










Ecology of West Nile Virus 

Table 1. Trend surface models of 2003 WNv cases as a function of temperature and precipitation. 

Variable Model 

1971-2000 Climate 2003 Weather 2002 Weather 2003 Weather Anomalies 2002 Weather Anomalies 

Intercept -7.949* -8.096* -8.059* -8.082* -8.486* 

1.083* 0.581 * 0.934* -0.255 0.192 

P - 0.851* 0.153 0.007 0.119 - 0.094 

t2 -0.039 -0.012 -0.010 -0.241* -0.201 

p2 -0.553* -0.273* -0.259* -0.039 -0.252* 

pt 0.291 0.026 0.130 0.054 -0.432 

(J p 1.537* 1.610* 1.557* 1.640* 1.669* 

Die 2014.0 2019.4 2020.6 2018.1 2023.0 

t = mean May-July temperature, p = total May-July precipitation, (J" = standard deviation of the spatial random effect. 
"statistically significant at the p = 0.05 level. 
doi:l 0.1371 /journal.pone.0003744.tOOl 

rural population were all correlated with this pattern of regional 
clustering. In subsequent years, the majority of WNv cases 
occurred within the boundaries of the 2003 WNv cluster, although 
WNv incidence was much lower after 2003. This decrease in WNv 
cases following the initial epidemic year likely reflects multiple 
factors including increases in immunity both in bird and human 
populations, increased efforts at mosquito control by municipal­
ities, and enhanced public awareness and preventative measures 

by individuals. However, vVNv incidence in the northern Great 
Plains has remained high compared to other parts of the United 
States [2] , suggesting that the biogeographic characteristics of this 
region favor the maintenance and continued transmission ofvVNv. 

We interpret the results of our environmental models as 
evidence that the cluster of high WNv incidence during the 
2003 epidemic, as well as the sustained high incidence of WNv in 
subsequent years, is linked to the geographic distribution of a key 
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Figure 3. Logarithm of the standardized incidence rate as a function of environmental variables. The smoothed response surfaces were 
generated using local regression models. 
doi:1 0.1371 /journal.pone.0003744.g003 
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Table 2. Final model of 2003 WNv cases as a function of 
climate and land cover/land use. 

Variable Parameter 95% Bayesian credible interval 

5% 95% 

Intercept -7.917 -8.132 -7.690 

0.877 0.608 1.149 

P -0.695 -1.212 -0.147 

p2 -0.409 -0.629 -0.204 

irrigated 0.337 0.194 0.483 

prural 0.206 0.128 0.284 

wetland 0.002 -0.158 0.162 

"p 0.504 0.400 0.623 

Die 2007.4 

t=mean May-July temperature from 1971-2000, p=total May-July 
precipitation from 1971-2000, irrigated = percent area of irrigated cropland, 
prural = percent of the population living in rural areas, wetland = percent area of 
wetlands, "" = standard deviation of the spatial random effect. 
doi:1 0.1371 /journal.pone.0003744.t002 

vector species Culex tarsalis. This species is known to be a particularly 
efficient vector of\VNv [29], and has been implicated as the primary 
vector of\VNv in the northern Great Plains l2,30,31j. \Ve are not 
able to prove this association with Culex tarsalis in our analysis of 
human cases, but the environmental relationships we observed 
offered several lines of evidence in support of this hypothesis. The 
pattern of the 2003 WNv outbreak had stronger relationships with 
long-term climate normals than with weather or weather anomalies 
in either 2002 or 2003. Although vector and host abundances can 
vary with annual weather fluctuations, the geographic range 
boundaries of vector and host species are typically more stable and 
are linked to longer-term climate patterns [32]. Therefore, it is more 
likely that the spatial cluster of \VNv cases in 2003 reflects the 
geographic distribution of one or more vector or host species than a 
short-term, weather-driven increase in their populations. The 
stability of the WNv cluster in subsequent years further supports 
this interpretation. 

