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ABSTRACT 

Multiagent techniques improves student learning in Computer-

Supported Collaborative Learning (CSCL) environments through 

multiagent coalition formation and intelligent support to the 

instructors and students. Researchers designing the multiagent 

tools and techniques for CSCL environments are often faced with 

high cost, time, and effort required to investigate the effectiveness 

of their tools and techniques in large-scale and longitudinal 

studies in a real-world environment containing human users.  

Here, we propose SimCoL, a multiagent environment that 

simulates collaborative learning among students and agents 

providing support to the teacher and the students.  Our goal with 

SimCoL is to provide a comprehensive testbed for multiagent 

researchers to investigate (1) theoretical multiagent research 

issues e.g., coalition formation, multiagent learning, and 

communication, where humans are involved, and (2) the impact 

and effectiveness of the design and implementation of various 

multiagent-based tools and techniques (e.g., multiagent-based 

human coalition formation) in a real-world, distributed 

environment containing human users.  Our results show that 

SimCoL (1) closely captures the individual and collective learning 

behaviors of the students in a CSCL environment, (2) identify the 

impact of various key elements of the CSCL environment (e.g., 

student attributes, group formation algorithm) on the collaborative 

learning of students, (3) compare and contrast the impact of agent-

based vs. non-agent-based group formation algorithms, and (4) 

provide insights into the effectiveness of agent-based instructor 

support for the students in a CSCL environment.       

Categories and Subject Descriptors 

I.6.3 [Simulation and Modeling]; Model Development; I.6.5 

[Simulation and Modeling] Applications; I.2.11 [Distributed 

Artificial Intelligence]: Multiagent systems.  

General Terms 

Algorithms, Design, Experimentation, Human Factors. 

Keywords 

Multiagent simulation, Computer-Supported Collaborative 

Learning.  

1. INTRODUCTION 
Computer-supported collaborative learning (CSCL) environments 

implement student learning by enhancing their collaborative 

learning using computer and Internet technologies.  Today, CSCL 

environments contain agents and agent-based services to improve 

the collaborative learning of students from two different aspects.  

First, the agents act as assistants to the students by monitoring the 

difficulties they face and helping them with customized support.  

Second, the agents act as assistants to the teacher providing 

decision support and helping him or her with tasks like group 

formation.  To design agents, agent-based services, and agent-

based algorithms for a CSCL environment, it is essential to: (1) 

understand how those various elements of the CSCL environment 

work together to produce the learning outcome of the students and 

(2) investigate how those services impact the students’ 

interactions and learning outcomes.  Furthermore, without testing 

their algorithm on a large group of students for a sufficiently long 

time, it is difficult for the researchers to: (1) fully understand the 

impact of their designs and (2) evaluate their designs and 

algorithms against the state of the art.  Albeit considered the most 

authentic way of validating the results, it is often difficult to 

conduct experiments with human users for various reasons: (1) it 

is difficult to acquire enough students for long enough time to do 

the experiments, (2) replication of experiments is often not 

possible, and (3) experiments may yield unwanted consequences 

(e.g., student apathy toward the use of CSCL environment) if the 

agents or agent-based services do not work as expected.  One way 

to alleviate these difficulties is by agent-based simulation of the 

CSCL environment.   

However, today’s simulation effort of the CSCL environment has 

yet to consider the role of agents in supporting (or scaffolding) the 

activities.  When designed based on the individual and 

collaborative learning theories, the students and their interactions 

with each other in the simulation would closely represent the 

collaborative learning in the real-world CSCL classroom.  

Existing tools such as [5] only simulate the student behavior using 

agents and do not include agents that act as the assistant agents or 

any agent-based services or algorithms.  As a result, the decision 

making process of the CSCL module that provides scaffolding to 

help both the teacher and the students, as well as the 

appropriateness and costs of such a module, have not been studied 

as comprehensively as necessary.   

In this paper, we describe SimCoL—a multiagent application for 

simulating the collaborative learning of a set of students in the 

CSCL environment.  The inspiration source of our paper is CSCL 

environments that combine research ideas from psychology 

(especially educational psychology), education, and computer 
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science to create an online collaborative learning environment for 

students.  The primary focus of our research is to build a 

multiagent simulator in which the agents’ behavior, guided by the 

individual and collaborative learning theories, closely represents 

the collaborative learning behavior of the students in a CSCL 

environment.  Our primary focus would allow the CSCL 

researchers and teachers to gain insights into the collaborative 

learning process and the impact of the various student attributes 

and teacher-controlled parameters on the learning outcome of the 

students. The secondary focus of our research is to incorporate an 

agent architecture in which the agents act as the assistants of the 

simulated students in the environment.  These agents act as 

assistants to the simulated students and provide services like 

forming learning groups and supporting their collaboration.  This 

secondary focus would allow CSCL researchers, teachers, and 

researchers who apply multiagent techniques to CSCL systems to 

investigate the impact of agent-based services (e.g., agent-based 

group formation algorithms and agent-based support for students’ 

collaborative learning) on the learning outcome of students.  In 

addition, SimCoL environment provides opportunities for 

multiagent researchers to investigate: (1) theoretical multiagent 

research issues in coalition formation, multiagent learning, and 

communication and (2) the design and implementation of various 

multiagent-based tools and techniques (e.g., the effectiveness of a 

multiagent-based human coalition formation algorithm [22]) 

designed for real-world, distributed environments containing 

human users. 

2. LEARNING 
In this section, we briefly describe three groups of learning 

theories we use for our framework (1) individual learning, (2) 

peer-based learning, and (3) collaborative learning.  Here peer-

based learning is differentiated from collaborative learning as it 

focuses on learning involving two learners only.  For details on 

these learning theories, please refer to our technical report [24].  

The objective of this section is to identify key observations 

derived from these leaning theories.  These observations drive the 

design of our simulation, later described in Section 3. 

