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Abstract A state-based peridynamic material model describes internal forces acting on a
point in terms of the collective deformation of all the material within a neighborhood of
the point. In this paper, the response of a state-based peridynamic material is investigated
for a small deformation superposed on a large deformation. The appropriate notion of a
small deformation restricts the relative displacement between points, but it does not involve
the deformation gradient (which would be undefined on a crack). The material properties
that govern the linearized material response are expressed in terms of a new quantity called
the modulus state. This determines the force in each bond resulting from an incremental
deformation of itself or of other bonds. Conditions are derived for a linearized material
model to be elastic, objective, and to satisfy balance of angular momentum. If the material
is elastic, then the modulus state is obtainable from the second Fréchet derivative of the strain
energy density function. The equation of equilibrium with a linearized material model is a
linear Fredholm integral equation of the second kind. An analogue of Poincaré’s theorem
is proved that applies to the infinite dimensional space of all peridynamic vector states,
providing a condition similar to irrotationality in vector calculus.

Keywords Peridynamics · Linearization · Elasticity · Continuum mechanics · Nonlocal ·
Constitutive modeling

Mathematics Subject Classification (2000) 74B15

1 Introduction

The peridynamic model is an extension of solid mechanics in which a point in a contin-
uum interacts directly with other points separated from it by a finite distance. The maximum
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interaction distance provides a length scale for a material model, although the model may
additionally contain smaller length scales. The purpose of the peridynamic approach is to al-
low discontinuous media, including continuous media in which discontinuities appear spon-
taneously as a result of deformation, to be treated according to exactly the same equations
as continuous bodies.

Restricting attention to elastic materials, the central assumption in the peridynamic model
is that the strain energy density W(x) at a point x depends collectively on the deformation of
all the points in a neighborhood x with radius δ > 0. δ is called the horizon for the material.
There is no assumption that the body is continuous within this horizon, i.e., that density is
a continuous function of position in the reference configuration; nor is there an assumption
that an initially continuous body remains continuous. To keep track of the interactions be-
tween x and all of its neighbors within its horizon, mappings called peridynamic states are
used as a convenience. These mappings allow constitutive relations to be expressed in a con-
cise form. These relations prescribe how the collective deformation of the material within
the horizon of x determines the nonlocal forces acting on x.

A general framework for constitutive modeling in terms of states has been presented in
[1]. The main purpose of the present paper is to develop a linearized version of the peridy-
namic state theory applicable to small deformations. The appropriate notion of small defor-
mation is different in the peridynamic theory from the standard theory, because the peridy-
namic notion allows for discontinuities such as cracks in the deformation. By linearizing the
general theory, simplifications are obtained that specialize the peridynamic equation of equi-
librium to a Fredholm linear integral equation of the second kind. Conditions are obtained
for a linearized material to be elastic and to satisfy objectivity and balance of angular mo-
mentum. The material properties in the linearized theory are contained in a quantity called
the modulus state that is analogous to the fourth order elasticity tensor in the standard the-
ory. For an elastic material, the modulus state is obtained from the second Fréchet derivative
of the strain energy density function; this is analogous to the second tensor gradient in the
standard theory.

The main advantages of the peridynamic method appear in problems involving discon-
tinuities that are either present initially or evolve as a result of deformation, as in the case
of dynamic fracture. Although this paper does not specifically address damage evolution,
it is shown that the applicable notion of a “small deformation” that permits linearization
(see Sect. 4.1) is compatible with such discontinuities. The linearized equations also permit
softening materials to be studied, including the associated material stability issues [2]. The
linearized model also provides a setting in which to explore the properties of dispersive lin-
ear waves and their stability, a topic which is touched on briefly in example problem 4 below
(see Sect. 5.4).

In this paper we summarize in Sect. 2 the basic mathematical tools used in the peridy-
namic theory. Section 3 contains a discussion of elastic material models in the fully non-
linear theory, including new results on the connection between objectivity and balance of
angular momentum. Section 4 presents the linearized version of the theory, including the
characterization of a material in terms of the modulus state. Necessary and sufficient condi-
tions for a material to be elastic are proved in terms of the properties of the modulus state.
Conditions for objectivity and balance of angular momentum in the linearized theory are
proved. The equation of motion is shown to reduce to a linear integro-differential equation
in terms of displacement whose coefficients are derivable from the original nonlinear consti-
tutive model. The properties of the linear theory in the limit of small horizon are discussed
in Sect. 4.7, where it is shown that under suitable restrictions, the model converges to the
standard theory. Examples of linearization are given in Sect. 5. In Sect. 6 is presented a
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brief comparison between the peridynamic theory, with and without linearization, and the
standard theory of solid mechanics. The Appendix contains details about the properties of
second Fréchet derivatives of functions of peridynamic states.

2 Peridynamic States

Constitutive modeling within the peridynamic theory considers the collective deformation
of all the material within a neighborhood of any point x ∈ B, where B is the reference
configuration of the body. To treat the kinematics and kinetics of such a neighborhood, it is
convenient to introduce mathematical objects called peridynamic states [1].

Let δ > 0 denote the horizon, which is treated as a material property. For any q ∈ B such
that |q − x| ≤ δ, the vector ξ = q − x is called a bond. The set of all such bonds is called the
family of x and denoted H.

A peridynamic state A is a mapping that associates with any ξ ∈ H some other quantity
denoted A〈ξ〉. (Angle brackets are used to distinguish the bond that a state operates on from
dependencies that the state itself may have on other quantities, such as position.) If the value
of A〈ξ〉 is a scalar, then A is called a scalar state. Most of the states considered in this paper
are of either of two types, called vector states and double states. These will now be defined.

2.1 Vector States

If A is a vector state, then for any ξ ∈ H, the value of A〈ξ〉 is a vector in R
3. The set of all

vector states is denoted V . The dot product of two vector states A and B is defined by

A • B =
∫

H
A〈ξ〉 · B〈ξ〉dVξ

where the symbol “·” denotes the inner product of two vectors in R
3, i.e.,

A • B =
∫

H
Ai〈ξ〉Bi〈ξ〉dVξ .

Here, Ai and Bi represent the components of A and B respectively in an orthonormal basis,
and the summation convention is used.

The composition of two vector states A and B is defined by

(A ◦ B)〈ξ 〉 = A〈B〈ξ〉〉
for any bond vector ξ . The identity vector state X is defined by

X〈ξ〉 = ξ ∀ξ ∈ H.

The norm of a vector state A is defined by

‖A‖ = √
A • A. (1)

A vector state Q ∈ V is orthogonal if there is a proper orthogonal tensor Q such that for
every bond vector ξ ,

Q〈ξ〉 = Qξ .

