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Nonlinear temporal diffraction and frequency shifts resulting
from pulse shaping in chirped-pulse amplification systems

X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus*

Center for Ultrafast Optical Science, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109-2099

Received January 30, 1995

We present experimental results of the amplification of strongly amplitude-modulated chirped pulses resulting

from the coherent addition of two delayed short pulses.

The nonlinearities in the amplifier chain induce a

temporal diffraction resulting in prepulses and postpulses, in addition to the two main pulses when compressed.
Simultaneously, temporal-resolved and spectral-resolved output pulses show that the prepulses and postpulses are
blue shifted and red shifted, respectively, explaining the causality of the system.

Pulse shaping has received considerable attention
for manipulating ultrashort pulses.! It includes the
means of generating a train of pulses of variable delay,
intensity, and phase from a single short pulse of broad
spectrum. One simple shaper consists of two pulses
with a variable delay. This can be done in a Michel-
son interferometer-type delay line. More sophisti-
cated pulse shapers use a zero-dispersion grating-pair
stretcher, with an amplitude and phase mask placed
in the spectral plane. Currently, in most cases the
pulse shaper is linear, i.e., the amplitude and/or phase
masks do not depend on the intensity of the pulse,
and no nonlinear effect is introduced into the pulses.
Pulse-shaping techniques can provide pulses for ex-
periments in which specific pulse shapes with definite
pulse delay, amplitude, and phase are required."?
Although many experiments can use pulses directly
from a linear pulse shaper, further amplification is
desirable either to get a filtering process to get rid
of the spatial nonuniformities introduced by the zero-
dispersion devices or to reach higher power levels.?
In this case nonlinear optical effects may play an im-
portant role in the output pulses.

Recently nonlinear pulse shapers—the ones in
which the pulse-shaping effect is a function of the laser
intensity—have been demonstrated.* It was shown
that when instantaneous nonlinearities are included,
unexpected prepulses and postpulses, in addition to
the pulses that result from linear pulse shaping, will
appear. However, the origin of the additional pulses
was not very intuitive* or even invoked noncausal
photon echos.’ In this Letter we report nonlinear
pulse shaping by two chirped pulses propagating in a
laser gain medium. The unique feature of our exper-
iment is that we simultaneously resolve temporal and
spectral behavior of the pulses using a spectrometer—
streak camera combination. We show that additional
frequencies are generated as a result of nonlinear in-
teraction in the gain medium and the pulses that carry
the new frequencies are those created by temporal
diffraction as a result of pulse shaping. We show that
this is necessarily true for this type of pulse shaping
and explain how causality is taken into account.

The experimental setup is shown in Fig. 1. Two
400-fs laser pulses with a variable delay between
them were created with a Michelson interferometer
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arrangement. The delay setup was inserted before
the stretcher of a chirped-pulse amplification high-
power laser system operating at 1.053 um. The time
delay could be varied between 0 and 1200 ps. The
laser pulses were then stretched to 950 ps in a grating-
pair stretcher. The stretched pulses were amplified
in a Ti:sapphire regenerative amplifier and a series of
single-pass Nd:glass power amplifiers. The amplified
pulses were then compressed back to short pulses by a
grating-pair compressor. In our experiment the maxi-
mum output was limited to approximately 500 mdJ per
pulse before compression.

The output pulses were sent to a streak camera
coupled to a spectrometer. Figure 2(a) shows the
streak camera image when the two pulses from the
Michelson interferometer were separated by approxi-
mately 1 ns. The streak image shows two compressed
pulses. When the time delay was changed to 400 ps,
the streak image shows two more pulses, one advanced
and one retarded relative to the two initial pulses.
The time separations of the four pulses are the same,
400 ps. Furthermore, the observed spectra of the two
additional pulses appear narrower, the leading one
blue shifted and the trailing one red shifted from the
initial pulses, as shown in Fig. 2(b).