2.1 Individual Learning 
According to learning theories [1,7] the four main elements that 

affect how a person learns are: (1) what the student already knows 

(knowledge), (2) how able/intelligent the student is (ability), (3) 

how motivated the student is (motivation), and (4) the emotional 

state of that student (emotion).  The cognitive components that 

represent these factors are: (1) the crystallized intelligence as 

accumulated knowledge stored in long-term memory, (2) fluid 

intelligence as represented by working memory capacity, and (3) 

motivation as represented by working memory allocation [1], and 

(4) emotional state [7].  From the above, we draw the following: 

Observation 1: A student’s improvement of knowledge of a topic is 

mainly affected by: (1) his or her existing knowledge, (2) ability, 

(3) motivation, and (4) emotion. 

Observation 2: The amount of working memory available to a 

student determines how much he or she can learn. 

Observation 3: The working memory of a student interacts with 

his or her prior knowledge and new information (regarding a 

task) to produce learning and behavior. 

Observation 4: A student’s available working memory for a task 

can be described as his or her ability for that task. 

The combined effect of these four components on the learning of 

a student described by [1] further lead to the following: 

Observation 5: A student’s available working memory for a topic 

is proportional to his or her: (1) knowledge on that topic, and (2) 

motivation to learn that topic.  Furthermore, this available 

working memory is inversely proportional to the emotional state 

of that student. 

Observation 6: As the knowledge of a student on a particular topic 

increases, his or her learning outcome for that topic would 

accelerate (if the motivation and emotion stays unchanged) due to 

increased working memory allocation. 

2.2 Peer-based Learning 
When a student is working with his or her peer to solve some 

assigned task, the student and the peer may learn from each other 

about that task.  The possible learning scenarios between two 

interacting peers are summarized by [8] such as: learning by 

observation, learning by teaching/guiding, learning by being 

taught, learning by reflection/self-expression, learning by 

apprenticeship, learning by practice, and learning by discussion.  

From these peer-based learning scenarios, we observe that the 

prior knowledge of the participating students plays an important 

role in deciding what type of learning scenarios may occur.  For 

example, learning by teaching (and learning by being taught) is 

more common among two students where one student with prior 

knowledge teaches his or her peer who has less prior knowledge.  

These observations are summarized in Table 1. 

Table 1. Possible Learning Scenarios among Peers 

Obser

vation 

Student’s— Peer’s 

Knowledge 

Learning by 

7 High—High Observation, Reflection, 

Practice and Discussion 

8 High—Low or 

Low—High 

Observation, Teaching, 

Being Taught Reflection, 

Practice, and Discussion 

9 Low—Low  Observation 

Furthermore, the difference between two interacting students’ 

prior knowledge about how to solve a certain task can hinder their 

learning.  This effect is described in Vygotsky’s zone of proximal 

development (ZPD) theory [9].  For example, it may be frustrating 

and difficult for two students to learn from each other if the 

amount of prior knowledge they have on a topic is very different 

from each other [9].  This gives us our next observation: 

Observation 10: Two students may learn about a topic from their 

interactions (Table 1) when the amounts of prior knowledge they 

have are not too different from one another.   

2.3 Collaborative Learning 

The term ”collaborative learning” is an instruction method in 

which students at various performance levels work together in 

small groups toward a common goal [10].  Derived from Stahl 

[11] are: 

Observation 11: The collaborative knowledge building is a cyclic 

process that feeds on itself and converges exponentially faster. 

Observation 12: This collaborative knowledge building cycle is a 

hermeneutic cycle, meaning, “one can only interpret what one 

already has an interpretation of”. 



Observation 13: Individual knowledge of a student is gained from 

collaborative knowledge of his or her group members through 

interaction.  That collaborative knowledge is in turn produced by 

individual knowledge of the interacting group members.  

Kreijns [12] describe the interaction between students as the key 

to collaboration among group members.  Furthermore, empirical 

evidence suggests that collaborative learning in a CSCL occurs 

from the exchange of dialogues among the students [27].   

Observation 14: The collaboration among the members of a group 

of students occurs due to their interaction/discourse with each 

other. 

Zumbach [13] describes a collection of dyadic (between two 

students) interactions for a group of students which were reported 

by researchers in the CSCL community.  An example of 

interactions mentioned in [13] is: (a) student a proposes a solution 

for the assigned task, (b) student b accepts or proposes another 

solution to the task.  Thus:  

Observation 15: The compilation of discourse/interaction patterns 

presented by Zumbach et al. [13] describes a typical dyadic 

(between two students) learning scenario in terms of a chain of 

action-reaction patterns. 

The quality the discourse/interactions within a group depends on 

the affective state of a student [2] and his or her social relationship 

with other students in the group.  Jones and Issroff [14] and Vass 

[15] report that, students who are friends have established ways of 

working which are implicitly understood rather than explicitly 

discussed.  In addition, [12] mentions that social relationships 

contribute to common understanding, an orientation towards 

cooperation, and the desire to remain as a group.  Finally, as 

reported in [3], the students form their view of other students due 

to the type and extent of collaboration they receive from their 

peers.  Clear and Kassabova [16] further report that in 

collaborative learning settings it is common to have students 

whose motivation is affected by the motivation of other group 

members.  When the other group members are motivated to learn 

and to collaborate, it increases the motivation of a student who 

had low motivation when he or she joined the group, and vice 

versa.  We derive from the above the following observations: 

Observation 16: Good social relationship and/or friendship 

improve the quantity and quality of interaction among a group of 

students. 

Observation 17: The quantity and quality (i.e., learning outcome) 

of interactions among a group of students vary over time due to 

factors internal and external to the classroom environment.  

Improvement in social relationship among the members of a 

group improves the quality of collaborations among them.  On the 

other hand, when a student group member experiences distracting 

factors, that experience reduces the quality of his or her 

collaboration with the other group members.   

Observation 18: Motivation of the group members’ impacts the 

motivation of a student.  If the group members are motivated, it 

may increase that student’s motivation, and vice versa. 

 

Observation 19: Social relationship between a student and his or 

her peer (as perceived by the student) change according to the 

frequency, extent, and quality of collaboration (e.g., how many 

times did my peer helped me).   