Geometrically, orthogonal states rigidly rotate the bonds in the family.
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2.2 Double States

If D is a double state, then the value of D〈ξ , ζ 〉 is a second-order tensor, where ξ and ζ

are bonds in H. The set of all double states is denoted D. If D is a double state, let the left
product of A and D be the vector state A • D defined by

(A • D)j 〈ξ〉 =
∫

H
Ai〈ζ 〉Dij 〈ζ , ξ〉dVζ ∀ξ ∈ H.

Similarly, let the right product of D and B be defined by

(D • B)i〈ξ〉 =
∫

H
Dij 〈ξ , ζ 〉Bj 〈ζ 〉dVζ ∀ξ ∈ H.

If E is also a double state, then D • E is defined by

(D • E)ij 〈ξ , ζ 〉 =
∫

H
Dik〈ξ ,λ〉Ekj 〈λ, ζ 〉dVλ.

Denote by D
† the adjoint of D, defined by

D
†
ij 〈ξ , ζ 〉 = Dji〈ζ , ξ〉 ∀ξ , ζ ∈ H. (2)

Note that the order of the bonds, as well as the order of the indices, is switched when taking
the adjoint. Observe from (2) that for any vector states A and B,

B • D
† • A = A • D • B. (3)

D is self-adjoint if

D
† = D.

2.3 Fréchet Derivatives of a Function of a Vector State

Let � be a real valued function on the set of vector states, i.e., �(·) : V → R. If � is Fréchet
differentiable at A ∈ V , then for any a ∈ V ,

�(A + a) = �(A) + ∇�(A) • a + o(‖a‖) (4)

where the Fréchet derivative ∇�(A) is a vector state.
Similarly, if S is vector state valued function on V , i.e., S(·) : V → V , then

S(A + a) = S(A) + ∇S(A) • a + o(‖a‖) (5)

where ∇S(A) is a double state. If ∇� is Fréchet differentiable, then the second Fréchet
derivative of � is a double state defined by

∇∇� = ∇(∇�) on V.

The following list summarizes, omitting some details, three important results that are proved
in the Appendix:
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Fig. 1 The deformation state Y
maps a bond q − x into its
deformed image

• If �(·, ·) is a function of two vector states, then the order of differentiation in mixed
second Fréchet derivatives of � is interchangeable.

• If �(·) is a function of a vector state, then ∇∇� is self-adjoint.
• If S(·) is a vector state valued function of a vector state, then ∇S is self-adjoint if and only

if there exists a scalar valued function � such that S = ∇� . (This result is analogous to
Poincaré’s theorem in vector calculus.)

3 Elastic Peridynamic Materials

This section summarizes some properties of simple materials and elastic materials; details
may be found in [1]. Consider the reference configuration of a peridynamic body B, and let
y be a motion of B; thus, the position of a point x ∈ B at time t ≥ 0 is y(x, t). Let Y[x, t] be
the deformation state, the vector state defined by

Y[x, t]〈q − x〉 = y(q, t) − y(x, t), (q − x) ∈ H (6)

(see Fig. 1). The notation defined in the left hand side of (6) is helpful because we will
use Y, as opposed to its specific value Y〈q − x〉 operating on the bond q − x, as the basic
kinematical quantity for purposes of constitutive modeling analogous to the deformation
gradient tensor in the standard theory.

The equation of motion is

ρ(x)ÿ(x, t) =
∫

H

{
T[x, t]〈q − x〉 − T[q, t]〈x − q〉

}
dVq + b̂(x, t) (7)

where b̂ is a prescribed body force density field, and where T is a vector state field called
the force state field. If the material is simple, then T[x, t] is determined from the collective
deformation of the family of x according to the following constitutive model:

T[x, t] = T̂(Y[x, t],x). (8)

If, in addition to being simple, the material is also elastic, then there exists a function
Ŵ (·, ·) : V × R

3 → R such that for any Y,

T̂(Y,x) = ∇Ŵ (Y,x) (9)
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in which ∇ denotes the Fréchet derivative with respect to Y. The function Ŵ is called the
strain energy density function. Elastic materials in the peridynamic theory have many of the
same properties as in the classical theory. Among these is the reversible storage of work
provided to the body through deformation [1]. The rate of work per unit volume absorbed
by a point x due to interaction with other points in H is given by

Ẇ = T • Ẏ,

which is analogous to the stress power in the classical theory, σ · Ḟ, where σ is the Piola
stress and F is the deformation gradient tensor.

A material model T̂ is objective [1] if, for every orthogonal state Q, every Y, and every x,

T̂(Q ◦ Y,x) = Q ◦ T̂(Y,x). (10)

As shown in [1], if the material is elastic, it is objective if and only if

Ŵ (Q ◦ Y,x) = Ŵ (Y,x). (11)

The strain energy density function of an objective material is therefore invariant with respect
to rigid rotations of the family after a deformation of the family by Y.

3.1 Objectivity and Balance of Angular Momentum

As proved in [1], global balance of angular momentum holds in a body whose material
model is such that the following local balance of angular momentum holds for every Y and
every x: ∫

H
Y〈ξ〉 × T〈ξ〉dVξ = 0, T = T̂(Y,x). (12)

The following result is of practical value because it is often easier to show that a material
model is objective than to show directly that is satisfies (12).

Proposition 3.1 Suppose a material model is elastic. Then it is objective if and only if it
satisfies the local balance of angular momentum (12).

Proof Suppose Ŵ is objective; therefore (11) holds. Deform the family of any x ∈ B (we
omit the explicit dependence of Ŵ on x to shorten the notation), and let Y0 be the resulting
deformation state. Let c be an arbitrary unit vector. Apply a rigid rotation about c with
rotation angle θ to the deformed family. Let Q

θ
be the corresponding proper orthogonal

state. Define

Yθ = Q
θ
◦ Y0, Tθ = ∇Ŵ (Yθ ). (13)

From the geometry of rigid rotations, for any ξ ∈ H,

dYθ 〈ξ〉
dθ

= c × Yθ 〈ξ〉. (14)

By the properties of the Fréchet derivative (4), and using the second of (13) and (14),

dŴ (Yθ )

dθ
= Tθ • dYθ

dθ
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=
∫

H
Tθ 〈ξ〉 · (c × Yθ 〈ξ〉) dVξ .

Using the vector identity p · (q × r) = q · (r × p), this implies

dŴ (Yθ )

dθ
= c ·

∫
H

Yθ 〈ξ 〉 × Tθ 〈ξ〉dVξ . (15)

But since, by assumption, the material is objective, it follows from (11) and (13) that

dŴ(Yθ )

dθ
= 0. (16)

Therefore (15) implies

c ·
∫

H
Yθ 〈ξ〉 × Tθ 〈ξ〉dVξ = 0

for every unit vector c. This can only be true if

∫
H

Yθ 〈ξ〉 × Tθ 〈ξ〉dVξ = 0 ∀θ. (17)

Setting θ = 0, therefore ∫
H

Y0〈ξ〉 × T0〈ξ〉dVξ = 0.

