	 18,284.16	 18,139.74
    BIC	 22,199.704	 19,269.9	 19,001.07	 18,837.65	 18,745.61	 18,694.65
    SSA-BIC	 22,152.045	 19,171.4	 18,851.74	 18,637.48	 18,494.61	 18,392.81
    Entropy	 N/A	 0.717	 0.618	 0.635	 0.602	 0.59

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Sample-Size Adjusted BIC (SSABIC), Lo–Mendell–Ru-
bin test (LMR), BLRT, *Modeled with Individually varying time of observation, in which the LMR and BLRT are not available for 
these types of models. 
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erage initial BMI z-score (intercept) of −.51 (p < .001), 
and average z-score growth total of 1.17 (p < .001), that 
was 0%, −2%, 30%, 74%, 102%, and 100% of the growth 
total at the six time points. The third largest class names 
98th/99th Percentile Tracking (Class 4, 8.9%) had an av-
erage initial BMI z-score (intercept) of 1.98 (intercept, 
p < .001) with no significant total growth (slope = .38), 
that was at the following proportions of total growth 

K through eighth grade: 0%, 39%, 73.1%, 93.7%, 98.9%, 
and 100% . The smallest class (Class 1, 7.2) called Mid-
Childhood, Dip/Rebound, exhibited an average to-
tal growth of .285 (slope, p = .05) that started with aver-
age BMI z-scores of .31 (p = .04). Members of this class 
achieved the following proportion of total growth at the 
consecutive time points in the study: 0%, 6.1%, −211.3%, 
−198.8%, −48.4%, and 100%. As with previous models in 

Figure 4. LCGA Models of African American Children’s BMI z-scores. 
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part 1, we were interest in potential sociodemographic 
differences in the latent class. Therefore, a pseudoclass 
draws based multinomial logistic regression was used 
and revealed that the 98th/99th Percentile Tracking 
(Class 4) had significantly more females compared with 
either Class 2 (p = .04) or Class 3 (p < .01). SES was not 
significant predictors of latent class membership (p-val-
ues ranged from .59 to .99). 

Quadratic GMM with Individually Varying Times of 
Observation
Quadratic GMMs were modeled specifying one through 
six latent classes. These GMMs freely estimated each la-
tent classes’ own latent means, intercepts, variances and 
covariances, and observed variable residual variances. 
All parameter estimates and outputs were scrutinized 
for out of range estimates and error messages, and when 
necessary additional random starts were requested to 
replicate the best log-likelihood value. We began by re-
viewing the IC. Across all ICs, adding additional classes 
always resulted in an improved fit (decreased val-

ues, without ever increasing). Increasing the number of 
classes resulted in a worsening of the classification rates, 
as measured by the marginal entropy ranging from .71 
to .59. Inspection of “better” entropy values can be help-
ful when the ICs are relatively similar (Ram & Grimm, 
2009). In this example, a two and four class model re-
sulted in the best (yet still marginal) entropy values. At 
this point, inspection of the mean class values presented 
in Figure 6 can be helpful to look for overlapping class 
plots and/or unexpected trajectories in conjunction with 
our anticipation of either a three or four class model. 
One consideration specific to this example are propor-
tions of youth in the most extreme weight trajectory [z-
scores > 1.04 and 1.64, which would place youth at 85th 
(overweight) to 95th (obese) percentile respectively]. 
Based on the NHANES 2000 cohort, we would antici-
pate the most “extreme” weight trajectory to represent 
19% to 23% of the sample. Inspection of the three and 
four class solutions in Figure 6 reveals that both models 
have one such class; however, the three class model es-
timates that 69% of nonHispanic black youth are in the 

Figure 5. Latent Basis GMMs of African American Children’s BMI z-scores. 