2.4 Scaffolding 
Bruner [17] and Cazden [18] define scaffolding as the act of 

providing assistance to a child so that he or she is able to carry out 

a task (e.g., solve a problem) that he or she cannot do by herself.  

Over time, the concept of scaffolding has been introduced into 

traditional classrooms to aid learners to achieve difficult learning 

objectives and complete difficult tasks [3] where tools and 

software are used to (1) offer structure and support for completing 

a task and (2) promote peer interactions to enable peers to support 

each other’s learning.  In the first type of scaffolding, the students 

are provided information about how to better approach to solve 

the task that they are having difficulty with.  In the second type of 

scaffolding, the peer support of a student is enhanced in the hope 

that those peers would provide guidance and information for that 

student to help him or her solve that task.  Researchers in the 

CSCL community are now utilizing scaffolding in the form of 

incorporating structure of learning activities (e.g.,[19]) and 

improving peer support (e.g.[20]).  As CSCL researchers (e.g., 

[3,20] note that due to being in different zones of proximal 

development, the learners benefit most when the scaffolding is 

targeted toward their zone of development.  So, one of the 

recommendations provided to the CSCL practitioners is to 

customize the scaffolding to specific learners’ needs.  Hence: 

Observation 20: Scaffolding in the CSCL environment can be 

provided by: (1) providing structure and support for completing 

tasks and (2) improving of peer support. 

Observation 21: Scaffolding in the CSCL environment may be 

used to improve the knowledge of the learners regarding the 

assigned task.  

Observation 22: Learners in a CSCL environment benefit more 

when the provided scaffolding is targeted to their zone of 

proximal development. 

3. SIMCOL ENVIRONMENT 
The SimCoL environment 𝐸 represents a CSCL environment 

where the teacher forms student groups and assigns a set of tasks 

and the students solve those tasks collaboratively to improve their 

knowledge about some topic.  The SimCoL environment is 

defined as a 5-tuple: 𝐸 =   𝑇, 𝐼, 𝐻, 𝑆𝐴, 𝑡𝑎 , where 𝑇 is a set of 

tasks, 𝐼 is an agent who acts as the teacher, 𝐻 = {1, … , 𝑛𝑠 } is a 

set of agents who represent the students in a collaborative 

classroom environment, 𝑆𝐴 =  𝑠𝑎1 , … , 𝑠𝑎𝑛  is a set of student 

agents and 𝑡𝑎 is the teacher agent.  Each student agent in SimCoL 

is assigned to a student and the teacher agent is assigned to the 

instructor.   

3.1 Task 
The tasks in SimCoL represent the problems and exercises that are 

solved by the students in a CSCL environment.  The set of tasks is 

denoted by, 𝑇 = {𝑇1, … , 𝑇𝑛𝑡 } where,  
𝑇𝑗 =  𝑐𝑡𝑗 , 𝑑𝑖𝑗 , 𝑡𝑙𝑗 , 𝑠𝑞𝑗          (1).  Here, 𝑐𝑡𝑗  denotes the concept of the 

task.  This concept represents the subjective knowledge required 

to solve the task.  𝑑𝑖𝑗  ∈ ℝ, is the difficulty of the task as 

determined by the teacher.   𝑡𝑙𝑗   is the time limit within which the 

task is to be completed.  𝑠𝑞𝑗        where is a vector representing the 

student groups’ (who are working on the task) view of the 

solution quality of the assigned task 𝑇𝑗  at time 𝑡.   



3.2 Student 
We represent the model 𝑚𝑖 ,𝑡  of each student 𝑖 ∈ 𝐻 in SimCoL 

by a 6-tuple: 𝑚𝑖,𝑡 =  𝐾𝑖 ,𝑡 , 𝐴𝐵𝑖 ,𝑡 , 𝑀𝑂𝑖,𝑡 , 𝐸𝑀𝑖 ,𝑡 , 𝑆𝑅𝑖 ,𝑡 , 𝑇𝑆𝑄𝑖,𝑡  (2), 

where, 𝐾𝑖 ,𝑡 =   𝑐𝑡𝑗 , 𝑒𝑥𝑖 ,𝑗 ,𝑡  ∀𝑇𝑗 ∈ 𝑇} is the knowledge of student 

𝑖  at time t with ctj representing the concept of 𝑇𝑗  and 𝑒𝑥𝑖 ,𝑗 ,𝑡 ∈ ℝ 

is the expertise, i.e., the amount of knowledge the student has 

about the concept.  The goal of student collaboration is to increase 

the value of this expertise.  𝐴𝐵𝑖 ,𝑡  ∈ ℝ, is the ability of 𝑖  at time 𝑡 

for task 𝑇𝑗 .  𝑀𝑂𝑖,𝑡  ∈ ℝ, is the motivation of 𝑖  at time 𝑡.  𝐸𝑀𝑖 ,𝑡 ∈ 

ℝ, is the emotional state of student 𝑖  at time 𝑡.  𝑆𝑅𝑖,𝑡 =

 𝑠𝑟𝑖,𝑘 ,𝑡|𝑘 ∈ 𝐻 − 𝑖  where 𝑠𝑟𝑖 ,𝑘 ,𝑡 ∈ ℝ is the social relationship 

between 𝑖  and 𝑘  at time 𝑡 as perceived by 𝑖 .  𝑇𝑆𝑄𝑖,𝑗 ∈ ℝ 

denotes the target solution quality of the task 𝑇𝑗  of 𝑖  at time 𝑡. 

