Population Dynamics of a Naturally Occurring Heterogeneous Mixture of Borrelia burgdorferi Clones

Erick K. Hofmeister
Department of Laboratory Medicine and Pathology

Gregory E. Glass
Johns Hopkins University School of Hygiene and Public Health

James E. Childs
Johns Hopkins University School of Hygiene and Public Health, james.childs@yale.edu

David H. Persing
Department of Laboratory Medicine and Pathology

Follow this and additional works at: https://digitalcommons.unl.edu/zoonoticspub
Part of the Veterinary Infectious Diseases Commons

Hofmeister, Erick K.; Glass, Gregory E.; Childs, James E.; and Persing, David H., "Population Dynamics of a Naturally Occurring Heterogeneous Mixture of Borrelia burgdorferi Clones" (1999). Other Publications in Zoonotics and Wildlife Disease. 94.
https://digitalcommons.unl.edu/zoonoticspub/94

This Article is brought to you for free and open access by the Wildlife Disease and Zoonotics at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Zoonotics and Wildlife Disease by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Population Dynamics of a Naturally Occurring Heterogeneous Mixture of Borrelia burgdorferi Clones

ERIK K. HOFMEISTER,1* GREGORY E. GLASS,2 JAMES E. CHILDs,3‡ AND DAVID H. PERSING1‡

Department of Laboratory Medicine and Pathology,1 Mayo Foundation, Rochester, Minnesota 55905, and Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 212052

Received 18 May 1999/Returned for modification 20 July 1999/Accepted 6 August 1999

Two unique isolates of Borrelia burgdorferi, differing in plasmid content and outer surface protein C expression, were cultured on sequential captures of a single free-living Peromyscus leucopus mouse and were examined for differences in transmissibility. Both isolates were transmissible from inoculated C.B-17 mice to larval Ixodes scapularis ticks and, subsequently, from infected nymphal ticks to C3H/HeJ mice. Plasmid and protein analyses suggested that the original isolates were a mixed population of B. burgdorferi, and cloning by limiting dilution resulted in the identification of two clonal groups. In addition to being heterogeneous in plasmid and genomic macrorestriction analyses, the clones varied with respect to the electrophoretic mobilities and antigenicity of their OspC proteins, as shown by their reactivity to a panel of monoclonal antibodies. Plasmid analysis of sequential isolates from C3H mice experimentally infected with the primary isolate or various mixtures of its subclones showed an apparently random fluctuation in clonal dominance in the majority of mice. Surprisingly, mice infected with each subclone were permissive to superinfection with the heterologous subclone, despite the presence of anti-B. burgdorferi antibodies at the time of the secondary challenge. These results show conclusively that mice captured at Lyme disease enzootic sites may be infected by mixed populations of genetically and antigenically distinct B. burgdorferi clones and that these infections can be acquired by coinfection or by sequential infection. The lack of cross-immunization between clones existing within a naturally occurring population may play a role in the maintenance of the genetic heterogeneity of B. burgdorferi in nature.

The maintenance of Borrelia burgdorferi, the causative agent of Lyme disease (6, 9), in Ixodes scapularis, the principal vector of the disease to humans in the northeastern and upper midwestern regions of the United States (33, 44), is dependent on a zoonotic cycle involving tick vectors and vertebrate hosts. This is due to the near absence of transovarial transmission of the spirochete in I. scapularis ticks (36). In this zoonotic cycle, vertebrate hosts play a dual role in providing a blood meal for ticks. Among the potential reservoir-host vectors, the white-footed mouse, Peromyscus leucopus, is the principal host in the northeastern and upper midwestern regions of the United States (27). Mice mount a specific immune response to B. burgdorferi (16, 24, 25), yet field (1, 16) and laboratory studies (41, 47) have established that mice develop chronic infection with B. burgdorferi. Paradoxically, however, mice cured of infection by antibiotic treatment are immune to rechallenge by the same organism for months to a year (5, 35).

