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Self-assembled Fe nanowires using organometallic chemical vapor
deposition and CaF 2 masks on stepped Si „111…

J.-L. Lin, D. Y. Petrovykh, A. Kirakosian, H. Rauscher, and F. J. Himpsela)

Physics Department, University of Wisconsin, Madison, Wisconsin 53706

P. A. Dowben
Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588

~Received 12 July 2000; accepted for publication 30 November 2000!

Linear arrays of 3 nm wide Fe stripes with 15 nm spacing are fabricated by self-assembly. They are
formed by photolysis of ferrocene that is selectively adsorbed between CaF2 stripes. An ultraviolet
nitrogen laser removes the organic ligands from ferrocene. Arrays of CaF2 stripes serve as masks,
which are self-assembled on a stepped Si~111! surface. Scanning tunneling microscopy is used to
investigate the surface morphology during growth. A generalization of this method to other wire
materials is discussed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1345830#

An important strategy for parallel fabrication of nano-
structures is self-assembly. It makes it possible to manufac-
ture macroscopic quantities of patterned materials both effi-
ciently and economically. Here we address self-assembly of
linear arrays of one-dimensional structures, or wires, on vici-
nal silicon surfaces. By choosing magnetic materials, such as
Fe, we connect our current work with several previous stud-
ies that have been directed at the fabrication of magnetic
nanostructures for patterned storage media and related
applications.1–3 Our main focus is to develop new self-
assembly methods for wires in the single-digit nanometer
regime, where traditional lithography methods are not appli-
cable.

We fabricate Fe nanowires in a three-step process:~1!
prepare a silicon template with a regular array of straight
steps by annealing vicinal Si~111! in a specific temperature
sequence;4 ~2! create continuous CaF2 stripes on top of a
CaF1/Si(111) surface by growing 1–2 monolayers of CaF2;

5

and~3! grow Fe nanowires in the CaF1 trenches between the
CaF2 stripes by selective adsorption of ferrocene and pho-
tolysis into Fe. We expose the patterned nanowires to ultra-
violet photons from a nitrogen laser to dissociate the organic
ligands from the ferrocene molecules.6 This photolytic pro-
cess has been proven to incorporate less carbon and oxygen
into the growing Fe structures than using other methods,
such as pyrolysis.7 After the first Fe monolayer is deposited,
the selective adsorption and photolysis processes continue.
This is consistent with the formation of a reactive metallic Fe
layer, which has a higher sticking coefficient for ferrocene
than the CaF2 mask.

Figure 1 elucidates the patterning process. It starts with
vicinal Si~111! with atomically straight steps produced by
resistive heating to 1250 °C followed by a sequence of an-
nealing in an ultrahigh vacuum chamber with a base pressure
,1310210Torr: 30 s annealing at 1060 °C followed by
quenching to 850 °C and a postannealing at 850 °C for 20
min.4 The spacing of these steps is;15 nm, which corre-

sponds to the miscut of 1.1° used for this study combined
with a step height of 0.31 nm. It can be varied by changing
the substrate miscut angle. Miscuts towards^1̄1̄2& generally
give rise to single steps with a height of 0.31 nm. CaF2

stripes are created by growing 1–2 monolayers of CaF2 at a
substrate temperature of;600 °C, flashing to 830 °C~a few
seconds!, and postannealing at 700 °C for 4 min.5 Shown in
the second panel of Fig. 1 is the resulting surface consisting
of CaF2 stripes on top of a CaF1 interface layer where one
fluorine atom has been desorbed to form a Ca–Si bond at the
interface. Because a Ca-terminated interface is known to re-
verse theABC stacking of Si~111! into CBA,5,8 it not only
causes CaF2 to attach to the upper edge of the steps, i.e.,
opposite to step flow growth, but also prevents the CaF2

stripes on two different terraces from merging. Conse-
quently, the CaF1 trenches between the CaF2 stripes remain
continuous down to a width on the 1 nm scale, and continu-
ous Fe stripes can be grown in the trenches~Fig. 2!.