Since this must hold for every Y0 ∈ V , (12) follows; therefore the balance of angular mo-
mentum holds.

Conversely, if (12) holds, then clearly (17) holds. Reversing the above steps, for any unit
vector c, (15) and (17) imply (16). Therefore, using (13),

Ŵ (Q
θ
◦ Y0) − Ŵ (Y0) =

∫ θ

0

dŴ (Yτ )

dτ
dτ = 0 ∀θ.

Thus (11) holds, and the material is therefore objective. �

4 Linearized Peridynamic Models

Linearization of the bond-based peridynamic theory was discussed in [3]. In the bond-based
theory, each bond has its own constitutive model and responds independently of the other
bonds. As shown in [1], the bond-based version is a special case of the state-based the-
ory, which allows for collective response of all the bonds in the family. The bond-based
description suffers from severe limitations on the types of materials that can be accurately
described, notably the restriction on the Poisson ratio ν = 1/4 for isotropic solids. Several
studies have investigated the linearized bond-based theory, including [4–9].

In the present paper, linearization within the more general case of state-based models
is investigated. This version has far fewer restrictions on material response than the earlier
approach and allows any Poisson ratio.
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4.1 Small Deformations

Let B be a closed, bounded body. Consider a deformation y0, which may be large. Let u
be a displacement field superposed on y0. The displacement state field associated with u is
defined by

U[x, t]〈q − x〉 = u(q, t) − u(x, t), ∀x ∈ B, (q − x) ∈ H. (18)

To talk about linearization, it is first necessary to introduce a notion of smallness to help
establish the conditions under which the linearized version is expected to be applicable.
This motivates the following definition:

Definition 4.1 Let B be a body with horizon δ. A displacement field u on B is small if, for
any t ≥ 0,

	 � δ (19)

where

	 = sup
|q−x|≤δ

|u(q, t) − u(x, t)|. (20)

This definition is a nonlocal analogue of the standard assumption in the classical theory
of linear elasticity that |grad u| � 1. Definition 4.1 does not restrict rigid translations of a
body, but it does restrict rigid body rotations to small angles. Also, it allows for possible
small discontinuities in u.

Also note from (1) and (20) that if 	 exists, then, for any x ∈ B,

‖U[x, t]‖ =
[∫

H
(U[x, t]〈ξ〉) · (U[x, t]〈ξ〉) dVξ

]1/2

≤
[∫

H
	2 dVξ

]1/2

= 	
√

vol H.

Therefore, for a small deformation, we can write

‖U‖ = O(	). (21)

4.2 Linearization of an Elastic Constitutive Model

Let B be a closed, bounded body composed of a simple material, with constitutive model
given by (8). Consider an equilibrated deformation y0 corresponding to a time-independent
external body force density field b0. Let u be a small displacement field superposed on y0.
Linearizing the function T̂ given by (8) near Y0 leads to

T(U) = T0 + K • U (22)

where

T0 = T̂(Y0),

Y0[x]〈q − x〉 = y0(q) − y0(x),
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U is defined in (18), and K is a double state called the modulus state defined by

K = ∇T̂(Y0). (23)

As before, the symbol ∇ indicates the Fréchet derivative with respect to Y. In this section,
heterogeneity in the body is allowed but not explicitly included in the notation; thus we write
T̂(Y) instead of T̂(Y,x).

To evaluate the accuracy with which the linearized model approximates the full model,
from (5), (21), (22), and (23), it follows that

T̂(Y0 + U) = T(U) + o(	). (24)

So, in this sense, the linearized model for a simple material is a first order approximation for
small deformations. Note that K is independent of t and of U. It can depend on x because T̂
can depend explicitly on x in a heterogeneous body.

If the material is elastic, then the linearized force state given by (22) is obtainable from

T = ∇W

where the function W is defined by

W(U) = Ŵ (Y0) + T0 • U + 1

2
U • K • U,

as is easily confirmed by evaluating the Fréchet derivative of this W . This W is an approxi-
mation to Ŵ near a specific Y0.

If the material is elastic, then from (9) and (23),

K = ∇∇Ŵ (Y0),

and, by Lemma A.3,

K
† = K.

The following is a stronger result that provides a necessary and sufficient condition for a
material to be elastic in terms of the modulus state evaluated at arbitrary large deformations.

Proposition 4.1 Let a constitutive model for a material be given by the continuously Fréchet
differentiable function T̂(·) : V → V , and define a function K̂(·) : V → D by

K̂(Y) = ∇T̂(Y) ∀ Y ∈ V.

Then the material is elastic if and only if

K̂
† = K̂ on V. (25)

Proof The result follows immediately from Lemma A.4. �
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4.3 Objectivity and Balance of Angular Momentum in Linearized Models

This section proposes a definition for objectivity in a linearized material model derived from
objectivity in the nonlinear theory, (10). To arrive at this, set Y = Y0 and let Q correspond
to a rigid rotation through a small angle θ about a unit vector c. Let Q be the corresponding
proper orthogonal tensor, therefore

Q = 1 + θW + O(θ2), Wij = εikj ck

where εikj is the alternator symbol. This relation together with (10) and (22) implies

T0 + K • (θWY0) = (1 + θW)T0 + O(θ2).

Retaining only first order terms in θ motivates the following definition:

Definition 4.2 A linearized material model (22) is linearly objective if for every unit vec-
tor c,

K • (WY0) − WT0 = 0

where W is given by

Wij = εikj ck.

Writing out these last two expressions yields

0 =
∫

H
Kij 〈ξ , ζ 〉 Wjm Y 0

m〈ζ 〉dVζ − WimT 0
m〈ξ〉

=
∫

H
Kij 〈ξ , ζ 〉 εjkmck Y 0

m〈ζ 〉dVζ − εikmckT
0
m〈ξ〉

=
(∫

H
Kij 〈ξ , ζ 〉 εjkm Y 0

m〈ζ 〉dVζ − εikmT 0
m〈ξ〉

)
ck.