Longitudinal mark and recapture studies of naturally infected reservoir mice are useful for studying the natural history of B. burgdorferi in its reservoir host. As part of a previous longitudinal study of a population of mice at an enzootic site in Maryland, we found the majority of B. burgdorferi isolates first cultured from sequentially captured mice to have relatively homogeneous plasmid and protein profiles (17). However, in some cases, changes in expression of OspC, most often accompanied by changes in plasmid content, were observed. Previous studies in our laboratory have shown that isolates of B. burgdorferi recovered after long-term infection may occasionally lose plasmids, but otherwise they appear to be relatively stable at the level of protein expression, genomic macrorestriction analysis, and the ospA (34) and ospC (45) sequences. An additional explanation for the observed alterations in the field isolates would be coinfection or superinfection by distinct B. burgdorferi clones; fluctuation in population dominance over time could then account for apparent genotypic and phenotypic differences.

The purpose of this study was (i) to determine the basis for the genotypic and phenotypic changes observed in sequential isolates of B. burgdorferi cultured from several mice in our previous study and (ii) to determine if those changes had an effect on the ability of the spirochetes to be acquired and transmitted by I. scapularis ticks and to establish infection by various routes. In this report we demonstrate that a representative isolate from one mouse in our previous study was composed of genotypically and phenotypically heterogeneous subpopulations of B. burgdorferi which were both capable of experimental transmission. We observed a random fluctuation in the composition of the population of spirochetes in mice experimentally infected with defined mixtures of each subpopulation. Furthermore, challenge of mice experimentally infected by one population member with the heterogeneous population member showed both members to be capable of...
superinfection, despite the development of specific immune responses against B. burgdorferi.

MATERIALS AND METHODS

B. burgdorferi isolates. Primary isolates of B. burgdorferi from wild-caught mouse 225 (17) and experimentally infected mice were maintained in BSK II medium (BSK II) (2) containing 6% rabbit serum and 10 μg of rifampin, 4 μg of ampicillin, 1.08 μg of phosphomycin, and 0.4 μg of chloramphenicol ml at 34°C as previously described (17). Subsequent passages of the spirochetes were grown in BSK II medium to which no antibiotics were added.

Experimental tick transmission of B. burgdorferi. B. burgdorferi isolates 225a (p2) and 225c (p4) were grown to early log phase and enumerated twice in a Petroff-Hauser counting chamber by using dark-field microscopy. For each isolate of B. burgdorferi, a 3-week-old C17-17 mouse and a C.B-17 scid/scid (SCID) mouse (obtained from a breeding colony at Johns Hopkins University) were inoculated intradermally with 10^9 spirochetes at the base of the tail. One month postinoculation, 20 I. scapularis larval ticks (first-generation larvae from female ticks provided by J. Oliver, Georgia Southern University, Statesboro) were placed on the back of each infected mouse and allowed to feed to repletion. Collected replete larvae were placed in vials containing a moist plaster of paris base and held at 16°C in a photoperiod of 16 h of light and 8 h of dark.

Three months after the larval tick feeding, four molted nymphal ticks from each cohort of exposed ticks were placed on two 5-week-old C3H/HeJ mice (The Jackson Laboratory, Bar Harbor, Maine). Mice were allowed to feed to repletion. B. burgdorferi were transferred to nitrocellulose membrane and were reacted with monoclonal antibodies (MoAbs) 6C4, 18F, 10C5, 2E3, 12ES, and 2B8 of the OspC-specific L22 series (provided by W. Wilske, University of Munich, Munich, Germany). Genomic macrorestriction analysis was performed on Mnl-digested B. burgdorferi isolates as previously described (28). Briefly, after harvest from BSK medium, spirochetal DNA cast in agarose plugs was digested overnight at 37°C in a tube containing 5% KOH. The digested DNA was restricted with Nru I (Epicentre Technologies, Madison, WI) and electrophoresed in a 1.2% agarose gel (Fastlane; FMC Bioproducts, Rockland, Maine) for 20 h at 4°C. The bands were visualized by staining with ethidium bromide and were analyzed with Quantity One software (BioRad, Hercules, Calif.).