We have included 𝐾𝑖 ,𝑡 ,  𝐴𝐵𝑖 ,𝑡 ,  𝑀𝑂𝑖,𝑡 , and 𝐸𝑀𝑖 ,𝑡  in the student 

model according to Observation 1 and included 𝑆𝑅𝑖,𝑡  according 

to Observations 16 and 17.  Also, combining Observations 4 and 

5, we assume that the ability of a student is related to his or her 

knowledge, motivation, and emotion in the following way: 

𝐴𝐵𝑖 ,𝑗 ,𝑡 = 𝐴𝐵 𝑚𝑖 ,𝑡 ∝  𝑤𝑎𝑏𝑥 ⋅ 𝑒𝑥𝑖 ,𝑗 ,𝑡 + +𝑤𝑎𝑏𝑚 ⋅ 𝑀𝑂𝑖,𝑡 − 𝑤𝑎𝑏𝑒 ⋅

 𝐸𝑀𝑖 ,𝑡  (3), where 𝑤𝑎𝑏𝑥 , 𝑤𝑎𝑏𝑚 , and 𝑤𝑎𝑏𝑒  are weights.  According 

to Eq. 3, the ability of a student for a particular task at any time is 

proportional to the sum of his or her expertise on the concept of 

that task and motivation minus the absolute value of his or her 

emotional state.  We also define the target solution quality of a 

student with: 𝑇𝑆𝑄𝑖,𝑗 ,𝑡 ∝ 𝐴𝐵𝑖 ,𝑡  (4). So, a student’s target of the 

quality of the solution of the assigned task is proportional to his 

or her ability for that task.  According to Observations 3 and 4, 

the ability of a student determines how much of his or her 

existing knowledge can be activated to produce behavior (i.e., 

effort to solve the task) and learning.  Therefore, given the same 

time limit 𝑡𝑙𝑗  for a task 𝑇𝑗 , a student with higher ability would be 

able to solve the assigned task better than a student with lower 

ability.  So, we assume that the students have targets of the final 

solution quality according to their own abilities.   

3.3 Teacher 
The teacher 𝐼 in SimCoL acts as the coordinator of the CSCL 

sessions. The teacher delivers instructions, forms groups, and 

assigns collaborative tasks.  In SimCoL, we have implemented 

three different group formation methods: random, Hete-A [21], 

and VALCAM [25] group formation method.  Table 2 shows how 

the teacher carries out the CSCL session through a set of 

simulation steps.  First, the teacher initializes the classroom (tasks, 

group formation scheme, how often scaffolding should be 

provided, and how many groups would receive scaffolding).  

Then, for each initialized task, the teacher: (1) initializes a 

collaborative session (Step 2a), forms student groups (Step 2b-d), 

and announces the start of the collaborative session to all students 

(Step 2e).  Then until the collaborative session is over, the teacher 

periodically sorts the groups according to their current achieved 

solution quality of the task (Step 2fa(1)) and then selects the 

groups who have the lowest solution quality.  Those selected 

groups are then provided scaffolding (Step 2fa(2)).  Finally, the 

teacher announces the end of the collaborative session when the 

time limit for the current task is over (Step 2g).  

Table 2. Simulation Steps of Teacher 

Simulation Steps of Teacher I 

1. Initialization: 𝑇 ← {𝑇1, … , 𝑇𝑛𝑡 }, 𝐺𝑓𝑠 ←group formation 

scheme, 𝑡𝑠𝑐 ←scaffolding period, 𝑛𝑠𝑐 ←  𝐺𝑠𝑐  ⋅ 𝑟𝑠𝑐 , students 

𝐻 =  1, … , 𝑛 , and agents 𝑆𝑎 =  𝑆𝑎1 , … , 𝑆𝑎𝑛  
2. For all tasks 𝑇𝑗 ∈ 𝑇, do, 

a. Initialize collaborative Session 𝑠𝑗 : 𝑡 ← 0, 𝐺 ← 𝐺1 , … , 𝐺𝑚 ,  

𝑛𝑔 ←  𝐻𝑚 /𝑚 , and Announce task 𝑇𝑗  to students 𝐻,  

b. If 𝐺𝑓𝑠 = 𝑅𝑛 , form Random Group for 𝐻 

c. Else If Gfs = Ha , form Hete-A [21] groups for H  

d. Else If Gfs = Hv , form VALCAM [22] groups for H 

e. Announce start of collaborative Session 𝑠𝑗  to 𝐻  

f. While (𝑡 < 𝑡𝑙𝑗 true)  

a. If mod 𝑡, 𝑡𝑠𝑐 = 0 

1. Sort (ASC) 𝐺 according to 𝑡𝑠𝑞𝑗 ,𝑡  

2. For 𝑖 ← 0 𝑡𝑜 𝑛𝑠𝑐   

Provide scaffolding to 𝐺𝑖  

b. 𝑡 ← 𝑡 + 1 

g. Else Announce end of collaborative Session 𝑠𝑗  to 𝐻 

3.4 Agents 
The student and teacher agents have been incorporated in SimCoL 

to implement various agent-based coalition formation algorithms.  

Each student agent in SimCoL is assigned to a student and it 

monitors the change in that assigned student’s: (1) expertise gain 

and (2) social relationship with other students.  The teacher agent 

is assigned to the instructor to: (1) assign and monitor student 

collaborative performances and assign them virtual currency 

according to that performance and (2) communicate with the 

student agents to form groups using VALCAM [22].  In 

VALCAM, the teacher agent hosts iterative auctions and the 

student agents bid in those auctions to form student groups that 

have high average of student expertise and social relationship.      

3.5 Collaboration and Scaffolding 
Following Observations 14 and 15, in SimCoL, we simulate the 

collaborative behavior (i.e., collaboration to solve the assigned 

task and to improve expertise) of a group of students using a 

series of dyadic interactions among the group members.  Here, we 

describe how the interactions between two students are simulated 

in SimCoL.  First, we define the following functions that dictate 

the behavior of the student agents simulating the collaborative 

learning in SimCoL.   In the following, we assume that two 

students 𝑖  and 𝑘  with models 𝑚𝑖 ,𝑡  and 𝑚𝑘 ,𝑡  are working in a 

group 𝐺𝑚  to solve task 𝑇𝑗   

Motivation Update (based on Observation 18):  

 𝑀𝑆𝑈 𝑀𝑂𝑖,𝑡 , 𝐺𝑚 =  𝑤𝑜𝑚𝑜 𝑀𝑂𝑖,𝑡 + 𝑤𝑔𝑚𝑜  
𝑀𝑂𝑘 ,𝑡

  𝐺𝑚  −1 𝑘∈𝐺𝑚 − 𝑖
  (5) 

where 𝑤𝑜𝑚𝑜  and 𝑤𝑔𝑚𝑜  are weights, 𝑀𝑂𝑖,𝑡 ∈ 𝑚𝑖 ,𝑡 .   