Requiring this to hold for every choice of c results in the following condition for linear
objectivity:

Proposition 4.2 A linearized material model (22) is linearly objective if and only if

εjkm

∫
H

Kij 〈ξ , ζ 〉 Y 0
m〈ζ 〉dVζ − εikmT 0

m〈ξ〉 = 0 ∀ξ ∈ H. (26)

To obtain a definition of balance of angular momentum for linearized material models,
assume that T̂ satisfies (12), thus using (22) and (24),

∫
H

(
Y0〈ξ〉 + U〈ξ〉) × (

T0〈ξ〉 + (K • U)〈ξ〉 + o(	)
)
dVξ = 0. (27)

By (12),
∫

Y0〈ξ 〉 × T0〈ξ〉dVξ = 0. Since U = O(	), requiring (27) to hold to first order in
	 leads to the following notion of balance of angular momentum appropriate for linearized
models.
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Definition 4.3 A linearized material model of the form (22) satisfies the linear balance of
angular momentum if the following condition holds:

∫
H

(
Y0〈ξ〉 × (K • U)〈ξ〉 + U〈ξ〉 × T0〈ξ〉

)
dVξ = 0 (28)

for all vector states U.

The first term in the integrand in (28) accounts for changes in the bond forces due to U.
The second term accounts for rotations due to U of bonds with pre-existing forces T0〈ξ〉.
These small rotations have a first order effect on the couple Y〈ξ〉 × T0〈ξ〉.

If the linearized material model is elastic, then, as in the full nonlinear theory (see Propo-
sition 3.1), there is a close connection between objectivity and angular momentum balance:

Proposition 4.3 Suppose a linearized material model of the form (22) is elastic. Then it
satisfies linear objectivity if and only if it satisfies the linear balance of angular momentum.

Proof Suppose the linear balance of angular momentum (28) holds. The component form
of this is

εkmj

∫
H

∫
H

Y 0
m〈ξ〉K ji〈ξ , ζ 〉Ui〈ζ 〉dVζ dVξ + εkim

∫
H

Ui〈ξ〉 T 0
m〈ξ〉dVξ = 0.

Interchanging the dummy variables of integration ξ ↔ ζ in the double integral leads to

∫
H

(
εkmj

∫
H

Y 0
m〈ζ 〉K ji〈ζ , ξ〉dVζ + εkimT 0

m〈ξ〉
)

Ui〈ξ〉dVξ = 0.

Since this must hold for every choice of U, it follows that

εkmj

∫
H

Y 0
m〈ζ 〉K ji〈ζ , ξ〉dVζ + εkimT 0

m〈ξ〉 = 0 ∀ξ ∈ H.

Since the material is elastic, (25) holds, so

εkmj

∫
H

Y 0
m〈ζ 〉Kij 〈ξ , ζ 〉dVζ + εkimT 0

m〈ξ〉 = 0 ∀ξ ∈ H.

Using the identities

εkmj = εjkm, εkim = −εikm,

(26) is seen to hold, therefore, by Proposition 4.2, the material model satisfies linear objec-
tivity.

Conversely, reversing the above steps shows that (26) implies (28). Therefore, linear
objectivity implies the linear balance of angular momentum. �

The condition (25) is analogous to the major symmetry of the elasticity tensor in the
standard theory,

Cijkl = Cklij ,
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which applies to elastic materials. The condition (26) is analogous to the minor symmetry
in the standard theory,

Cijkl = Cj ikl

which ensures the symmetry of the stress tensor and therefore, by Cauchy’s theorem, also
ensures balance of angular momentum.

4.4 Equation of Motion

No additional approximations need to be applied to the equation of motion in the linearized
theory. Substituting the linearized constitutive models into this equation transforms it into
a linear integro-differential equation expressed in terms of displacement. This equation will
now be derived.

As before, assume that a body B is subjected to time-independent body force density
field b0, resulting in an equilibrated1 deformation y0. Then subject the body to an additional
body force density field b, so

b̂ = b0 + b.

Let the resulting change in the displacement field be denoted u, thus

y = y0 + u.

It is now more convenient to write volume integrals with points such as p ∈ B as the dummy
variable of integration rather than bond vectors such as ξ ∈ H. To simplify the notation, we
will adopt the convention that state quantities take on null values for bond vectors outside
the family, i.e., if the material horizon is δ, then

T[x]〈p − x〉 = 0 whenever |p − x| > δ.

From (7) and (22), we have

ρ(x)ü(x, t) =
∫

B

{
(T0[x] + K[x] • U[x])〈p − x〉

− (T0[p] + K[p] • U[p])〈x − p〉
}

dVp + b̂(x, t). (29)

Since y0 is equilibrated, from (7),

∫
B

{
T0[x]〈p − x〉 − T0[p]〈x − p〉

}
dVp + b0(x) = 0. (30)

Subtracting (30) from (29) yields

ρ(x)ü(x, t) =
∫

B

{
(K[x] • U[x])〈p − x〉 − (K[p] • U[p])〈x − p〉

}
dVp + b(x, t).

1The assumption that y0 is equilibrated is not essential but results in the simplification that the linearized
material properties become time-independent.



Linearized Theory of Peridynamic States 97

Fig. 2 Point q interacts
indirectly with x even though
they are outside each other’s
horizon because they are both
within the horizon of
intermediate points such as p

Writing out the dot products explicitly using (18) and rearranging leads to

ρ(x)ü(x, t) =
∫

B

∫
B

K[x]〈p − x,q − x〉(u(q, t) − u(x, t)) dVq dVp

−
∫

B

∫
B

K[p]〈x − p,q − p〉(u(q, t) − u(p, t)) dVq dVp + b(x, t).

After further rearrangement and an interchange of dummy variables of integration p ↔ q,
this becomes

ρ(x)ü(x, t) =
∫

B
C0(x,q)u(q, t) dVq − P0(x)u(x, t) + b(x, t) (31)

for all x and t , where C0 is the tensor valued function defined by

C0(x,q) =
∫

B

(
K[x]〈p − x,q − x〉

− K[p]〈x − p,q − p〉 + K[q]〈x − q,p − q〉
)

dVp (32)

and where

P0(x) =
∫

B

∫
B

K[x]〈p − x,q − x〉dVq dVp =
∫

B
C0(x,q) dVq.

As illustrated in Fig. 2, C0(x,q) may be non-null even though δ < |q − x| < 2δ. This can
occur because there are intermediate points p whose horizon includes both x and q. Thus, x
and q can interact indirectly even though they are outside of each other’s horizon. This type
of indirect interaction appears in the term in the integrand in (32) involving K[p], since this
term arises from the force state at p.

In practice, the expressions for C0 in many materials of interest contain Dirac delta func-
tions centered at x. It is convenient to move this term outside the integral in the equation of
motion (31) by rewriting it as

ρ(x)ü(x, t) =
∫

B
C(x,q)u(q, t) dVq − P(x)u(x, t) + b(x, t), (33)
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for all x and t , where

C(x,q) = C0(x,q) + λ(x)�(q − x), (34)

P(x) = P0(x) + λ(x) =
∫

B
C(x,q) dVq, (35)

λ(x) = − lim
ε→0

∫
Sε

C0(x,q) dVq, (36)

where Sε is the interior of a sphere of radius ε centered at x, and � is the Dirac delta function
in R

3. From Proposition 4.1, (32), (34), (35), and (36), the following symmetries hold for
any x and q:

CT (x,q) = C(q,x), PT (x) = P(x).