Plasmid, protein, and genomic macrorestriction analyses. Plasmid profile analysis was performed on each isolate of B. burgdorferi as described by Barbour (3). Plasmid DNA was transferred from low-percentage agarose gels to nylon membrane by the method of Southern (43) and probed with pBB63 specific for the 16-kb linear plasmid (15) labeled by enhanced chemiluminescence (ECL; Amersham Pharmacia Biotech, Piscataway, N.J.). Protein profile analysis by polyacrylamide gel electrophoresis (PAGE) (21) and immunoblotting of spirochetal proteins were performed on spirochetes which were harvested from log-phase cultures and washed twice with cold, sterile phosphate-buffered saline (PBS) (pH 7.0), as previously described (17). The total protein concentration was determined by the Bradford method (8), and 40 μg of each protein was loaded into each lane in a 12-14% gel. Electrophoretically separated proteins of B. burgdorferi were transferred to nitrocellulose membrane and were reacted with monoclonal antibodies (MoAbs) 6C4, 18F, 10C5, 2E3, 12ES, and 2B8 of the OspC-specific L22 series (provided by W. Wilske, University of Munich, Munich, Germany). Genomic macrorestriction analysis was performed on Mnl-digested B. burgdorferi isolates as previously described (28).

Clone by limiting dilution. B. burgdorferi isolates 225a (p3) and 225c (p4) were cloned twice by limiting dilution in 96-well flat-bottomed tissue culture plates of BSK II medium. Cultures with spirochetal growth were subcultured into two tubes of BSK II medium for plasmid profile and genomic macrorestriction digest analysis.

**Amplification products produced by primers PC-1s and PC-2a were purified (Wizard PCR Prep; Promega, Madison, Wis.), and the sense and antisense sequences were determined by using the amplification primers and internal primers OspC 606s (5′-GAGCTTATCAATATC-3′) and OspC 607a (5′-CTCCGCTAACAAT-3′) (the nucleotide position refers to GenBank BBU10894) in a automated DNA sequencing instrument (ABI 373; Perkin-Elmer Applied Biosystems, Foster City, Calif.). Consensus OspC sequences were created by assembling contiguous sequences with the Gel Assemble program of the Wisconsin Package (13), and these were cloned into and translated by using the PileUp and Translate functions, respectively, of the Wisconsin Package (13). The OspC nucleotide sequence for subpopulation members represented by subclones 2E7 and 3B6 have been submitted to GenBank under accession numbers AF074465 and AF074464, respectively.

RESULTS

Sequential isolates are equally infectious. B. burgdorferi isolates 225a and 225c were cultured sequentially 2.5 months apart from the same wild-caught P. leucopus as part of a longitudinal study on the maintenance of B. burgdorferi in a population of mice in Maryland (16). These primary isolates differed by the presence of plasmids migrating at 38, 36, and 16 kb in isolate 225a and the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c. Isolate 225c contained a plasmid migrating at 17 kb, the absence of those plasmids in isolate 225c.