In t r o d u c t i o n t o Lat e n t  Va r i a b l e  Mi x t u r e Mo d e l i n g (Pa r t 2)    13

most obese trajectory, whereas, only 16% of youth are in 
that similar trajectory in the four class model. In light of 
this, the better ICs and entropy, we chose the four class 
solution as our final model. 

Based on the growth patterns, the largest class (#2, 
62.6%) was named “Elevated Normal Weight Track-
ing (ENWT). Members of this class began with an av-
erage BMI z-score of .34 (significantly different from 

zero, p < 0.001), that increased (linear slope) on average 
.09 per year (p < .001) that decelerated with time (qua-
dratic slope −.004, p < .001). Class 4, called >99th Per-
centile Tracking, had the second highest proportion 
of members (16%). Their average initial BMI z-score 
was 1.51 (intercept significantly different from zero, p 
< .001) with no significant linear (slope = .03, p = .14), 
or quadratic change (slope = −.002, p = .34). The third 

Figure 6. GMMs of African American Children’s-z BMI and individually varying time of observations.
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largest class (#3, 15%) named, “Rapid Increase Percen-
tile Crossing” (RIPC) had an average initial BMI z-score 
(intercept) of −.68 (p < .001), and their BMI z-score in-
creased an average of .04 (linear slope) per year that de-
celerated with time (quadratic slope − .03, p < .001). The 
smallest class (#4, 7%) called Mid-Childhood Dip/Re-
bound started with average BMI z-scores of 1.51 (sta-
tistically different from zero, p = .18), that significantly 
decreased (.183, p < .001), reaching their lowest point 
in first grade then increased from third grade, reaching 
their highest point in eighth grade. Given this pattern of 
increases and decreases, neither the average linear (.017, 
p = .14) nor quadratic slopes (−.002, p = .34) were differ-
ent from zero. A pseudoclass draws based multinomial 
logistic regression revealed that neither SES nor gender 
were significant predictors of latent class membership 
(p-values ranged from .25 to .97). 

Comparing Latent basis LCGA, Latent Basis GMM, and 
Quadratic GMM
When comparing the results of the LVMM we see that 
LCGA trajectories have similar (parallel) slopes that 
are primarily distinguished as a matter of scale/sever-
ity (until the six class model), whereas both the GMMs 
have trajectories that are qualitatively different (more 
predominantly nonlinear) across classes and from the 
LCGA. This is due in part to the restrictions placed on 
LCGA, which result in a “simpler” model in which fewer 
parameters are estimated. This approach may be ade-
quate given the research question that is being examined 
and in the context of smaller sample sizes. Also of note is 
the differential prediction of class membership across the 
types of LVMMs. Information of this kind may be help-
ful on deciding the final model as it may speak to valid-
ity. In our example, many sociodemographic predictors 
of youth’s weight status have been identified (Ogden et 
al., 2012), and as such this information could help to de-
cide not only the number of classes but also choosing be-
tween the variants of LCGMs and GMMs. 

Conclusions
Important research questions in the field of pediatric 
psychology pertain to better understanding patterns of 
change over time. For example, How do cognitive late 
effects in survivors of pediatric brain tumors change 
over time?, How does medication adherence change fol-
lowing an intervention to improve behavioral function-
ing in adolescents with inflammatory bowel disease?, 
and How does family satisfaction with clinical care 
change following the institution of a quality improve-
ment program aimed at reducing wait time in an out-
patient pediatric sickle cell clinic? It is unlikely that all 

individuals change in the same way, and as such, im-
portant subgroups of individuals many demonstrate 
distinct patterns of change. Identification of these mean-
ingful subgroups and their unique patterns of change 
has the potential to advance current knowledge with re-
spect to a wide range of applied research questions in 
pediatric psychology. Longitudinal LVMM is an ana-
lytic strategy designed to identify subgroups of individ-
uals based on patterns of change, and thus can be a use-
ful tool for researchers seeking to better understand the 
impact of health concerns on children and their families, 
as well as the impact of interventions designed to im-
prove service provision, treatment adherence, and qual-
ity of life in children coping with a variety of acute and 
chronic health-related issues. This article was designed 
to provide pediatric psychologists with step-by-step in-
structions for carrying out two types of longitudinal 
LVMMs: LCGMs and GMMs. We also identified com-
mon problems that emerge when using these analytic 
frameworks and discussed possible solutions. 