The most intuitive way to understand the frequency
shift and temporal diffraction is to consider it as a four-
wave mixing (FWM) process. As shown in Fig. 1, at
any particular position in the overlapped part of the

()
1 (D]

A [ Delay line I
|
_7L_| T 032: tq

Amplifiers

diffuser

tg | Spectrometerl: Streak Camera

Fig. 1. Experimental arrangement of nonlinear pulse
shaping in a chirped-pulse-amplification amplifier.
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Fig. 2. Spectrally and temporally resolved images of out-
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put pulses. The broad pulse widths are due to scattering
from a diffuse surface. (a) Pulse separation is 1 ns and
the stretched pulses do not overlap in the amplifiers.
(b) Pulse separation is 400 ps and the stretched pulses
partially overlap in the amplifiers.

two pulses the instantaneous optical carrier frequen-
cies are w; and ws (v, > w,). The instantaneous car-
rier frequencies of the two chirped pulses are w,(7) =
wo + b(r + t3/2) and wy(7) = wy + b(7 — t4/2), where
ty is the relative delay. The frequency difference is
then dw = w; — wy = bty.

The third-order nonlinear polarization,

Py, = xP[E1(01) + Es(2)][E1 (—wy) + E)* (—wy)]
X [(Ei(w1) + Ei(w1)], 1

gives FWM, self-phase modulation (SPM), and
cross-phase modulation (XPM). In particular, the
terms E;(01)E;*(—ws)Ei(w1) and Ex(w)E;™(—w1) X
E;(ws) are the FWM processes of interest, giving the
new frequencies 2w; — ws, and 2w; — w;. We see that
(2w, — w3), = w; + bty, so it is constantly blue shifted
from w(7). Likewise, 2wy — w; = wy — bty is red
shifted from ws(7). The FWM process is efficient be-
cause it is phase matched because the new frequencies
and w,(7) and wy(7) are all nearly equal. When the
chirped pulses are recompressed in the compressor,
w1 + w = w; + bty is advanced by ¢, relative to the
;. Because the unshifted frequencies w;(7) collapse
to 7 = 0 to form the compressed pulse, the blue-shifted
frequencies will collapse at 7 = —¢t; to form the pre-
pulse. The same applies to the red-shifted postpulse.
The partial overlap causes the bandwidth of the new
pulses to be narrower, as shown in the experiment.
Indeed, no time causality is violated: even though ad-
ditional pulses appear ahead of the compressed origi-
nal pulses, they are a result of the new frequencies,
and the dispersive properties of the grating compres-
sor and the new pulses fall under the envelope of
the chirped pulses. It is clear from the above argu-
ment that the additional pulses from such nonlinear
shaping arrangements are always blue shifted and
red shifted. This should also be the case for the
research reported in Refs. 4 and 5. However, in those
experiments the delay between the original pulses
was small compared with the stretched pulse widths,
so the frequency shift Sw was also small and may
not be observable. Moreover, the use of a regular

autocorrelator was not suitable for measuring the
spectra of individual pulses.

This process of new frequency components giving
rise to new pulses is the time-domain analog of spa-
tial nonlinear diffraction. The gist of space—time
duality,® is that the temporal equation governing the
propagation in a dispersive medium of a pulse with a
narrow Aw spread and spatial propagation in vacuum
for a beam of narrow A% spread have the same form.
When two noncollinear and diverging beams overlap
spatially in a nonlinear medium, a beat pattern forms.
New spatial £ vectors (2k; — k,, 2k, — k;) will be
generated as a result of nonlinear interaction in the
medium. The new % vectors will give rise to new spots
when the pulses are going backward (the compressor
analog) on both sides of the initial beam.

Another valid approach is to look at the process as
nonlinear propagation of the composite pulse, which
contains the beat pattern. The propagation can be
described by
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Fig. 3. Temporal beat pattern of the two chirped pulses
with a delay t; = 400 ps. Blue-shifted and red-shifted
frequencies are generated on the rising and falling sides
of the sinusoidal curve.
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Fig. 4. Simulation example with B = 0.3. (a) Input short
pulse, (b) input spectrum, reproducing the experimental
spectrum, (c) stretched pulses with delay #; = 400 ps,
(d) recompressed pulses after propagating in a nonlinear
medium.
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Fig. 5. Spectra of individual recompressed pulses showing
the spectral shifts. Note that the spectra of the two origi-
nal pulses show asymmetric depletion because of the
partial overlap of the stretched pulses in the nonlinear
medium.