In the special case of a bond-based material description (see Example 1 below), then in
addition to this symmetry, one also has

C(x,q) = C(q,x).

Setting the acceleration term to zero in (33) yields the linearized equation of equilibrium:

∫
B

C(x,q)u(q) dVq − P(x)u(x) + b(x) = 0 (37)

for all x. This is a Fredholm linear integral equation of the second kind.

4.5 Physical Interpretation of P

The tensor P has the same mechanical interpretation as in the bond-based theory (see (90)
in [3]). To interpret P, consider the deformation with displacement field v given by

v(x) =
{

e if x = x0

0 otherwise

where x0 ∈ B is a fixed point and e is an arbitrary unit vector. The body force density field re-
quired to equilibrate this displacement field is found by substituting v into (37). The integral
vanishes, and body force density at x0 required to sustain the deformation is

b(x0) = P(x0)e.

The value of the vector P(x0)e is therefore the force density (per unit volume) at x0 required
to displace x0 by the vector e, holding all other points fixed.

4.6 Summary of the Linear Theory

Equation of motion:

ρ(x)ü(x, t) =
∫

B
C0(x,q)u(q, t) dVq − P0(x)u(x, t) + b(x, t)
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where

C0(x,q) =
∫

B

(
K[x]〈p − x,q − x〉 − K[p]〈x − p,q − p〉 + K[q]〈x − q,p − q〉

)
dVp,

P0(x) =
∫

B
C0(x,q) dVq.

The linearized material properties are contained in the double state K. The material is elastic
if and only if K

† = K, in which case it is related to the strain energy density by

K = ∇∇W.

Regardless of whether the material is elastic:

• K satisfies (26) ⇐⇒ the material is linearly objective.
• K satisfies (28) ⇐⇒ the material satisfies linear balance of angular momentum.

If the material is elastic, then (26) and (28) are equivalent.
If C0 contains terms of the form �(q − x), it is often convenient to rewrite the equation

of motion as described in (33)–(36) and as illustrated in Example 1.

4.7 Limit of Small Horizon

It was shown in [7] and more generally in [10] that if a deformation of a body is classically
smooth, then the peridynamic theory converges to the standard theory in the limit δ → 0.
This limiting process is carried out in such a way that the bulk properties of the material at
every point (the material’s response under homogeneous deformation) are unchanged as δ

changes. The limit provides a local description of the internal forces (see (50) of [10]) given
by the following Piola stress tensor field:

σ =
∫

H
T̂(FX)〈ξ〉 ⊗ ξ dVξ , F = ∂y

∂x
(38)

where T̂ is the constitutive model in the original (nonlocal) peridynamic description.
To investigate the implications of this for the linear peridynamic theory, assume for sim-

plicity that T0 = 0 and Y0 = X. From (22), set

T̂(FX)〈ξ〉 = (K • U)〈ξ〉 =
∫

H
K〈ξ , ζ 〉(Hζ ) dVζ , H = F − 1 = ∂u

∂x
.

From this and (38),

σ =
∫

H

∫
H

(
K〈ξ , ζ 〉(Hζ )

) ⊗ ξ dVζ dVξ ,

or

σij =
∫

H

∫
H

(
K ik〈ξ , ζ 〉(Hklζl)

)
ξj dVζ dVξ .

This may be rewritten as a conventional linear elastic model in the form

σij = CijklHkl, Cijkl =
∫

H

∫
H

K ik〈ξ , ζ 〉ξj ζl dVζ dVξ .
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Observe that the fourth order elasticity tensor C defined by this equation has the major
symmetry C = CT if K is self-adjoint. Therefore, the limiting linear local material model is
elastic if the original peridynamic linear material model is elastic.

These results do not mean that the linear peridynamic theory is equivalent to the standard
theory. They do mean that the standard linear theory is derivable from the peridynamic the-
ory in the sense of a limit, under suitable restrictions on the smoothness of the deformation.
In particular, the limit does not exist if cracks or other discontinuities are present. Assuming
the smoothness requirements are met, then under this limiting process, the material becomes
“more local” because the interaction distance δ becomes smaller. It should be emphasized
that the limit of small horizon considered in this section is unrelated to the notion of a small
deformation that enables the linear approximations derived earlier in this paper.

5 Examples

These examples illustrate how to obtain K and related quantities from a nonlinear constitu-
tive model and how they result in particular forms of the linearized equation of motion. In
all cases, we consider linearization at points in the body far from boundaries and interfaces.

5.1 Example 1: A Bond-Based Material

Consider a homogeneous body composed of an elastic bond-based material in which the
strain energy density is given by

Ŵ (Y) =
∫

H
ψ(e〈ξ〉, ξ) dVξ (39)

where ψ is the bond potential function and the extension scalar state is defined by

e〈ξ〉 = |Y〈ξ〉| − |ξ | (40)

for any bond ξ ∈ H. Note that the first argument of ψ is a scalar, not a scalar state. For a
small change dY in the deformation state,

de〈ξ〉 = Y〈ξ〉 · dY〈ξ〉
|Y〈ξ 〉| . (41)

Hence, applying the chain rule to the integrand in (39),

dW =
∫

H
ψ ′(e〈ξ〉, ξ)(M · dY〈ξ〉) dVξ , M = Y〈ξ〉

|Y〈ξ〉|
where ψ ′ is the first derivative of ψ with respect to its first argument and M is the deformed
bond direction. Then from (4) and (9), the force state for this material is given by

T〈ξ〉 = ψ ′(e〈ξ〉, ξ)M. (42)

We will carry out the linearization of this material model near the reference configuration
and assume that the force state is null in the reference configuration, i.e.,

ψ ′(0, ξ) = 0 and M = ξ

|ξ | ,
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thus

dT = (dψ ′)M + ψ ′dM = dψ ′M = (ψ ′′de)M.

(Linearization near a non-null force state, in which the dM term must be included, is demon-
strated in Example 4 below.) Using (41),

dT〈ξ〉 = ψ ′′(0, ξ)(M · dY〈ξ〉)M
= ψ ′′(0, ξ)(M ⊗ M)dY〈ξ〉
= ψ ′′(0, ξ)(M ⊗ M)dU〈ξ〉

= ψ ′′(0, ξ)(M ⊗ M)

∫
H

�(ζ − ξ)dU〈ζ 〉dVζ

where � denotes the Dirac delta function in R
3. Using (5) and (22), the modulus state is

therefore given by

K〈ξ , ζ 〉 = γ (ξ)�(ζ − ξ) (43)

where γ (ξ) is the tensor given by

γ (ξ) = ψ ′′(0, ξ)M ⊗ M.