Superinfection studies. Four 3- to 4-week-old C3H/HeJ mice were inoculated i.d. with 10^7 spirochetes of B. burgdorferi subclone 2E7 or 3B6. Infection in all mice was confirmed by culture 10 days after inoculation. One month later, the mice were anesthetized, bled from the pericardial sinus, and challenged by i.d. inoculation with 10^9 spirochetes of the heterologous subclone. Serum was separated from each blood sample and stored at −20°C. At 3 and 6 weeks after challenge each mouse was bled and sera were assayed for antibodies to each subclone by the complement fixation assay (8). To determine the ability of each subclone to superinfect, a challenge an ear biopsy sample was obtained from each mouse and cultured in BSK II medium. Cultures with spirochetal growth were subcultured into two tubes of BSK II medium for plasmid profile and genomic macrorestriction digest analysis. Antibodies specific for B. burgdorferi were detected in serum samples by immunoblots. Briefly, 100 μg of each subclone of B. burgdorferi was separated on a sodium dodecyl sulfate (SDS)–12.5% PAGE gel and transferred to nitrocellulose membrane, as previously described. Mouse sera were reacted with the transferred proteins at a dilution of 1:150 in Tris (50 mM) and sodium chloride (150 mM) containing 0.1% Tween 20 and 0.5% blocking solution (vol/vol) (BM Chemiluminescence; Roche Molecular Biochemicals, Indianapolis, Ind.) in a Miniblotter 25 apparatus (Immuno-Analytik, Inc., Cambridge, Mass.). Reactive antibodies were detected by horseradish peroxidase (POD)-labeled goat anti-mouse antibody (Roche) at a dilution of 1:4,000 according to the manufacturer’s recommendations.
differences between isolates 225a and 225c were not associated with obvious differences in infectivity or transmissibility. Genotypic and phenotypic characteristics of the sequential isolates are unstable during secondary animal passage. To determine whether the observed genetic and phenotypic differences between isolates 225a and 225c were due to either a loss or rearrangement of DNA or were due to clonal selection, we compared the plasmid profiles of isolates 225a and 225c and reisolated spirochetes from the inoculated and tick-infected mice. The plasmid profile of isolates 225a and 225c used to infect C.B-17 mice were the same as previously reported (17) (Fig. 1). However, the plasmid profiles of organisms obtained

![FIG. 1. Plasmid profiles of B. burgdorferi isolates and subclones of isolate 225c. (A) Plasmid-enriched DNA was analyzed on a 0.2% agarose gel and stained with ethidium bromide. Lanes: 1 and 2, isolates 225a and 225c, respectively, which were cultured sequentially from a P. leucopus mouse; 3 and 4, isolates from mice C.B-17 1 and 2 inoculated 1 month previously with 225a and 225c and which served to infect larval I. scapularis ticks; 5 and 6, isolates from C3H 1 and 2 obtained 1 month after nymphal tick feeding; 7 and 8, subclones 2E7' and 3B6' obtained from 225c by limiting dilution. DNA molecular mass standards are indicated on the left. (B) Plasmid DNA was transferred to nylon membrane and was hybridized to pBHB63 (specific for the 16-kb linear plasmid) labeled by ECL. The gel photograph and hybridization were scanned into Adobe Photoshop 3.1, scaled to the column width, and labeled.

from various secondary infections varied dramatically. For example, the plasmid profile of the reisolate from mouse C.B-17 1, inoculated with 225a, was the same as that of the inoculum. However, the profile of spirochetes reisolated from mouse C.B-17 2, inoculated with 225c, unexpectedly matched that of 225a. In tick-exposed mice, the plasmid profile of mouse C3H 1, infected with ticks which fed upon the mouse inoculated with 225a, unexpectedly matched the profile of 225c. Finally, the plasmid profile of the reisolate from mouse C3H 2, was characteristic of both isolates 225a and 225c. Taken together, these observations suggested that clonal selection had occurred within the inoculated or tick-infected mice or within the ticks themselves.

In agreement with our previous report (17), the protein profiles of isolates 225a and 225c were similar upon SDS-PAGE analysis, except that isolate 225c expressed more OspC than 225a (Fig. 2A). Based on the gel migration, the OspC protein of 225a and 225c showed apparent Mr of 21 kDa; however, the OspC of 225c was slightly smaller. Both isolates reacted with OspC-specific antibody L32 1F8 (Fig. 2B). Consistent with the results of the plasmid analysis, both isolates from the C.B-17 mice expressed a slightly smaller OspC, based
on its relative migration, while the isolate from C3H 1 expressed a slightly larger OspC. As anticipated from the plasmid analysis, the reisolated from mouse C3H 2 expressed two OspC proteins which reacted with antibody L32 1F8. These different OspC results corresponded to the presence of a 16- or 17-kb linear plasmid or both. Expression of OspC was consistently less in those isolates containing a 16-kb plasmid, as previously described (17).