The top panel of Fig. 1 shows a band diagram of the
CaF2/CaF1 masks, providing the underlying physics for se-
lective adsorption shown in the third panel. The CaF2 stripes
retain a broad band gap of 12 eV, while the CaF1/Si(111)
interface in the trenches possesses a drastically reduced band
gap of 2.4 eV.4 This alternating band gap with a periodicity
of ;15 nm has been confirmed via chemical imaging by
scanning tunneling microscopy~STM!.9 The lowest unoccu-
pied molecular orbital-highest occupied molecular orbital
~LUMO-HOMO! band gap of ferrocene~;4.0 eV in the
ground state theory,;6 eV in the gas phase experiment, and
about 4.5 eV when adsorbed on most metals surfaces! is
matched better to CaF1 than to CaF2, facilitating the devel-
opment of chemical bonds.7 The CaF1/Si(111) trenches are
thus chemically reactive and adsorb ferrocene molecules ad-
mitted in the gas phase, as illustrated in the third panel of
Fig. 1.

Ferrocene contains one Fe atom sandwiched between
two cyclopentadienyl rings (C5H5) and remains intact upon
adsorption at substrate temperatures below;100 °C.6 As the
substrate is covered by ferrocene, it becomes passive unless
it is exposed to ultraviolet photons. We use a commercial

a!Author to whom correspondence should be addressed; electronic mail:
fhimpsel@facstaff.wisc.edu
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nitrogen laser with an average power of 120 mW at a repeti-
tion rate of 15 Hz. The photon energy is 3.68 eV, which is
less than the binding energy between a metal atom and two
C5H5 rings in the gas phase~6.2 eV!, but sufficient to cleave
the bonds between metal atoms and organic rings while the
molecules are adsorbed on the surface~3.04 eV!.7 The fer-
rocene pressure during growth is 131026 Torr and the
sample is resistively heated to;100 °C for 2 min every 15
min. After cycling the selective adsorption and photolysis of
ferrocene processes for 90 min, Fe nanowires are deposited
only onto the CaF1 trenches, while the CaF2 stripes are func-
tioning as masks shaping the wires~Fig. 1 bottom!.

Figure 2 shows the initial and final stages during Fe
nanowire growth. The STM image at the top is taken at a
bias voltage of14 V, which allows tunneling into the con-
duction band of otherwise insulating CaF2 ~tunneling current
0.4 nA!. The Si~111! steps are descending from left to right.
Continuous CaF2 stripes are formed on a CaF1/Si(111) in-
terface. The coverage is about 1.9 monolayers~ML !, close to
the 2 ML limit above which the excess CaF2 would cover the
substrate completely.5,6 The stripes do not touch each other
due to their topological incompatibility. The incoming fer-
rocene prefers to anchor at the narrow CaF1 trenches and at

the edges of the CaF2 stripes. After photolysis of the ad-
sorbed ferrocene molecules, the growth of Fe proceeds
mainly on the CaF1 regions, as depicted in the bottom panel
of Fig. 2. The narrow trenches shown in the top panel of Fig.
2 now evolve to become ridges. These stripe-shaped protru-
sions on top of the CaF1 trenches represent 3 nm wide and
0.8 nm high Fe nanowires. Guided by the continuous
trenches, they grow continuously and parallel to each other.
The spacing between the wires is 15 nm, in agreement with
the miscut angle of 1.1° of the Si~111! template. The images
in Fig. 2 were acquired at sample voltages of14 V ~top! and
21.8 V ~bottom! with a tunneling current of 0.2 nA. The
inversion from trenches to ridges after Fe deposition is inde-
pendent of the bias voltage. A sample voltage of14 V em-
phasizes tunneling into the conduction band minimum of the
CaF2 masks.9,10

There are three processes leading to the selective depo-
sition of Fe on the CaF1 trenches. First, the deposition has to
get started by selectively adsorbing ferrocene onto CaF1,
which has orbitals that are better matched to the valence and
conduction band of CaF1 than CaF2 ~compare HOMO and

FIG. 1. Schematic of the self-assembly of Fe nanowires on stepped Si with
a CaF2 mask.~Top! Band gap modulation with a periodicity of 15 nm. CaF1

has states that can interact with the highest occupied and lowest unoccupied
orbitals of adsorbed ferrocene~HOMO and LUMO!, CaF2 does not.~Sec-
ond! CaF2 stripes on a CaF1 /Si(111) surface obtained at a CaF2 exposure
between 1 and 2 monolayers. The CaF2 stripes are attached to the upper step
edges.~Third! ~Left! Selective deposition of ferrocene in the CaF1 trenches.
~Right! Diagrams of energetics of ferrocene on the surface and in the gas
phase.~Bottom! Deposition of Fe wires in the CaF1 trenches after photolysis
of adsorbed ferrocene. (Cp5cyclopentadienyl).