Note that this K〈ξ , ζ 〉 is non-null only if ξ = ζ ; mechanically this means that each bond
responds independently of the others. From (32)–(36) and (43),

C0(x,q) =
∫

B

{
γ (p − x)�(q − p) − γ (x − p)�(q − x) + γ (x − q)�(p − x)

}
dVp

= γ (q − x) + γ (x − q) − G�(q − x)

where G is the tensor defined by

G =
∫

H
γ (ξ) dVξ .

Therefore,

P0(x) =
∫

B
C0(x,q) dVq = G

λ(x) = − lim
ε→0

∫
Sε

C0(x,q) dVq = G

(44)
C(x,q) = C0(x,q) + λ(x)�(q − x) = γ (q − x) + γ (x − q)

P(x) = P0(x) + λ(x) = 2G.

From these expressions and (33), the equation of motion for this body is

ρü(x, t) =
∫

B

(
γ (q − x) + γ (x − q)

)
u(q, t) dVq − 2Gu(x, t) + b(x, t)

=
∫

B

(
γ (q − x) + γ (x − q)

)
(u(q, t) − u(x, t)) dVq + b(x, t)
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=
∫

B
c(|q − x|)(M ⊗ M)(u(q, t) − u(x, t)) dVq + b(x, t)

where the micromodulus function is defined by

c(ξ) = c(−ξ) = ψ ′′(0, ξ) + ψ ′′(0,−ξ)

and

M = (q − x) ⊗ (q − x)

|q − x|2 .

The same result could also be obtained using the linearization method given in [1] for the
bond-based peridynamic theory with a pairwise bond force given by

f(q,x) = c(ξ)(M ⊗ M)η

where

η = u(q) − u(x), ξ = q − x.

5.2 Example 2: Linear Fluid

A peridynamic inviscid fluid (see (100) of [1]) may be described in the following form:

Ŵ (Y) = kϑ2

2
(45)

where k is the usual bulk modulus and ϑ is a nonlocal dilatation defined by

ϑ = 3

m

∫
H

ω(|ξ |)|ξ |e〈ξ〉dVξ , m =
∫

H
ω(|ξ |)|ξ |2 dVξ . (46)

Here, ω is a weighting function, e is defined in (40), and m is a normalization factor. As
shown in [1], the corresponding force state is given by

T〈ξ〉 = 3kϑ

m
ω(|ξ |)|ξ |M, M = Y〈ξ〉

|Y〈ξ〉| . (47)

This model for a fluid is constitutively linear in the sense that all the bond forces are propor-
tional to ϑ . To evaluate K for Y0 = X, i.e., for small displacements applied to the reference
configuration, observe from (46) that

T〈ξ〉 =
(

3k

m
ω(|ξ |)ξ

)(
3

m

∫
H

ω(|ζ |)ζ · U〈ζ 〉dVζ

)

hence, using (5) and (22),

K〈ξ , ζ 〉 = 9k

m2
ω(|ξ |)ω(|ζ |)ξ ⊗ ζ . (48)

From the above definitions and (32)–(36), one finds for a homogeneous body at points far
from the boundaries,

C0(x,q) = C(x,q) (49)
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= −9k

m2

∫
B

ω(|p − x|)ω(|p − q|)(p − x) ⊗ (p − q) dVp, (50)

P0(x) = P(x) = λ(x) = 0,

and the equation of motion for this body is

ρü(x, t) =
∫

B
C(x,q)u(q) dVq + b(x, t).

5.3 Example 3: Linear Isotropic Solid

A model for an elastic, peridynamic, constitutively linear, isotropic solid is obtained by
adding a term to the strain energy density for a linear fluid (45) that involves the deviatoric
part of the deformation state. (See (105) of [1] for a discussion of this term.) The resulting
strain energy density function may be written as

Ŵ (Y) = kϑ2

2
+ α

2

∫
H

ω(|ξ |)
(

e〈ξ〉 − ϑ |ξ |
3

)2

dVξ (51)

where k, ϑ , and e are as defined in the previous two examples, and α is a constant. The
deviatoric part of the extension state, which appears above in the term e〈ξ 〉 − ϑ |ξ |/3, rep-
resents the bond extension after subtracting off an isotropic expansion of the family H with
dilatation ϑ . This deviatoric part includes not only shear, but also any deformation of H
other than isotropic expansion. It is shown in [1] that α = 15μ/m, where μ is the usual
shear modulus.

Using (46), (51) can be rewritten as

Ŵ (Y) = 1

2

(
k − αm

9

)
ϑ2 + α

2

∫
H

ω(|ξ |)e2〈ξ〉dVξ .

The first term on the right hand side of this equation is the same as for the fluid in Example 2,
but with a different constant. The second term is a special case of the bond-based material
energy in Example 1 with

ψ(e, ξ) = α

2
ω(|ξ |)e2.

Therefore, from (42) and (47),

T〈ξ 〉 =
(

3k

m
− α

3

)
ω(|ξ |)|ξ |ϑM + αω(|ξ |)e〈ξ〉M, M = ξ

|ξ | .

Similarly, using (43) and (48),

K〈ξ , ζ 〉 =
(

9k

m2
− α

m

)
ω(|ξ |)ω(|ζ |)ξ ⊗ ζ + γ (ξ)�(ζ − ξ)

where

γ (ξ) = αω(|ξ |)(M ⊗ M).
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Also, from (44) and (50),

C(x,q) =
(

α

m
− 9k

m2

)∫
B

ω(|p − x|)ω(|p − q|)(p − x) ⊗ (p − q) dVp + 2γ (q − x),

P(x) = 2
∫

H
γ (ξ) dVξ .

5.4 Example 4: Single-Bond Material with Constant Force Magnitudes

This is a special case of a bond-based material in which each point has only one bond τ that
is capable of sustaining force, and the magnitude of the force is constant:

Ŵ (Y) = f0e〈τ 〉
where f0 is a constant. Writing this in the form

Ŵ (Y) = f0

∫
H

e〈ξ〉�(ξ − τ ) dVξ

and using (41) leads to

T〈ξ〉 = f0�(ξ − τ )M, M = Y〈ξ〉
|Y〈ξ〉| . (52)

This type of model could reasonably represent a material composed of unidirectional fibers
with no adhesion or friction between them, in which the axial forces in the fibers are insen-
sitive to the stretch. We carry out the linearization process near the reference configuration,
allowing for nonzero f0. To do this, first observe that the only term in the expression for
T that depends on U is M. Differentiating M, and evaluating the result in the reference
configuration, in which Y〈ξ〉 = ξ , leads to

dM = 1

|ξ | (1 − M ⊗ M)dY〈ξ 〉.