Isolates 225a and 225c are polyclonal mixtures of genotypically and phenotypically distinct clones. The results of the transmission experiment suggested that the primary isolates 225a and 225c may have comprised of subpopulations of B. burgdorferi with fluctuation of the predominant member over time. To test this hypothesis, we cloned isolate 225c twice by limiting dilution. Plasmid profiles of 18 primary clones that were obtained from 225c demonstrated that it was composed of a heterogeneous population of spirochetes comprising two distinct subpopulations. Based on the plasmid profiles, 13 of 18 primary clones (72%) corresponded closely to isolate 225c and the remaining 5 primary clones (28%) corresponded to 225a. Primary clones 2E7 and 3B6 were selected as representatives of the two subpopulations for a second round of cloning by limiting dilution; subclones were tested for identity with the parent primary clone by plasmid and protein analyses. Subclones cultured from primary clones 2E7 and 3B6 were found to be identical to the primary clones by plasmid profile (Fig. 1) and by protein analyses (Fig. 2), and the size and relative level of OspC expression in the secondary clones was also consistent with that observed in the primary clones. A representative of each subclone, designated 2E7' and 3B6', was selected for further analysis by genomic macrorestriction analysis, ospC sequence analysis, and antigenic reactivity with a panel of MAbs to OspC.

To determine whether isolate 225a, isolated from the wild-caught mouse 2.5 months prior to the isolation of isolate 225c, also was composed of a population of B. burgdorferi, we cloned isolate 225a by limiting dilution and performed plasmid profile analysis on the primary clones. The plasmid profile of 12 of 13 (92%) primary clones cultured from 225a matched that represented by 225c subclone 2E7'; the profile of the remaining clone of 225a matched the profile of 225c subclone 3B6'. This shows that the first isolate from mouse 225 was also comprised of both subpopulations and suggests that a shift may have occurred in the population structure from one consisting primarily of members represented by subclone 2E7' (in isolate 225a) to one consisting primarily of members represented by 3B6' (in isolate 225c).

Genomic differences between the clones were also demonstrated; after MhaI digestion, two different pulsed-field types (PFTs) were identified on pulsed-field gel electrophoresis (PFGE) of the secondary clones from isolate 225c (Fig. 3). The PFT of secondary clone 2E7' was most similar to the PFT of B. burgdorferi isolate B31 (PFT B), as previously described (28). In contrast, the PFT of 3B6' matched that of PFT A, indicating that, in addition to the heterogeneity of the plasmid content, isolate 225c was composed of distinct members exhibiting chromosomal polymorphism in addition to heterogeneity in plasmid content.

Distinct population members harbor genetically and antigenically distinct OspCs because the primary clones of 225c expressed an OspC protein which varied slightly in size. Based on the gel migration patterns, we amplified and sequenced ospC from subclones 2E7' and 3B6' in order to determine whether the ospC coding sequence was polymorphic. In the 603 bp compared, we found that the derived ospC sequence of subclone 2E7' shared 85% identity on a DNA basis and 78% identity on an amino acid basis with the ospC sequence of subclone 3B6' (Fig. 4). However, in the V2 variable region of OspC (amino acids 112 to 186 numbering from the N-terminal methionine [23]) subclones 2E7' and 3B6' shared only 65% identity on an amino acid basis and included an amino acid insertion or a deletion following amino acid 118 (Fig. 4). The peptide algorithm of the Wisconsin Package (13) predicted a protein molecular mass of 21.3 kDa for subclone 2E7' and 21.5 kDa for 3B6'. As expected, the B. burgdorferi species-specific sequence (amino acids 23 to 34 numbering from the N-terminal methionine [23]) predicted for each subclone indicated that the spirochetes were B. burgdorferi sensu stricto.

To determine whether the amino acid polymorphism detected between the ospC sequences of subclones 2E7' and 3B6' resulted in antigenic heterogeneity as well, immunoblotting of whole-cell lysate with a panel of MAbs produced against OspC was performed. On immunoblotting, subclone 2E7' reacted with all 6 MAbs. However, subclone 3B6' reacted with MAbs 6C4, 1F8, 10C5 (weakly), and 2B8 and not at all with MAbs 2E3 and 12E5 (data not shown). Isolate B31 reacted with all 6 MAbs and was used in this experiment as a positive control because the reactivity of B31 to this panel of MAbs was reported previously (19). This experiment demonstrated that
antigenic heterogeneity between the subclones of isolate 225c most likely resulted from the amino acid variability between subclones.

