Optimizing Chemical & Rheological Properties of Rejuvenated Bitumen

Dominic Nguyen
University of Nebraska-Lincoln, dominicnguyen@huskers.unl.edu

Hamzeh Haghshenas Fatmehsari
University of Nebraska-Lincoln, h.haghshenas@huskers.unl.edu

Santosh Kommidi
University of Nebraska-Lincoln, santosh.kommidi@gmail.com

Yong-Rak Kim
University of Nebraska-Lincoln, ykim3@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/civilengdiss

Part of the Materials Chemistry Commons, Other Chemical Engineering Commons, Structural Materials Commons, and the Transportation Engineering Commons

Nguyen, Dominic; Haghshenas Fatmehsari, Hamzeh; Kommidi, Santosh; and Kim, Yong-Rak, "Optimizing Chemical & Rheological Properties of Rejuvenated Bitumen" (2016). Civil Engineering Theses, Dissertations, and Student Research. Paper 93.
http://digitalcommons.unl.edu/civilengdiss/93

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Introduction

Bitumen has long been a material used in the construction of roadways, yet new pavement only consists of 15% of recycled materials due to poor compatibility of aged bitumen and new materials.

Chemical additives such as rejuvenators have been used in an attempt to re-balance the chemical composition and restore the physical properties of aged bitumen back to its virgin state. However, a fundamental understanding of how rejuvenators revitalize bitumen is needed before developing the optimum rejuvenator.

Objectives

- Use Fourier-transform infrared (FTIR) spectroscopy to determine the changes in chemical properties of virgin, aged, and rejuvenated bitumen.
- Employ a linear amplitude sweep (LAS), a procedure using a dynamic shear rheometer (DSR), to investigate rheological properties.
- Relate resulting chemical evolution to changes in macroscopic mechanical properties of the revitalized bitumen.

FTIR Index Data

<table>
<thead>
<tr>
<th>INDEX</th>
<th>Characteristic Functional Groups</th>
<th>Approximate Wavenumber [cm⁻¹]</th>
<th>Index Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Acid: COOH & Ether: 1745, 1156, 1377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VG 7.5%</td>
<td>0.0077</td>
<td>0.0056</td>
<td>0.0013 (\times 10^{-3})</td>
</tr>
<tr>
<td>VG 15%</td>
<td>0.0107</td>
<td>0.0089</td>
<td>0.0033 (\times 10^{-3})</td>
</tr>
<tr>
<td>RTFO 7.5%</td>
<td>0.0157</td>
<td>0.0133</td>
<td>0.0043 (\times 10^{-3})</td>
</tr>
<tr>
<td>RTFO 15%</td>
<td>0.0193</td>
<td>0.0169</td>
<td>0.0052 (\times 10^{-3})</td>
</tr>
<tr>
<td>VG 15% SB</td>
<td>0.1658</td>
<td>0.1379</td>
<td>0.0070 (\times 10^{-3})</td>
</tr>
<tr>
<td>RTFO 15% SB</td>
<td>0.0455</td>
<td>0.0438</td>
<td>0.0095 (\times 10^{-3})</td>
</tr>
<tr>
<td>VG 15%</td>
<td>0.0878</td>
<td>0.0593</td>
<td>0.0024 (\times 10^{-3})</td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>0.3651</td>
<td>0.2837</td>
<td>0.0002 (\times 10^{-3})</td>
</tr>
</tbody>
</table>

Table 1: Absorbance of characteristic functional groups in virgin (VG), rolling thin film oven (RTFO) aged, pressure aging vessel (PAV) aged, and rejuvenated bitumen.

Where \(I_{COOH} = A_{1745 cm^{-1}} \times \sum A \)

\(\sum A = \text{Total Peak Areas} \)

FTIR Analysis

- FTIR analysis of \(I_{COOH} \) and \(I_{Et} \) confirms that soybean oil has been introduced to bitumen in the rejuvenation process. \(I_{COOH} \) indicates soybean oil may have already been partially oxidized.

\(I_{COOH} \) and \(I_{Et} \) decrease in RTFO and PAV samples suggesting the aging process in the aged bitumen has been reversed from rejuvenation with soybean oil. \(I_{COOH} \) and \(I_{Et} \) also decrease due to rejuvenation, indicating chain scission and aromatization that occurs during aging has been reversed.

LAS Analysis

A frequency sweep test followed by a strain sweep test with linear increasing amplitude were used to calculate important binder parameters, A and B, used to determine fatigue performance (N).

\[
A = \frac{f_0}{k(m N_{f})} \quad B = -2a \quad N_f = A_{(max)}^a
\]

Conclusions

The relation of FTIR and LAS results indicates rejuvenation of aged bitumen with soybean oil reverses the aging process at a molecular level and as a result, increases the fatigue life of the bitumen.

Acknowledgements

The authors would like to thank Dr. Martha Morton and Undergraduate Instrumentation Center of the Department of Chemistry of the University of Nebraska-Lincoln for assistance and use of their FTIR instrument.

References