where 7 =t — z/v,, v, is the group velocity, B" =
0%k/dw? is the group-velocity dispersion, vy is the laser
gain, ky = nowy/c, wy is the central carrier frequency
of the pulse, and n, is the linear index of refraction.
In the amplifiers we ignore the group-velocity disper-
sion for simplicity (8” = 0). y contains the nonlin-
earity that is due to gain saturation. Note that the
nonlinear phase term |A(z, 7)|?A(z, 7) contains all the
FWM, SPM, and XPM terms; therefore Eq. (2) con-
tains the FWM discussed above. In this picture the
new frequencies are generated as a result of SPM,
8w « dI(7)/dr. Because of the many rapid intensity
oscillations that are due to the beating, as shown in
Fig. 3, new frequencies are generated efficiently even
though the intensity is not high. All the new frequen-
cies generated this way will interfere in the compressor
to give the additional pulses.

To verify this picture and compare it with our ex-
periment, we have conducted numerical integration
of Eq. (2). Because the spectrum of the pulse was
not Gaussian experimentally, we first obtain a simi-
lar spectrum, shown in Fig. 4(b), by sending a 400-fs
FWHM Gaussian pulse [Fig. 4(a)] through a nonlin-
ear medium. The pulse is then stretched to 950 ps.
The pulse is now split into two: A(z,7) — A(z,7 —
tqe/2) + A(z,t + ty/2) [Fig. 4(c)]. In the absence of
gain saturation, the laser intensity I(z,7) = |A(z, 7)|?
is amplified in the amplifier as I(z, 7) = I;,e”?, and the
effect of nonlinearity can be expressed by the value of
the B integral:

2 L 2 I,e™ 2 I
B— 7rn2/‘ Iz, 7)dz mny Ine™ _ 2mny Lo
A 0 A 0% A b%
3)

where L is the length of the gain medium. From
Eq. (3) we see that the effective length of the nonlin-
ear medium is 1/y for a constant intensity of I ,; for
a laser amplifier. The B integral of the regenerative
amplifier is estimated to be Byegen = 0.2. The max-
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imum B value of the amplifiers used in the experi-
ment is estimated to be By, = 0.2 as well. We can
then choose appropriate constant laser intensities I,
and interaction lengths L for Eq. (2) to yield the same
B integral and hence the same nonlinear effect on the
pulses, and the gain term is eliminated for simplicity.

In our numerical example shown in Fig. 4 we use
B =0.3. Therelative delay is ¢, = 400 ps for Fig. 4(c).
Figure 4(d) shows the recompressed pulses with the
additional prepulses and postpulses. All four pulses
are separated by the initial delay, 400 ps. The energy
contained in the prepulses and postpulses is more than
10% of that of the main pulses, showing the efficiency
of the nonlinear process. Figure 5 shows the spectra
of individual pulses, displaying the spectral shifts
and narrower bandwidths discussed above. Another
simulation run done for a relative delay of 1000 ps
still shows additional prepulses and postpulses with
correspondingly larger frequency shifts, but their
intensities are too small to be seen on linear scale
plots. Nonlinearities caused by gain saturation is
also considered in the numerical calculation, resulting
in prepulses and postpulses as well. However, the
intensity of the additional pulses is approximately 8
orders of magnitude smaller than the original pulses.
Therefore we attribute the nonlinearity solely to the
instantaneous third-order susceptibility.

In summary, we have demonstrated that the
amplification of a strongly amplitude-modulated
chirped pulse leads to new prepulses and postpulses
when the pulse is compressed, even though a B
integral of 0.3 is low for an amplifier system. This
result is of general interest for the amplification
of shaped pulses because it sets some limits on the
allowed high-frequency amplitude modulation on
the spectrum where feasible phase manipulation is
preferable.” On the other hand, this suggests that
this simple type of nonlinear pulse shaping generating
a sequence of pulses may find direct applications for
plasma Wakefield accelerators, as recently proposed.?
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Science Foundation Center for Ultrafast Optical Sci-
ence, contract PHY8920108.
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