Most other studies have examined monotonic relationships 
between precipitation and \I\Nv incidence based on an underlying 
assumption that either high rainfilJl will provide favorable breeding 
sites II OJ or that drought may affect the spatial patterns of vector 
and host populations [13]. In contrast, we found a strong 
unimodal relationship between precipitation and WNv incidence. 
This relationship is consistent with the predictions of ecological 
niche theory, which posits that diHerent species achieve their peak 
abundance at different points along environmental gradients [33]. 
The results of our analysis suggest that a total May-July 
precipitation of approximately 200 mm reflects optimal conditions 
for \I\Nv amplification and transmission in the northern Great 
Plains. As precipitation increases to the east, the importance of 
Culex tarsalis in mosquito communities decreases and it is replaced 
by less efficient vectors such as Lledes vexans and Culex pipens [17]. As 
precipitation decreases to extremely low levels, breeding habitat 
for all mosquitoes decreases, also reducing \VNv transmission risk. 
The positive relationship with temperature likely reflects influences 
on mosquito development and extrinsic incubation rates [3]. 

The relationships between \VNv incidence and rural land use 
highlight key differences between the dynamics of \ VNv in the 
northern Great Plains versus other parts of the United States. 
Research in the eastern and midwestern United States has 
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primarily focused on Culex pipens as a vector species, and has 
reported higher \I\!Nv incidence and seroprevalence in urban and 
suburban habitats than in more rural areas [7,16,34]. In contrast, 
our research and another study in Iowa [17], found that \ \TNv 
incidence was highest in rural areas. \Ve further found that \VNv 
incidence increased with the percent of irrigated land in rural 
areas. The association of Culex tarsalis with rural areas and irrigated 
land has been documented both in the Great Plains [35] and 
California [36] further supporting the hypothesis that the 
geographic distribution of Culex tarsalis is a major determinant of 
the regional patterns of \VNv incidence. 

As with all spatial ecological and epidemiological studies, the 
interpretation of our results is contingent upon the temporal and 
spatial scales of the analysis [37,38]. \Ve focused our analysis on the 
drivers of spatial patterns of \VNv cases within a single epidemic 
year, and we examined these relationships at a fairly coarse spatial 
resolution (counties) and across a large spatial extent (7 states 
encompassing 1,578,000 km2

). Although we found that weather 
variables in 2002 and 2003 were relatively weak predictors of the 
spatial distribution of\VNv cases in 2003, these variables may still be 
important in explaining year-to-year variability in the number and 
spatial distribution of \ \TNv cases from 2004-present. Analyses 
focused at smaller spatial resolutions also have the potential to reveal 
environmental relationships that arc not apparent at the county level 
[37]. In particular, relationships with wetlands and other sources of 
local breeding habitat may be more evident at fmer spatial 
resolutions [39]. Finally, the strength and even the direction of 
some environmental relationships may vary spatially across large 
study areas, and analyses that focus on subregions or techniques such 
as geographically weighted regression (GWR) may provide novel 
insights [25,40]. 

Eased on our analysis of the 2003 \VNv epidemic in the 
northern Great Plains, we found multiple lines of evidence to 
support the hypothesis that the geographic distribution of Culex 
tarsaliy is at least partially responsible for the continued high levels 
of\VNv incidence in this region. However, the mere presence of a 
vector species is not sufficient to sustain transmission of a zoonotic 
disease. Studies have documented a wide range of variability in 
avian host competence for \VNv l41 J, and it is probable that 
spatial variability in the abundance and community composition 
of avian hosts has an effect on the potential for amplification of 
\VNv and the consequent patterns of human cases in the northern 
Great Plains. At this point, much of our understanding of the 
complex zoonotic cycles that sustain \VNv is derived from studies 
conducted in the eastern and midwestern United States where the 
primary \VNv vectors, human demographics, and environmental 
patterns arc fundamentally different from the northern Great 
Plains. The existence of a sustained cluster of elevated \ \TNv 
incidence encompassing North Dakota, South Dakota, and 
Nebraska along with portions of eastern l\;Iontana and \Vyoming 
highlights the need for more epidemiological research in this 
region to determine the proximal causes of sustained \VNv 
transmission and to enhance strategies for disease prevention. 
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