Collaboration Probability (based on Observation 16): 

𝐶𝑃 𝑚𝑖,𝑡 , 𝑚𝑘,𝑡 , 𝑇𝑗 ,𝑡   = 𝑤𝑐𝑠𝑟 ⋅ 𝑠𝑟𝑖,𝑘 ,𝑡 + 𝑤𝑐𝑠𝑞 ⋅  𝑠𝑞𝑗 ,𝑡 − 𝑇𝑆𝑄𝑖,𝑗 ,𝑡  

(6) where 𝑤𝑐𝑠𝑟  and 𝑤𝑐𝑠𝑞  are weights, 𝑠𝑟𝑖,𝑘 ,𝑡 ∈ 𝑆𝑅𝑖,𝑡 , 𝑇𝑆𝑄𝑖,𝑗 ,𝑡 ∈

𝑚𝑖 ,𝑡 , and 𝑠𝑞𝑗 ,𝑡 ∈ 𝑇𝑗 .  

Collaboration Cycle (based on Observation 15): 𝑐𝑐𝑖,𝑘 ,𝑡 ,𝑗 =

 𝑎𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗 , 𝑟𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗 , 𝑙𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗  ⊆ 𝐶𝐶𝑖,𝑘 ,𝑡 ,𝑗  denotes a collaboration 

cycle completed by 𝑖  with 𝑘  at time 𝑡 for task 𝑇𝑗 .  Here, 

𝑎𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗  denotes an utterance of action, 𝑟𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗  denotes an 

utterance of reaction in reply to the action 𝑎𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗 , and 𝑙𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗  

denotes the reaction in reply to the reaction 𝑟𝑐𝑡𝑖,𝑘 ,𝑡 ,𝑗 .  𝑐𝑖𝑖,𝑘 ,𝑡 ,𝑗 ⊆

𝐶𝐼𝑖 ,𝑘 ,𝑡 ,𝑗  denotes a collaboration cycle initiated by 𝑖  but declined 



by 𝑘 . 𝐶𝑌𝑖 ,𝑘 ,𝑡 ,𝑗 = {𝐶𝐶𝑖,𝑘 ,𝑡 ,𝑗 , … , 𝐶𝐶𝑘 ,𝑖 ,𝑡 ,𝑗 , … , 𝐶𝐼𝑘 ,𝑖 ,𝑡 ,𝑗 } denotes the set 

of all collaboration cycles between 𝑖  and 𝑘  regarding 𝑇𝑗 . 

Solution Quality Update: 𝑆𝑄𝑈 𝑚𝑖,𝑡 , 𝑚𝑘 ,𝑡 , 𝑐𝑐𝑖,𝑘 ,𝑡 ,𝑗  = 0 If 

𝑝𝑠𝑞 ≥ 𝜅𝑠𝑞  and ∝  𝑎𝑏𝑖 ,𝑗 ,𝑡 + 𝑎𝑏𝑘 ,𝑗 ,𝑡 /𝑑𝑖𝑗  Otherwise (7) where 

𝑐𝑐𝑖,𝑘 ,𝑡 ,𝑗  is a collaboration cycle, 𝜅𝑠𝑞 , 𝑝𝑠𝑞 ∈ ℝ denotes the solution 

quality update probability threshold and a random number that is 

drawn from a uniform random distribution respectively. 𝑎𝑏𝑖 ,𝑗 ,𝑡 ∈

𝐴𝐵𝑖 ,𝑡 ∈ 𝑚𝑖 ,𝑡 , 𝑎𝑏𝑘 ,𝑗 ,𝑡 ∈ 𝐴𝐵𝑘 ,𝑡 ∈ 𝑚𝑘 ,𝑡 , and 𝑑𝑗 ∈ 𝑇𝑗 .    

Human Expertise Update (based on Observation 3,4,7-10 and 

13): 𝐻𝐸𝑈 𝑚𝑖,𝑡 , 𝑚𝑘 ,𝑡 , 𝑐𝑐𝑖 ,𝑘 ,𝑡 ,𝑗  = 0 𝐼𝑓 𝐷𝐸 𝑚𝑖 , 𝑚𝑘 , 𝑇𝑗  >

𝜅𝑧𝑜𝑛𝑒  otherwise ∝  𝑤𝑎𝑏𝑎𝑏𝑖 ,𝑗 ,𝑡 + 𝑤𝑑𝑒  𝐷𝐸 𝑚𝑖,𝑡 , 𝑚𝑘 ,𝑡 , 𝑇𝑗    (8)  

with  𝐷𝐸 𝑚𝑖,𝑡 , 𝑚𝑘 ,𝑡 , 𝑇𝑗  =  𝑒𝑥𝑖 ,𝑗 ,𝑡 − 𝑒𝑥𝑘 ,𝑗 ,𝑡  (9)  𝑐𝑐𝑖 ,𝑘 ,𝑡 ,𝑗  is a 

collaboration cycle, 𝜅𝑧𝑜𝑛𝑒  is the zone of proximal development 

constant, 𝑤𝑎𝑏  and 𝑤𝑑𝑒  are weights, 𝑎𝑏𝑖 ,𝑗 ,𝑡 ∈ 𝐴𝐵𝑖 ,𝑡 , 𝑒𝑥𝑖 ,𝑗 ,𝑡 ∈

𝐾𝑖 ,𝑡 ∈ 𝑚𝑖 ,𝑡 , 𝑒𝑥𝑖 ,𝑘 ,𝑡 ∈ 𝐾𝑘 ,𝑡 ∈ 𝑚𝑘 ,𝑡 .       

