January 2007

Vascular Endothelial Growth Factor Inhibitory Isoform Is Regulated Prior to Ovulation

Robin A. Ten Broeck
University of Nebraska - Lincoln

Debra T. Clopton
University of Nebraska - Lincoln, dclopton1@unl.edu

Jeremy L. Martin
University of Nebraska - Lincoln

Karl V. Moline
University of Nebraska - Lincoln, kmoline1@unl.edu

Jeffrey W. Bergman
University of Nebraska - Lincoln, jbergman1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/animalscinbcr
Part of the [Animal Sciences Commons](http://digitalcommons.unl.edu/animalscinbcr)

http://digitalcommons.unl.edu/animalscinbcr/97

This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nebraska Beef Cattle Reports by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Vascular Endothelial Growth Factor Inhibitory Isoform Is Regulated Prior to Ovulation

Robin A. Ten Broeck
Debra T. Clopton
Jeremy L. Martin
Karl V. Moline
Jeff W. Bergman
Andrea S. Cupp

Summary

VEGF normally acts to stimulate vascular development (angiogenesis) and is necessary for ovulation of the dominant follicle. The inhibitory isoform blocks the actions of VEGF angiogenic isoforms; therefore, the objectives of the experiments were to identify the bovine inhibitory isoform, VEGF164b and to determine its expression prior to and after the LH surge. VEGF164b mRNA was upregulated prior to but did not change after the LH surge. Therefore, VEGF164b may be necessary for preparation of the dominant follicle prior to ovulation.

Introduction

During deviation of the dominant follicle from the subordinate follicles, the dominant follicle develops an extensive vasculature network in the theca layer that surrounds the basement membrane. The granulosa cell layer surrounding the oocyte within the basement membrane of the follicle is avascular at this time point. VEGF is expressed by granulosa cells prior to ovulation in the bovine follicle and working via the theca cells to increase vacularization, providing nutrients to the developing follicle. VEGF aids in cell migration, proliferation, and increased microvascular permeability through the stimulation of endothelial cells which are cells that form blood vessels.

Recent studies have identified an anti-angiogenic inhibitory VEGF splice variant, VEGF164b. Vascular Endothelial Growth Factor Factor 164b is the inhibitory isoform of bovine VEGF164. The VEGF inhibitory isoform blocks actions of VEGF pro-angiogenic isoforms.

The objective of the current study was to identify VEGF164b and to determine the expression pattern of VEGF164b in granulosa cells of the bovine follicle prior to and after the LH surge. The hypothesis was that VEGF164b isoform would be differentially expressed and may be used to regulate folliculogenesis during the bovine estrous cycle.

Procedure

In the first trial, cows were administered two injections of PGF2α 14 days apart and follicular aspirates were collected at 12, 18, 24, 0, 6, 48, 54, 60, and 72 hours (n=average of 8) after the second injection of PGF2α to obtain granulosa cells prior to the LH surge. Messenger RNA was extracted from granulosa cells and samples were reversed transcribed to cDNA. Progesterone and estrogen concentrations were measured in follicular fluid. A ratio greater than 1 of estrogen to progesterone indicated the follicle was still dominant. The mRNA expression of VEGF164b isoform was determined using real-time quantitative polymerase chain reaction (PCR) at each follicular aspirate time point.

Blood samples were collected every two hours from 12 cows to determine when the cows had an LH surge. Since all the cows had an LH surge from 56 hours to greater than 72 hours, the granulosa cells collected prior to 56 hours were used in the analysis.

A second trial was conducted to obtain granulosa cells after a GnRH induced LH surge. Cows were injected with two injections of PGF2α (25 mg/cow) and 48 hours after the second injection of PGF2α administered GnRH (100 μg/cow). Follicular aspirates were collected at 3, 6, 12, 18, and 24 hours after GnRH (n=average of 10). Messenger RNA was extracted as described previously and expression of VEGF mRNA isoform 164b was analyzed using quantitative real time PCR.

Quantitative RT-PCR data for both trials were analyzed using an ANOVA with SAS. Comparisons of means were tested using a Tukey-Kramer test.

Results

Analysis of newly identified bovine VEGF164b

The VEGF164b inhibitory isoform was subcloned and sequenced in our laboratory. Conventional RT-PCR confirmed the presence of VEGF164b in bovine granulosa cells (Figure 1). We speculate that every angiogenic isoform of VEGF has an anti-angiogenic isoform that regulates their functions.

Quantitative Real-time PCR (QRT-PCR) for granulosa cells

In the first trial, mRNA expression was measured at 12, 18, 24, 30, 36, 48, 54, 60, and 72 hours (n=average of 8) after the second injection of PGF2α to obtain granulosa cells prior to the LH surge. Messenger RNA was extracted from granulosa cells and samples were reversed transcribed to cDNA. Progesterone and estrogen concentrations were measured in follicular fluid. A ratio greater than 1 of estrogen to progesterone indicated the follicle was still dominant. The mRNA expression of VEGF164b isoform was determined using real-time quantitative polymerase chain reaction (PCR) at each follicular aspirate time point.

Blood samples were collected every two hours from 12 cows to determine when the cows had an LH surge. Since all the cows had an LH surge from 56 hours to greater than 72 hours, the granulosa cells collected prior to 56 hours were used in the analysis.

A second trial was conducted to more accurately simulate the LH surge by an injection with GnRH and to
collect follicle aspirates after the LH surge. In the second trial, there was no difference in VEGF164b at any of the time points after GnRH (Figure 3). Thus, it appears that the inhibitory isoform may be regulated after corpus luteum regression (Trial 1) but not after the LH surge (Trial 2).

Conclusion

The current studies demonstrate VEGF mRNA isoform expression patterns prior to and after the LH surge. VEGF164b increases 18 hours after CL regression. From these results, we speculate that VEGF mRNA isoform expression is finely regulated by ovarian growth factors and steroid hormones to provide for necessary vascular development and follicle progression. These studies establish a role for VEGF anti-angiogenic isoforms prior to ovulation in the bovine follicle. It is possible that we may be able to use VEGF anti-angiogenic isoforms to manipulate follicle development to more accurately time ovulation in synchronization or superovulation protocols of beef females.

1Robin A. Ten Broeck, graduate student; Debra T. Clopton, research technician; Jeremy L. Martin, graduate student; Karl V. Moline, cow/calf manager; Jeff W. Bergman, agriculture technician; and Andrea S. Cupp, associate professor, Animal Science, Lincoln.