An important issue when considering whether to use 
LVMM is sample size, as insufficient sample sizes can 
be associated with convergence issues, improper solu-
tions, and a limited ability identify small but meaning-
ful subgroups. As discussed in part 1, sample size de-
termination is difficult (i.e., it depends on number of 
parameters, missingness of data, reliability/distribution 
of variables, and relationship effect sizes) and rules of 
thumb often lead to over- or under-estimating the req-
uisite sample size (Muthén & Muthén, 2002; Wolf et al., 
2013). Monte Carlo simulations to estimate power and 
sample size needs (Muthén & Muthén, 2002) are likely 
to be a helpful approach for pediatric psychologists be-
cause they may demonstrate that small samples are suf-
ficient under certain circumstances. Fortunately, sev-
eral examples of Monte Carlo simulations designed to 
estimate sample size are currently available (Muthén & 
Muthén, 1998–2012 [example 12.3 in particular]; 2002). 

In closing, we highlight valuable resources that are 
available for helping researchers conduct cross-sec-
tional and longitudinal latent variable mixture model-
ing. These include online Mplus short courses, the Mp-
lus Web Notes page, and the Mplus examples page—all 
available at http://www.statmodel.com. Perhaps most 
notable among available resources is the Mplus Discus-
sion Board. This discussion board provides researchers 
an opportunity to ask the Mplus developers and their 
research team questions about conducting analyses us-
ing Mplus. An impressive bank of questions and re-
sponses related to LVMM is also available for review on 
this site, and consequently, the Mplus discussion board 
is often the first place we turn when faced with a chal-
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lenging LVMM issue. These resources, along with this 
two part article, can facilitate researchers’ use of LVMM 
to answer important questions in the field of pediatric 
psychology. 

Supplementary Data is presented following the Refer-
ences.
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SUPPLEMENT: EXAMPLE SYNTAX 

 
TITLE:  Example LVMM Syntax 

 

DATA:  FILE IS "zbmi.dat"; 

 

VARIABLE: !Lists the variable names 

  NAMES ARE 

  numID RACE GENDER AGE1 AGE2 AGE4 AGE5 AGE6 AGE7 WKSESL W8SESL 

  a1c a2c a4c a5c a6c a7c !Age a1c centered to reflect time since average of zero in Kindergarten; 

  

  USEOBSERVATION ARE (RACE EQ 2); !USED to select only African American Children 

  USEVARIABLES ARE  

    ZC1BMI ZC2BMI ZC4BMI ZC5BMI ZC6BMI ZC7BMI; 

  IDVARIABLE = numID; 

  MISSING ARE ALL (-99); 

 

  CLASSES = c (3); ! Used with "type = mixture;" Number in parentheses is the number of requested classes 

 

ANALYSIS: 

  ESTIMATOR IS MLR;     ! Specifies Robust ML, used for all models, other estimators are available 

  !TYPE = MIXTURE;      ! Used for LCGA and GMM 

  !TYPE = RANDOM MIXTURE; Used for GMM with individually varying times of observation 

 

MODEL: 

 

!LATENT GROWTH CURVE MODELS:  

 

!   i | ZC1BMI@0 ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.35 ZC6BMI@.55 ZC7BMI@.85;  ! Intercept Only 

!   i s| ZC1BMI@0 ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.35 ZC6BMI@.55 ZC7BMI@.85;  ! Linear 

!   i s q | ZC1BMI@0 ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.35 ZC6BMI@.55 ZC7BMI@.85; !Quadratic 