Social Relationship Update (based on Observation 19): 

𝑆𝑅𝑈 𝐶𝑌𝑖 ,𝑘 ,𝑡 ,𝑗  ∝ [ 𝐶𝐶𝑖,𝑘 ,𝑡 ,𝑗  −  𝐶𝐼𝑖 ,𝑘 ,𝑡 ,𝑗  ]/[ 𝐶𝐶𝑖,𝑘 ,𝑡 ,𝑗  +  𝐶𝐼𝑖 ,𝑘 ,𝑡 ,𝑗  ]  

(10) where collaboration cycle sets 𝐶𝐶𝑖 ,𝑘 ,𝑡 ,𝑗 , 𝐶𝐼𝑖 ,𝑘 ,𝑡 ,𝑗 ∈  𝐶𝑌𝑖 ,𝑘 ,𝑡 ,𝑗 . 

Scaffolding Effect (based on Observation 20-22): 

𝑆𝐸𝑈 𝑚𝑖 ,𝑡 , 𝑐𝑡𝑗 , 𝑆𝑂𝑗  ∝ 1  1 +  𝑒𝑥𝑖 ,𝑗 ,𝑡 − 𝑠𝑜𝑙𝑖,𝑗     If  𝑝𝑠𝑐𝑎 ≥ 𝜅𝑠𝑐  

and 0 otherwise (11) where 𝑆𝑂𝑖 ,𝑗 =  𝑐𝑡𝑗 , 𝑠𝑜𝑙𝑗 , 𝑐𝑠𝑐𝑗   is the 

scaffolding object, 𝑐𝑡𝑗 ∈ 𝑇𝑗 , 𝑠𝑜𝑙𝑗  denotes the level of expertise for 

the student the scaffolding is designed for, 𝑐𝑠𝑐𝑗  denotes the cost 

(e.g., time and effort required to design the object) of the 

scaffolding, 𝑝𝑠𝑐𝑎    is a probability value drawn from a uniform 

distribution, and 𝜅𝑠𝑐  is the scaffolding threshold.   

Table 3 shows the simulation steps of a student in SimCoL with 

the various formulas that are used by the agents in parenthesis.  

During initialization, the student receives its group assignment 

and the task (Step 1) from the teacher (Step 2a in Table 2).  Then 

the student updates its own motivation according to other group 

member’s motivations, and its ability.  During the session, the 

student tries to collaborate with its group members if the quality 

of the solution is less than its expected solution quality (Step 2a) 

or if someone else in the group wants to collaborate (Step 2b).  In 

both of these cases, whether the collaboration is successful or not 

depends on the collaboration probability (Step 2b(i)).  During the 

collaborative session, if the student receives scaffolding from the 

teacher (Step 2c) in the form of a scaffolding object, it updates its 

expertise.  Finally, when the collaborative session ends, the 

student updates its own view of its social relationship with all its 

group members (Step 3). 

Table 3. Simulation Steps of Student 

Simulation Steps of Student 𝑖  

1. Initialize: group 𝐺𝑚 , task 𝑇𝑗 , update motivation (5) and 

ability (3)   

2. Until collaborative Session 𝑠𝑗  is over, do, 

a. If 𝑠𝑞𝑗 ,𝑡 < 𝑒𝑠𝑞𝑖 ,𝑗 ,𝑡  Then 

i. Propose collaboration to randomly chosen student 

𝑘 ∈ 𝐺𝑚 − 𝑖  

ii. If 𝑘  agrees then 

Complete and store collaboration cycle in 𝐶𝐶𝑖,𝑘 ,𝑡 ,𝑗  

and update solution quality (7), and expertise (8) 

iii. Else 

store failed collaboration cycle in 𝐶𝐼𝑖 ,𝑘 ,𝑡 ,𝑗   

b. If received collaboration request from 𝑘  Then 

i. If 𝐶𝑃 𝑚𝑖,𝑡 , 𝑚𝑘 ,𝑡 , 𝑇𝑗 ,𝑡 > 𝜅𝑐  Then 

Complete and store collaboration cycle in 𝐶𝐶𝑘,𝑖 ,𝑡 ,𝑗 , and 

update expertise (8) 

ii. Else 

Decline collaboration request from 𝑘  and store failed 

collaboration cycle in 𝐶𝐼𝑘 ,𝑖,𝑡 ,𝑗  

c. If received scaffolding 𝑆𝑂𝑗 , then 

Update expertise (11) 

3. Update social relationship (10) for group members  

4. RESULTS 
The SimCoL environment was implemented using the Java 

version of the multiagent simulation toolkit Repast [26].  The 

students, the teacher, and the agents are designed as Java objects.  

The student models in SimCoL were generated randomly from 

normal distributions with attribute values in the range  0,1  and 

those values were divided into three equal intervals low, medium, 

and high.  The probability distributions and the parameters that 

govern student and teacher behavior can be accessed through the 

Repast GUI for running simulation experiments.  In this section, 

we present four aspects of our simulation results: (1) validity, (2) 

dual attribute analysis to investigate relationship between any pair 

of attributes, (3) analysis of coalition formation schemes on 

student learning gains, and (4) scaffolding analysis to investigate 

its role in supporting collaborative learning. 

4.1 Validity Analysis 
To validate SimCoL, we compared our simulation results with  

previously published collaborative learning patterns.  First, 

matching [7], we observed that the high-ability students are able 

to learn at a faster rate (0.33 vs. 0.1) than the low-ability students.  

Since a student’s expertise gain due to collaboration depends upon 

its own ability, a high-ability student can generally improve the 

expertise more than a low-ability student, as prescribed in (8).  

Furthermore, we observed that: (1) the total expertise gain of the 

students converges to a final value and (2) the rate of change of 

expertise is higher in the beginning and slows down at the end, 

coinciding with published reports [8,15].  These provide basic 

validation for SimCoL.  Readers are referred to [32] for the details 

of our validity analysis.  