Since U is a small displacement state, we set dY = U in this equation for purposes of lin-
earization and combine the result with (52), resulting in

T〈ξ〉 = f0�(ξ − τ )(M + dM)

= f0�(ξ − τ )M + f0N�(ξ − τ )U〈ξ〉

= f0�(ξ − τ )M + f0N
∫

H
�(ξ − τ )�(ζ − τ )U〈ζ 〉dVζ

where N is a constant tensor given by

N = 1

|τ |
(

1 − τ ⊗ τ

|τ |2
)

. (53)

Hence we can write

T = T0 + K • U
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where

T0〈ξ〉 = f0�(ξ − τ )
τ

|τ |
and

K〈ξ , ζ 〉 = f0N�(ξ − τ )�(ζ − τ ).

Proceeding as in Example 1 to find the linearized equation of motion,

C0(x,q) = f0N
(
�(q − x − τ ) + �(x − q − τ ) − �(q − x)

)
,

P0(x) = f0N.

Since this C0 contains a term of the form �(q − x), we can combine this term with P0 as
indicated in (33)–(36) to obtain

λ(x) = f0N, P(x) = 2f0N,

C(x,q) = f0N
(
�(q − x − τ ) + �(x − q − τ )

)
.

The linearized equation of motion is therefore

ρü(x, t) = f0N
∫

B

(
�(q − x − τ ) + �(x − q − τ )

)
u(q, t) dVq

− 2f0Nu(x, t) + b(x, t)

or

ρü(x, t) = f0N
(
u(x + τ , t) − 2u(x, t) + u(x − τ , t)

) + b(x, t). (54)

Because of the form of N given in (53), it follows that Nτ = 0, which implies that displace-
ments parallel to the bond direction τ result in no change in force in the bond. Because of
this, the linearized equation of motion (54) always predicts zero acceleration parallel to the
bonds.

However, the linearized equation of motion predicts nonzero transverse accelerations.
These transverse accelerations give rise to shear waves propagating parallel to τ . To see
this, assume displacements of the form u = a exp i(κn · x − ωt) where ω is the angular wave
frequency, κ is the wave number, the propagation direction is n = τ/|τ |, and a ⊥ n is the
amplitude vector. Using this expression in (54) with b = 0, one arrives at the following
dispersion relation:

ω2 = 2f0

ρ|τ |
(
1 − cos (|τ |κ)

)
. (55)

This is the similar to the dispersion relation for an infinite, one-dimensional spring-mass
lattice, but in this case the spring constant is determined by the pre-existing bond force
density f0. If this force density is tensile (f0 > 0), then stable transverse waves can exist.
The waves, although dispersive, are similar to transverse waves in a stretched rubber band.
However, if the force density is compressive (f0 < 0), then the right hand side of (55) can be
negative, and transverse oscillations are therefore unstable. This instability is reminiscent of
the microbuckling mechanism in fiber-reinforced composite materials, which causes failure
in compression due to the transverse deformation of the fibers [14, 15].
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For simplicity, in this example, linearization was performed in the reference configura-
tion. Similar results would be obtained in any other configuration, but the waves would be
transverse to the bond orientation where linearization occurs.

This example illustrates the role of finite bond forces in the reference configuration, if
they are present, and how they interact with a small superposed displacement field. The
linearized bond forces transverse to τ arise because of a purely geometrical effect. The
rotation of the bonds containing a force density f0 has a first order effect on the bond forces
when the small displacement state U is applied. In Sect. 6, we will return briefly to the
significance of this coupling in modeling atomic scale systems.

6 Discussion

The linearized state-based theory developed in this paper has basically the same structure
as the linearized bond-based theory [3]. The equation of motion (33) is formally the same.
However, as noted in the discussion before (37), C has additional restrictions in the bond-
based theory. Also, in the linearized state-based version, the effective maximum interaction
distance between points is 2δ, where δ is the horizon in the original state-based constitutive
model that was linearized. (See Fig. 2.)

The linearization process described above preserves the ability of the nonlinear peridy-
namic model to treat discontinuities in displacement, such as cracks, according to the same
equations as continuous deformations. This treatment of discontinuities is possible because
there is nothing in the notion of a small deformation in (19), (20) that requires smoothness
of the displacement field.

The peridynamic theory has been developed in such a way as to emphasize the parallels
between it and the standard theory. Table 1 lists some of the quantities, operations, and
equations that are analogous between the two theories.

The linear theory described here can serve as the basis for an incremental form of peri-
dynamic constitutive models. The only change is that the modulus state becomes time-
dependent, thus

Ṫ = K[x, t] • Ẏ.

In such an incremental version, if the material is elastic, Lemma A.4 continues to apply,
hence the time-dependent modulus state is self-adjoint. (Conversely, if it is self-adjoint,
then the material is elastic.)

Certain approaches to nonlocal elasticity take linear integro-differential equations similar
to (33), or their equivalent variational form, as a starting point [11–13]. These theories do not
include the underlying structure presented here for material models based on peridynamic
states. This additional structure tends to make the entire model more complete and useful by
providing a way to determine the material-dependent functions C and P in the linear integro-
differential equation (33). For example, if we start with (33) and ask how to represent a fluid
within this model, it is not obvious how to choose C and P. In the peridynamic approach,
these quantities emerge in a natural way as shown in Example 2 above. Also, as shown in the
present paper, the linear peridynamic theory is derivable as a special case of a more general,
nonlinear theory, by introducing only the assumption of small deformation.