FIG. 2. STM images of the initial and final stages in the self-assembly of Fe
nanowires.~Top! Wide CaF2 stripes separated by narrow CaF1 /Si(111)
trenches at a coverage of 1.9 monolayers of CaF2. ~Bottom! Linear array of
Fe nanowires 3 nm wide and 0.8 nm thick, selectively deposited in the
trenches by photolysis of ferrocene: 1003100 nm2.
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LUMO to the band edges in Fig. 1!. Second, the adsorbed
ferrocene layer has to be decomposed into metallic Fe by the
laser. It has been suggested that ferrocene is such a stable
molecule that desorption is favored over decomposition,11,12

which is essential to ensure that radiation-induced decompo-
sition can indeed occur. Thermodynamic cycles of both gas-
eous and adsorbed ferrocene are displayed in Fig. 1.12 Ultra-
violet radiation at 337 nm~3.68 eV! provides more than
sufficient energy for decomposing the ferrocene on a surface
~about 3 eV! but insufficient energy for the decomposition in
the gas phase~6 eV to remove both cyclopentadienyl rings
and 3.96 eV to remove a single one!. In fact, desorption of
the fivefold cyclopentadienyl ring is observed during laser
irradiation. Third, the metallic Fe layer has to remain more
reactive than the CaF2 mask in order to continue selective
adsorption of ferrocene onto Fe. In general, a metallic sur-
face is much more reactive than the insulating CaF2 because
it has a continuum of electronic states that can interact with
ferrocene orbitals. Nearly metallic behavior of the Fe deposit
is evident from spectroscopic STM. After photolysis we ob-
serve a stable tunneling current at small sample voltages
~down to about 0.5 V!, whereas the native CaF2 surface re-
quires a sample voltage of 4 V in order to achieve tunneling
into the conduction band minimum.

Selective adsorption using CaF2 masks on a stepped
Si~111! has been observed for a variety of other molecules,13

and is emerging as a general method for growing one-
dimensional nanostructures of transitional metals and other
materials using chemical vapor deposition. The following
criteria can be applied to select potential precursor mol-
ecules. The molecule should be available in the vapor phase
to undergo transport to the substrate. It should have weak
metal to ligand bonds and stable ligands in order to enable
photolysis without leaving fragments at the surface. In the
absence of radiation the precursor should not react with the
surface. Various metallocenes and organometallic deriva-
tives are likely candidates.

In Fig. 3, we show an STM image~sample voltage of
14 V! of the intermediate stage during the growth of Ni
wires, i.e., selective adsorption of nickelocene at the edges
and at the bottom of the CaF1/Si(111) trenches~after 2 min
postannealing at;100 °C!. A photolytic process takes place
similar to that with ferrocene. The shape and width of the
structures grown are determined by the morphology of the
CaF2 mask. The width can be precisely controlled by the
CaF2 coverage. The edges of the CaF2 mask consist of
atomically straight sections, following the underlying
Si~111! steps.4,5 The spacing of the wires is dictated by the
miscut angle of the vicinal Si~111!. Such self-assembled
CaF2 masks on stepped Si~111! thus offer shape and size
control of Fe and Ni wires on a single-digit nanometer scale.

In summary, we have described a self-assembly method
that leads to arrays of Fe nanowires over macroscopic areas.
Since it uses silicon as a substrate, it lends itself to integrat-
ing nanowire structures into silicon devices. This process is
likely to provide a more general pathway for fabricating
nanowire arrays of other materials. The deposited Fe wires

are probably in the superparamagnetic regime.1,2 If they
could be made a factor of 2–4 thicker they would become
ferromagnetic and would facilitate the fabrication of fully
integrated magnetoelectronic devices on a silicon substrate.
Thicker wires can be expected when using a laser with a
shorter wavelength that better matches the absorption of fer-
rocene~around 193 nm! for obtaining higher growth rates.

This work is supported by the NSF under Award Nos.
DMR-0079983 and DMR-9815416. The authors thank Dr. J.
Lawler and Dr. J. Curry for the, technical support in using
excimer lasers. They also thank J. Crain for sample charac-
terization via near edge x-ray absorption fine structure.
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