4.2 Dual Attribute Analysis 
Dual attribute analysis allows us to: (a) investigate how the 

students belonging to the different categories of an attribute 

respond to the changes in another attribute, e.g., how do the 

student with low expertise react to a change in their motivation, 

and (b) investigate whether a student’s lower value in an attribute 

can be compensated by a higher value.  To collect data for this 

experiment, we ran the simulation with 10 different simulation 

runs (with unique seeds) for 100 students for 2000 simulation 

ticks for each run by varying the values of two attributes at a time 

and plotted the expertise gain of the students against their 

changing attribute values.  For each plot, we divide the collected 

data points into three categories of an attribute: low, medium, and 

high, and then plot the average expertise gain against the 

remaining attribute for each of those three categories.  Due to 

space consideration, here we report on a subset of the analysis.   



Fig. 1 shows the average expertise gain of the students when the 

average initial expertise and the average motivation of those 

students are varied.  According to Fig 1, we see when the average 

motivation of the students is increased, the students of all 

categories (low, medium, and high) of expertise are able to 

improve their expertise gain. This is to be expected as dictated by 

Eq. 8 derived in Section 3.5, which in turn is determined by the 

motivation (Eq. 3).  However, with the simulation, we are able to 

also observe the compound effects of these two factors, as 

manifested in the rates of changes of expertise gain: 0.17, 0.13, 

0.08, respectively, as shown in Fig. 1.   

 

Fig. 1. Student expertise gain vs. average student motivation 
for low, medium, and high expertise (left to right) students. 

Fig. 2 shows that as the social relationship of students improves, 

their expertise gain improves at first, and then that rate of 

improvement slows down to zero.  This occurs due to our use of 

student social relationship while calculating the collaboration 

probability among two students (Eq. 6).  The expertise gain of the 

students in the group depends on how well they collaborate.  As 

the social relationship among the students starts to increase from 

initial lower value, the probability of them collaborating increases.   

As a result, they are able to gain more expertise.  However, when 

their social relationship values are near maximum and all students 

in every group are collaborating, increasing the social relationship 

value further, does not impact their average expertise gain.  Once 

again, Fig. 2 also shows that, the rate at which the expertise gain 

of the students increased due to the improvement in their average 

social relationship is slower for students with higher expertise 

(rate of expertise gain increase: 0.25 (low), 0.17 (medium), and 

0.07 (high)).  This shows the compound effect of student expertise 

and student social relationship on the expertise gain of the 

students.  According to Eq. 6, increased social relationship 

increases the probability that all group members collaborate with 

each other.  However, increasing the average expertise decreases 

the expertise difference among the students which in turn reduces 

their overall expertise gain (Eq. 8).  As a result, increasing the 

social relationship produces less impact when the average 

expertise of the students is high.      

 

Fig. 2. Student expertise gain vs. average student social 
relationship for low, medium and high expertise (left to right) 

students 
 

In conclusion, the important observation regarding our dual 
attribute analysis is that there are components in the collaborative 
learning environment that impact one another’s effect on the 

expertise gain of the students.  This indicates the following: first, 
for an instructor, it is important to understand how these 
components impact one another to achieve optimal expertise gain 
for the students.  Second, a simulation environment like SimCoL 
may help the instructor gain a better understanding of the 
compound effects of students attributes leading to a more effective 
design of the CSCL environment. 

4.3 Analysis of Coalition Formation Schemes 
In this section, we study the effect of two teacher-controlled 

aspects of a typical CSCL environment, i.e., (1) the group size and 

(2) the group formation scheme, on the average expertise gained 

by the students.  We ran the simulation with expertise distribution 

mean 𝜇𝑒𝑥 = 0.8, expertise distribution standard deviation 

𝜎𝑒𝑥 = 0.8, and collaboration threshold 𝜅𝑐 = 0.5, for a set of 180 

students, for 10 different tasks and for 2000 simulation ticks.  We 

also set other parameters to default values representing a typical 

classroom [25].  During the simulation, the student groups in this 

experiment were formed using Random, Hete-A, and VALCAM 

group formation methods with the group size selected from the 

range of [2,4].  VALCAM is an agent-based algorithm of group 

formation in which the individual agents bid in an iterative 

auction to form student groups.  While bidding, the agents try to 

join a group that contains students with: high-expertise and high 

social relationship values.  Hete-A algorithm is a non-agent-based 

algorithm that forms heterogeneous groups.  In Hete-A, the 

students are first categorized by assigning them to a matrix whose 

dimensions represent the attributes of a student. Once the students 

are categorized, the Hete-A algorithm builds heterogeneous 

groups by selecting students with the highest difference of 

attribute values according to their position in the matrix.  In our 

implementation, the Hete-A algorithm was used to form groups 

with the motivation and expertise of the students as the two 

dimensions of the matrix.  Again, we replicated each experiment 

for 10 different random simulation seeds.   

Fig. 4 shows that the students in the group formation algorithm 

achieved similar expertise gains.  However, relatively higher 

expertise gain of the VALCAM groups against randomly formed 

groups has been reported by in [22].  This difference in our 

simulation observation and the reported empirical results can be 

explained from the viewpoint of our collaboration modeling of the 

students.  In the reported study [22], students in the VALCAM 

groups changed their group membership a lot less frequently than 

the students in the randomly-formed groups.  As a result, during 

the limited number of collaborative sessions, the VALCAM-group 

students were able to: (1) get more familiarized with each other 

and (2) learn to coordinate their actions better than the randomly 

formed group’s students over time.  As a result, in the classroom, 

the students in VALCAM groups were able to gain higher 

expertise in the reported experiments.  However, while modeling 

the collaboration of the students in SimCoL, we do not account 

for this accumulated familiarity effect of the students.  As a result, 

VALCAM did not perform better than the other two group 

formation algorithms.  This experiment hints the following: first, 

although the CSCL literature we have reviewed do not explicitly 

mention this accumulated familiarity effect among the students in 

CSCL groups, this effect could actually differentiate the expertise 

gains of students in groups formed by different group formation 

algorithms.  Second, these results indicate that both CSCL and 

multiagent research community can use SimCoL to: (1) compare 

and contrast the effectiveness of various agent-based and non-

agent-based group formation algorithms through replicable 



simulations and (2) validate the basic CSCL theories against the 

reported empirical results and gain valuable insights into both 

areas. 