The linearized peridynamic approach also allows for finite internal forces T0 that may be
present initially when linearization is applied. These forces are important in the small scale
modeling of many materials. In an unstressed crystal, for example, there are strong forces
between the individual atoms; the stress tensor is zero if the compressive and tensile forces
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Table 1 Analogies between the standard and peridynamic theories. The symbol ∇ denotes the Fréchet deriv-
ative. Linearization takes place following a large equilibrated deformation with stress tensor field σ 0 or force
state field T0

Quantity or relation Standard Peridynamic

Required smoothness
y ∈ C2(B) (strong)

y ∈ C1
pw(B) ∩ C(B) (weak)

y integrable on B

Fundamental description

of internal forces
Piola stress tensor σ Force state T

What internal

forces depend on

(nonlinear theory)

F = grad y Y〈q − x〉 = y(q) − y(x)

What internal

forces depend on

(linearized)

H = grad u U〈q − x〉 = u(q) − u(x)

Constitutive model

(nonlinear theory)
σ = σ̂ (F) T = T̂(Y)

Elastic constitutive

model (nonlinear theory)
σ̂ = ∂Ŵ/∂F T̂ = ∇Ŵ

Rate of change of

strain energy density
Ẇ = σ · Ḟ Ẇ = T • Ẏ

Elastic constitutive

model (linearized)
σ = σ 0 + CH, C = ∂2Ŵ/∂F2 T = T0 + K • U, K = ∇∇Ŵ

Condition for

linearization
|H| � 1 sup

q∈H
|u(q) − u(x)| � δ

Equation of motion

(nonlinear theory)
ρÿ = divσ + b̂

ρÿ = ∫ (
T[x]〈q − x〉

−T[q]〈x − q〉)dVq + b̂

Equation of motion

(linearized)
ρü = div(CH) + b

ρü = ∫
C(x,q)u(q)dVq

−Pu + b

Balance of angular

momentum

(nonlinear theory)

σFT − FσT = 0
∫

Y〈ξ〉 × T〈ξ〉dVξ = 0

Condition for a

linear material

to be elastic

C = CT
K = K

†

acting through any surface cancel each other out. As shown in Example 4 above, these finite
nonlocal forces in the reference configuration interact with bond rotations when a small
deformation is applied, creating a first order effect on bond forces. Linear nonlocal theories
that do not include terms like T0 therefore may be neglecting a potentially significant effect.

The peridynamic approach to modeling a continuous body involves summing up the
forces between points separated from each other by finite distances. The similarity between
this and molecular dynamics raises the question of whether an elastic peridynamic mate-
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rial model, i.e., the strain energy density function Ŵ , could be obtained directly from an
interatomic potential. Preliminary work on pair potentials suggests that this is possible if
suitable homogenization and rescaling techniques are applied [16]. Extension of this ap-
proach to multibody potentials, including fundamental improvements in homogenization
and rescaling methods, is currently an active area of study.
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Appendix: Properties of Second Fréchet Derivatives

A.1 Differentiation by a Scalar Parameter

The following result follows immediately from (4):

Lemma A.1 Let �(·) : V → R, and let � be Fréchet differentiable. For fixed A,a ∈ V ,
define a function ψ(·) : R → R by

ψ(α) = �(A + αa).

Then

dψ

dα
(α) = ∇�(A) • a.

Lemma A.1 remains true if � and ψ are state-valued.

A.2 Exchange of Mixed Fréchet Derivatives

Let �(·, ·) : V × V → R. Denote its Fréchet derivatives with respect to its first and second
arguments by ∇1 and ∇2 respectively, each holding the other argument fixed. Let the second
Fréchet derivatives of � be the double states denoted

∇1∇1� = ∇1(∇1�), ∇1∇2� = ∇1(∇2�), . . . .

Lemma A.2 Let �(·, ·) : V × V → R be twice continuously Fréchet differentiable in both
its arguments. Then

∇1∇2� = (∇2∇1�)†, ∇2∇1� = (∇1∇2�)† on V × V. (56)

Proof For fixed A,B,a,b ∈ V , let

φ(α,β) = �(A + αa,B + βb),

and observe that φ is twice continuously differentiable in both variables. Then from an
obvious extension of Lemma A.1 to functions of two variables,

∂φ

∂α
(α,β) = ∇1� • a,

∂φ

∂β
(α,β) = ∇2� • b. (57)
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Using (57) and differentiating again,

∂

∂β

(
∂φ

∂α

)
= (∇2∇1� • b) • a = a • ∇2∇1� • b (58)

∂

∂α

(
∂φ

∂β

)
= (∇1∇2� • a) • b = b • ∇1∇2� • a. (59)

Because of the interchangeability of mixed partial derivatives of φ, (58) and (59) are equal,
so

a • ∇2∇1� • b = b • ∇1∇2� • a.

From this and (3),

a •
(
∇2∇1� − (∇1∇2�)†

)
• b = 0.

Since this must hold for every choice of a and b, (56) follows. �

A.3 Self-adjointness of Second Fréchet Derivatives

Lemma A.3 Let �(·) : V → R. If � is twice continuously Fréchet differentiable, then

(∇∇�)† = ∇∇� on V. (60)

Proof Define a function �(·, ·) : V × V → R by

�(a,b) = �

(
a + b

2

)
∀a,b ∈ V.

Evaluating the second Fréchet derivatives of � and setting b = a,

∇1∇2�(a,a) = ∇2∇1�(a,a) = ∇∇�(a)

4
.

Therefore, by Lemma A.2, (60) follows. �

A.4 Poincaré’s Theorem for States

Lemma A.4 Let S(·) : V → V be continuously Fréchet differentiable. A necessary and suf-
ficient condition for there to exist a scalar valued function �(·) : V → R such that

S = ∇� on V (61)

is that

∇S = (∇S)† on V. (62)

Proof (i) Necessity. If (61) holds, then (62) follows immediately from Lemma A.3.
(ii) Sufficiency. Suppose (62) holds. Define �(·) by

�(A) =
∫ 1

0
S(pA) • Adp
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for any A ∈ V . We will evaluate directly the Fréchet derivative of this � . To do this, use (4)
to obtain, for any a ∈ V ,

�(A + a) − �(A) =
∫ 1

0
S(pA + pa) • (A + a) dp −

∫ 1

0
S(pA) • Adp

=
∫ 1

0

(
S(pA) • (A + a) + (∇S(pA) • pa) • A

)
dp

−
∫ 1

0
S(pA) • Adp + o(‖a‖)

=
∫ 1

0

(
S(pA) • a + pA • ∇S(pA) • a

)
dp + o(‖a‖)

=
∫ 1

0

(
a • S(pA) + pa • (∇S(pA))† • A

)
dp + o(‖a‖). (63)

Define a function s(·) : R → V by s(p) = S(pA). Then by (4),

ds
dp

(p) = ∇S(pA) • A.

Using this, (62), and (63) leads to

�(A + a) − �(A) = a •
∫ 1

0

(
S(pA) + p∇S(pA) • A

)
dp + o(‖a‖)

= a •
∫ 1

0

(
s(p) + p

ds
dp

(p)
)

dp + o(‖a‖)

= a •
∫ 1

0

d

dp

(
ps(p)

)
dp + o(‖a‖)

= a •
[
ps(p)

]p=1

p=0
+ o(‖a‖)

= a •
[
pS(pA)

]p=1

p=0
+ o(‖a‖)

= a • S(A) + o(‖a‖)
= S(A) • a + o(‖a‖).

Comparing this with (4), evidently

S(A) = ∇�(A),

establishing (61). �
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