!    ZC7BMI@0000.1;! FIXES the residual variance to 00001); 

!   i s q c | ZC1BMI@0 ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.35 ZC6BMI@.55 ZC7BMI@.85; !Cubic 

!   i s1| ZC1BMI@0 ZC2BMI@.05 ZC4BMI@.15 ZC5BMI@.15 ZC6BMI@.15 ZC7BMI@.15; !Piecewise part 1 (needs part 1 & 2)  

!   i s2 q2| ZC1BMI@0 ZC2BMI@0 ZC4BMI@0 ZC5BMI@.2 ZC6BMI@.4 ZC7BMI@.7;  !Piecewise part 2 (needs part 1 & 2) 

!   i s | ZC1BMI@0 ZC2BMI* ZC4BMI* ZC5BMI* ZC6BMI* ZC7BMI@1; ! Latent Basis 

 

!LATENT CLASS GROWTH ANALYSIS MODELS (used with type = mixture;) 

!%OVERALL% 

!    i s | ZC1BMI@0 ZC2BMI*0.05 ZC4BMI*0.15 ZC5BMI*.035 ZC6BMI*.55 ZC7BMI@1;! Latent Basis 

!    i@0; s@0; !Fixes the variance of the intercept and slope to zero 

!%C#1%! Model specific to class 1 

!    i s | ZC1BMI@0 ZC2BMI*0.05 ZC4BMI*0.15 ZC5BMI*.035 ZC6BMI*.55 ZC7BMI@1;! !frees this classes’ factor 

loading to vary  

!    ZC1BMI* ZC2BMI* ZC4BMI* ZC5BMI* ZC6BMI* ZC7BMI*;!frees the residual variance to differ across classes 

!    [i s]; !frees this classes’ latent variable means to vary  

 

 

!GMM WITH INDIVIDUALLY VARYING TIMES OF OBSERVATION (used with type = random mixture;) 

 

!%OVERALL%  !Specifies the overall model; 

!i s q | zb1 zb2 zb4 zb5 zb6 zb7 AT a1c a2c a4c a5c a6c a7c; ! Quadratic Growth Tscores, Overall model 

!i s q with i s q; i; s; q; zb1; zb2; zb4; zb5; zb6; zb7;  

 

!%C#1% !SPECIFIC estimates for the class number 1, repeated for each class, by changing C#2%, %C#3%, etc. 

!    [i s q];                     !Freely Estimated latent means  

!    i s q with i s q;            !Freely Estimated covariances 

!    i; s; q;                     !Freely Estimated variances 

!    zb1; zb2; zb4; zb5; zb6; zb7;!Freely Estimated residual variances 

 

!GROWTH MIXTURE MODEL: Latent Basis 

 

!%OVERALL%   

!   i s | ZC1BMI@0 ZC2BMI*.05 ZC4BMI*.15 ZC5BMI*.35 ZC6BMI*.55 ZC7BMI@1; 

!    [i s];                       !Freely Estimated latent means  

!    i with i s;                  !Freely Estimated covariances 

!    i; s;                        !Freely Estimated variances 

!    zb1; zb2; zb4; zb5; zb6; zb7;!Freely Estimated residual variances 

!  %C#1% !parameters to be estimated differently for designated class 

!   i s | ZC1BMI@0 ZC2BMI*.05 ZC4BMI*.15 ZC5BMI*.35 ZC6BMI*.55 ZC7BMI@1; 

!    [i s];                       !Freely Estimated latent means  

!    i with i s;                  !Freely Estimated covariances 

!    i; s;                        !Freely Estimated variances 

!    zb1; zb2; zb4; zb5; zb6; zb7;!Freely Estimated residual variances 

 

 

PLOT: SERIES = ZC1BMI(0) ZC2BMI(.05) ZC4BMI(.15) ZC5BMI(.35) ZC6BMI(.55) ZC7BMI(.85); 

    TYPE = PLOT3; 
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