Population dynamics in experimentally infected mice. To evaluate the possibility that polyclonal infections would consistently shift in favor of a particular dominant member, we inoculated mice with the primary isolate 225c and defined mixtures of subclones 2E7’ and 3B6’ and then monitored the plasmid profiles of prospective isolates of B. burgdorferi. A pattern of selection for one population member as opposed to the heterologous member was not observed in spirochetes re-isolated from mice of any inoculation group. The results for mice from each group which received the primary isolate 225c or defined mixtures of the subclones are represented for four of the sampling dates in Table 1. In the majority of mice inoculated with a population of spirochetes, the predominant population member apparently shifted randomly during the course of infection (mice 55, 17, 42, 43, 31, 38, and 52). Both population members were detectable in some mice by plasmid analysis at each sampling date (mice 60 and 32), whereas in others only one member was detectable throughout the sampling period (mice 5, 16, and 41). Even in inocula containing only 10% of one subclone, both subclones were still detectable after a year. In contrast, the plasmid profiles of mice inoculated with a single subclone remained unaltered and characteristic of that specific subpopulation member throughout the sampling period (data not shown).

In a separate experiment designed to test the sampling variability of plasmid analysis in cultures derived from replicate ear samples, we determined that the profiles of all three replicate ear cultures were in agreement at both 2 and 4 weeks postinoculation for each mouse (data not shown). This showed that the plasmid profile at a given time reflected the predominant population member and was probably not biased by sampling variability. In addition, we determined that plasmid analysis was able to detect a 5% minor member in an experimental mixture of subclones 2E7’ and 3B6’ totalling 5×10^8 spirochetes: the approximate yield from a cultured ear punch (data not shown).

Sequential infection by genetically and antigenically distinct B. burgdorferi subclones. Superinfection was established in three of four mice inoculated with either subclone and challenged 1 month later by inoculation with the heterologous subclone (Fig. 5). In each animal in which superinfection was detected, the heterologous subclone was not detected by plasmid analysis until 2 months postchallenge. Superinfection occurred despite the development of an immune response to the initial inoculation, as shown by the presence of specific antibodies to B. burgdorferi upon immunoblot analysis (Fig. 6). All mice inoculated with subclones 2E7’ or 3B6’ developed antibodies to a number of antigens of B. burgdorferi, including OspC and p39. Immunoblot analysis also revealed a second notable difference between subclones 2E7’ and 3B6’. Promi-

TABLE 1. Detection by plasmid profile analysis of predominant population members of B. burgdorferi isolate 225c in isolates from C3H mice inoculated with 225c and combinations of subclones 2E7’ and 3B6’.

<table>
<thead>
<tr>
<th>Inoculuma</th>
<th>Mouse</th>
<th>Presence of 2E7’/3B6’ at weeks postinfectionb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>225c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>+/+</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>−/+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>−/−</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>+/+</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>+/−</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>2E7’-3B6’ (50:50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>−/+</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>−/+</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Neg</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>+/−</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>−/+</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>+/−</td>
<td></td>
</tr>
<tr>
<td>2E7’-3B6’ (90:10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>−/+</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>+/+</td>
<td></td>
</tr>
<tr>
<td>2E7’-3B6’ (10:90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>+/+</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>+/−</td>
<td></td>
</tr>
</tbody>
</table>

a Mice were infected with an intradermal inoculum of 2×10^8 spirochetes in BSK II medium.

b Detection (+) of plasmid profile characteristic of subclone 2E7’ indicated to the left of the slash mark and of subclone 3B6’ to the right of slash mark.