 
Fig. 4. Avg. student expertise gain for different group sizes. 

4.4 Scaffolding Analysis 
In this experiment, we investigate how the individual and group 

scaffolding improves the expertise of the students when they are 

collaborating in various types of groups.  To collect data for this 

experiment, we ran the simulation with the same default set of 

parameters used in Section 4.3 with 10 different simulation seeds 

for 180 students for 2000 simulation ticks.  We calculated: (1) 

the average improvement in the expertise gain of the students and 

(2) the cost incurred for providing scaffolding for individuals and 

groups.  For a group in this experiment, one scaffolding object is 

used per group for group scaffolding (i.e., scaffolding cost is 

required for one scaffolding object) and one scaffolding object per 

group member (i.e., scaffolding cost is equal to the sum of all 

generated scaffolding objects) is used for individual scaffolding.  

Fig. 5(a) shows the average improvement of student expertise 

gains of the students when they are working in random, Hete-A, 

and VALCAM formed groups.  Fig. 5(a) shows that the students 

in all groups are able to improve their expertise more from the 

individual scaffolding than from the group scaffolding.  This is 

expected, since: (1) individual scaffolding is designed to address 

an individual student’s needs, and (2) according to our design of 

scaffolding (Eq. 11), a student’s expertise is improved most when 

the scaffolding is targeted towards his or her expertise level.   

Fig. 5(b) shows that for all three types of groups, the group 

scaffolding yielded more expertise gain per unit cost than the 

individual scaffolding. The cost of scaffolding denotes the time 

and effort required for providing scaffolding to the students.  

Providing individual scaffolding requires more cost since each 

individual student has to be modeled and different types of 

scaffolding have to be provided to the students according to their 

expertise level.  On the other hand, group scaffolding requires less 

cost since the scaffolding action is more generic and only one type 

of scaffolding is provided to the entire group.  But unexpectedly, 

the group scaffolding is shown to be more economical in terms of 

expertise improvement per unit cost.  Upon closer analysis, this 

can be explained by the cyclic and convergent nature of the 

collaborative knowledge building process (Observation 11).  Due 

to this cyclic nature, collaborative knowledge is transferred 

among the group members due to their interactions throughout the 

collaborative session.  Furthermore, our non-adaptive scaffolding 

process periodically provides scaffolding to a fixed number of 

student groups by first sorting them according to their 

performances.  However, near the end of the collaborative cycle, 

due to the heterogeneous nature of groups of the random, Hete-A, 

and VALCAM groups, there are some students who have already 

reached near-maximum expertise level.  So, scaffolding for such 

group members is no longer effective.  As a result, both individual 

and group scaffolding do not yield any expertise improvement for 

those high-expertise group members.  But, for those high-

expertise group members, the individual scaffolding incurs a 

much higher cost than would the group scaffolding .  As a result, 

the improvement of expertise per unit cost for individual 

scaffolding is smaller than the group scaffolding.  These results 

show us the improvement-cost tradeoff that occurs for individual 

and group scaffolding.  Although targeted individual scaffolding 

may improve the expertise gain of a set of students more than 

group-based scaffolding, the former is less-economical when 

applied in a non-adaptive manner. With SimCoL, one would be 

able to pinpoint with higher precision when group and individual 

learning would be cost-effective for his or her classroom.  

 

Fig. 5. (a) (top) Average expertise gain for individual and 

group scaffolding (b) (bottom) Average expertise gain per unit 

cost for individual and group scaffolding. 

5. RELATED WORK 
Sklar and Davies [4] described a simulation environment for the 

education system called SimEd where they mainly focused on 

learning from the teacher instead of learning from the peers 

common in CSCL environments.  Spoelstra and Sklar [5] used 

multiagent simulation to model individuals participating in 

various group learning scenarios.  The researchers used ability, 

motivation, existing knowledge, and likeliness to help model 

individual students.  Although, the researchers studied the effect 

of group reward and group composition (i.e., heterogeneity of the 

members) on the learning outcome of groups, they did not 

investigate the effects of group formation method, and agent 

support on the learners.  In addition, the researchers did not 

consider the effect of a student’s own ability on his or her learning 

outcome.  However, as CSCL researchers have suggested, (1) the 

group formation method [23] and agent support [22] can have a 

significant impact on the collaborative learning outcome of 

students and (2) so can a student's ability [6] on the individual 

learning outcome of students.  Therefore, we consider these 

important factors to build a simulation environment that better 

depicts the collaborative learning of a group of students. 

6. CONCLUSIONS 
Both the learning theories and the techniques used to realize 

CSCL systems are evolving [23].  This evolving domain implies 

that it would be useful for the researchers and teachers to have a 

tool to test those evolving theories and techniques.  As a low-cost 

alternative, simulation-based environments could be used to 

validate or investigate the usefulness of the CSCL techniques, or 

in the least, provide hints and guidance to instructors or education 

researchers on student pedagogy and instructional approaches.  In 

this paper, we have proposed SimCoL, an agent-based tool for 

simulating the learning process in a CSCL system.  We have 

described the design and implementation of the SimCoL 

environment and its agents using observations reported by the 



researchers working in the individual, peer-based and 

collaborative learning domains.  The overall simulation results of 

the SimCoL environment is consistent with previously reported 

collaborative learning patterns.  Furthermore, our results hint that 

the SimCoL environment allow the researchers to gain better 

insights into the impact of: (1) individual student attributes, (2) 

various agent-based and non-agent based group formation 

algorithms, (3) different types of scaffolding processes on the 

collaborative learning outcome of students, and (4) CSCL and 

collaborative learning on real classrooms in particular, and any 

human-computer environments where online collaborative 

activities take place among users with diverse behaviors   

Our future work involves improving the SimCoL environment by: 

(1) implementing and analyzing the impact and the cost of 

providing agent-based collaborative support to students in a CSCL 

classroom, and (3) improving our modeling of the collaboration of 

students by accommodating the accumulated familiarity effect.  

We also plan to validate SimCoL further by running additional 

simulations on reported CSCL studies. 
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