Iron Mobility in Desert Sandstone Aquifers: The Possible Role of Siderite

Lubna Al Azri
University of Nebraska-Lincoln, omna94@gmail.com

David Loope
University of Nebraska - Lincoln, dloope1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/ucarereresearch

Part of the [Environmental Monitoring Commons](http://digitalcommons.unl.edu/monitoring), [Geology Commons](http://digitalcommons.unl.edu/geo), and the [Water Resource Management Commons](http://digitalcommons.unl.edu/water)

This Poster is brought to you for free and open access by the UCARE: Undergraduate Creative Activities & Research Experiences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in UCARE Research Products by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Iron Mobility in Desert Sandstone Aquifers: The Possible Role of Siderite
Lubna Al-Azri, David Loope
University of Nebraska- Lincoln
UCARE

Background

Jordanians and a large number of refugees are drinking radium-contaminated water from a sandstone aquifer. The problem is that this water passed through sandstone of the Disi Formation only after carbon dioxide and methane had bleached the sandstone, dissolving the Iron-oxide coatings and liberating heavy metals and radionuclides. The Iron that once coated the grains migrated to form Iron bands in the lower Um Ishrin Formation.

Purpose and Hypothesis

The major practical significance of this study involves water quality. The movement of Iron sandstone aquifers can drastically change groundwater chemistry; understanding how and when this movement takes place will help in locating safe supplies of drinking water.

Hypothesis: The rhombic, Iron-rich structures in the Jordanian sandstones are the altered remains of now-dissolved siderite crystals. It is important to figure out the elemental composition of the possible pseudomorphs, and to get a better look at their form.

Materials and Methods

Scanning Electron Microscope (SEM)- Nanoscience facilities at Jorgensen Hall

Results

Qualitative Data

Quantitative Data

Feldspar altered to Kaolinite books. Distribution of Iron in rhombic zones is consistent with siderite origin.

Conclusion

• Feldspar altered to Kaolinite books.
• Distribution of Iron in rhombic zones is consistent with siderite origin

Acknowledgements and Bibliography

I would like to express my deep gratitude to Dr. Richard Kettler for his guidance and help throughout this research. I would also like to thank Xiangzhong Li ’Jim’ for his help in offering me the resources and training in using the SEM and AZtech program.