c Neg, culture negative.
were stained with ethidium bromide. Mice 1 and 2 were inoculated with 10^7 3B6' spirochetes and challenged 4 weeks later by inoculation of the same number of subclone 2E7' spirochetes. Sequential isolates of B. burgdorferi are shown for each animal as denoted by a to c, with culture a obtained 1 month postinfection and cultures b and c obtained 1 and 2 months, respectively, after challenge. Mouse 1 was superinfected as shown by the appearance of plasmids at 36 and 38 kDa and by the appearance of a 16-kb linear plasmid which migrated just below the faintly appearing 17-kb plasmid. Similarly, mice 3 and 4 were inoculated with subclone 2E7' and subsequently challenged with subclone 3B6'. Mouse 3 was superinfected as shown by the faintly appearing 17-kb linear plasmid, which migrated just above the 16-kb plasmid. Superinfection was not detected in mouse 2 or 4. Lanes 2E7' and 3B6', plasmid DNA from subclones used to infect mice. DNA molecular mass standards indicated on the left. The gel photograph and hybridization were scanned into Adobe Photoshop 3.1, scaled to the column width, and labeled.

DISCUSSION

The present study begins to address the ecological significance of observations made during a 2-year study of wild-caught mice naturally infected with B. burgdorferi (16). Previously, we reported on a number of genotypic and phenotypic changes identified in sequential isolates of B. burgdorferi obtained from mice in that study (17). Using B. burgdorferi sequentially isolated from one representative mouse from the previous study, we have determined that the isolates were composed of a mixed population with subpopulation members which were genetically and antigenically distinct. We hypothesized that other mice in the same cohort were likely similarly infected with a population of spirochetes and that the genotypic and phenotypic changes which we observed in sequential isolates from the same mouse were probably due to changes in the relative proportion of subpopulation members. This hypothesis was supported by similar findings when laboratory mice were inoculated with isolate 225c or with defined mixtures of its cloned subpopulation members. We also found that mice developed a specific immune response to one subpopulation member but were nevertheless permissive to challenge by another subpopulation member. These findings suggest that genotypic and phenotypic heterogeneity, shifting clonal dominance in B. burgdorferi coinfections, and superinfection with B. burgdorferi may play a role in the maintenance of the organism in reservoir mammals and possibly also in reinfection, superinfection, or coinfection in human patients.

Genotypic and phenotypic heterogeneity in Borrelia isolates...
can be the result of genetic or antigenic variation of a clonal population, as described for the VMP protein of *B. hermsii* (4) and more recently for the *vs*E and OspC proteins of *B. burgdorferi*, respectively (39, 48). However, in our case, the heterogeneity was the result of a mixed infection with *B. burgdorferi*. Previously, a mixed infection of *Apopodemus speciosus* mice with *B. afzelii* and *B. burgdorferi* group IV, which were differentiated by 16S rRNA ribotyping, was reported (30). More recently, mixed infections of *B. afzelii* and *B. garinii* have been reported in rodents captured in Russia (37). In North America, infection of reservoir hosts with a population of *B. burgdorferi* sensu stricto has been postulated by Gutman et al. (14) and Wang et al. (46) based on the molecular detection of two or more *ospA* or *ospC* variants by single-stranded conformation analysis analysis of PCR products, respectively, in adult *I. scapularis* ticks. Infection of chipmunks (*Tamias striatus* with *B. burgdorferi* encoding more than one *ospA* type has been suggested indirectly by SSCP analysis of nymphal ticks collected as replete larvae from captured animals (39). However, the demonstration of different SSCP types in a PCR reaction derived from a sample is not conclusive proof of mixed infections, since one clone could conceivably harbor many variant plasmids. Our study is the first to demonstrate by limiting dilution and subsequent genetic and phenotypic analyses a heterogeneous population of *B. burgdorferi* sensu stricto within reservoir mice.

Using a highly sensitive plasmid analysis assay capable of detecting as low as 5% of the total population of cultured spirochetes, we found that the predominant subpopulation member varied widely over time and that these variations apparently occurred randomly. We speculate that subpopulation fluctuations occur during the natural course of infection within the host, since similar plasmid profile fluctuations were observed in wild-caught and experimentally infected animals monitored over time. Definitive confirmation of population variations within the host might be achieved through a PCR-based detection method in which the relative level of subclone members is detected directly in tissue samples.

Although a recent study of *B. burgdorferi* genotypic and phenotypic patterns suggests that there may be factors within the host that activate preferentially the site-specific recombination of *ospB* and *ospC*, an alternate explanation, host selection of subpopulation members present in the challenge strain, was considered by the authors of that study (40). The results of our own study may be explained through the stable coexistence of *B. burgdorferi* subpopulations. This is supported by the fact that in the single passage of isolates 225a and 225c through a mammal-tick-mammal cycle; the minor subpopulation member was preserved in each case. The experimental infections in the study by Ryan et al., were conducted with presumably cloned *B. burgdorferi* and included two passages through mammals and ticks. Our studies suggest, however, that mixed populations of *B. burgdorferi* can be difficult to distinguish from clonal populations since minor population members can exist at a very low percentage of the overall total and yet reemerge during experimental infection.

Mixed infection of reservoir mammals with *B. burgdorferi* could result from coinfection of mixed populations of spirochetes through coincident tick bites, as well as from sequential infection. In the transmission experiment, both subpopulation members were detected by plasmid analysis, thus demonstrating coinfection. Superinfection was also observed experimentally, occurring in the majority of mice initially inoculated with one subclone of *B. burgdorferi* and challenged 1 month later by the heterologous subclone. Mice that developed a specific immune response to the initial infection, as demonstrated by immunoblot analysis, were still susceptible to infection by the second subpopulation member, despite development of specific (and presumably protective) OspC responses (38). Based on reactivity to a panel of MAbs to OspC, we were able to identify several differences in the antigenicity of OspC between subclones 2E7 and 3B6. Mice inoculated with a whole-cell bacterin (20) or recombinant OspC were susceptible to a challenge with strains heterologous in OspC. Furthermore, challenge of mice inoculated with recombinant OspC with the homologous strain of *B. burgdorferi* may be only partially successful at preventing infection (7, 12) and may be dependent on expression of the protein (7). In addition, the establishment of superinfection may have been potentiated by differential expression of OspD or other in vivo-expressed proteins between the subpopulation members. The role of spirochetal genetic diversity in the maintenance of spirochetes at Lyme disease enzootic sites is unknown. The maintenance of spirochetal genetic diversity in reservoir mammals may be facilitated by the inability of a specific antibody response to one *B. burgdorferi* variant to protect an animal from infection with other heterogeneous variants, thus resulting in mixed infection. Stable coinfection with variants of the same parasite requires the absence of competition within the same host, such that the rate of transmission to other hosts or, in the case of *B. burgdorferi*, to vector ticks is unaffected by the presence of the other variants (29). While we have not quantitated the transmission rates of both *B. burgdorferi* subpopulation members, we have demonstrated that both are cotransmissible. Based on our limited experience with these two *B. burgdorferi* variants, it appears more likely that a stable coinfection is established in reservoir mice, as opposed to “clonal dominance” in which only the most virulent strain, the one that develops the greatest persistent parasite density in tissue, is maintained and transmitted (31). Recent studies in our laboratory of field isolates of *B. burgdorferi* from *P. leucopus* have shown that mixed infection with *B. burgdorferi* is more the rule than the exception (unpublished observations). Indeed, genetic diversity itself may arise from the lateral exchange of genetic material between spirochetal clones and species, as suggested by studies of OspC (10, 23) and ospD (26); this process is dependent on the infection of reservoir hosts or ticks with mixed spirochete populations.

ACKNOWLEDGMENTS

This work was supported in part by Public Health service grants AI45253, AI32403, and AI41497 and by cooperative agreement CCUC510343 from the Centers for Disease Control and Prevention to D.H.P. and Public Health Service grant R35AI03042 to G.E.G. We thank D. A. Mathiesen for technical assistance.

REFERENCES

Cleavinger, C., A. Seltman, and D. Persing. Several mechanisms of recombination contribute to ospC diversity in Borrelia burgdorferi. Submitted for publication.

