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Description of harmonic generation in terms of the complex quasienergy. I. General formulation
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Using the Hellmann-Feynman theorem for quasistationary quasienergy states of a quantum system in an
intense laser field, we present the high-order harmonic generation �HHG� amplitude in terms of the complex
quasienergy of a bound electron, thereby avoiding the necessity for an explicit form for the electron wave
function in HHG calculations. This formulation for the HHG amplitude confirms use of the dual dipole
moment �instead of the dipole moment expectation value� in wave-function-based HHG calculations in order
to properly account for both the ionization and the Stark shift of the initial bound state in a strong laser field.

DOI: 10.1103/PhysRevA.75.063407 PACS number�s�: 32.80.Wr, 42.50.Hz, 42.65.Ky

I. INTRODUCTION

The first evidence of the highly nonperturbative interac-
tion of an intense laser field with matter in the spectra of
high-order harmonics was obtained in the late 1980s in ex-
periments involving rare gas atoms �1,2�. These experiments
showed that although the first few harmonics drop rapidly in
intensity, a plateau is reached along which harmonics have
roughly comparable intensities. One of the experiments �2�
demonstrated also that beyond some harmonic energy on the
plateau �the “cutoff” energy�, subsequent harmonics once
again drop rapidly in intensity with increasing harmonic or-
der. The existence of a plateau of harmonic intensities stimu-
lated efforts to extend the cutoff energy into the so-called
“water window” region of the x-ray spectrum �since coherent
x-ray sources in this region would enable researchers to im-
age living biological structures�. Within a decade, success in
obtaining x-ray harmonics in the “water window” region was
achieved �3,4�. High-harmonic sources with photon energies
of about 40 eV and intensities of about 1014 W/cm2 are cur-
rently available for laboratory experiments �see, e.g., Ref.
�5��. Investigations of high-order harmonic generation
�HHG� have taken on additional importance at present owing
to applications in attosecond science �6�. Specifically, plateau
harmonics have been used as sources of both attosecond
pulse trains �7� and of single attosecond pulses �8,9�. Such
pulses �having durations in the attosecond regime� have been
employed to obtain time-resolved measurements of elec-
tronic processes in atoms �8�. HHG thus appears to be a
fundamental component of attosecond science.

Owing to the intrinsic interest and the important applica-
tions of the plateau structures in HHG spectra, theorists have
sought to obtain a fundamental understanding of these highly
nonperturbative HHG features and also to discover means to
control them. As there have appeared a number of recent
reviews that discuss the theory of HHG �see, e.g., Refs.
�10–14��, we confine ourselves here to only a few remarks
relevant to the content of this paper. A key step in the devel-
opment of current theoretical understanding was the initial
observation of an empirical �E0�+3up law for the energy po-
sition of the HHG plateau cutoff �15� �where �E0� is the
atomic binding energy and up is the ponderomotive potential

of an electron in a laser field�. This law was interpreted in
terms of the so-called “simple man model” �in which an
atomic electron tunnels out of an atom owing to the lowering
of the potential barrier by the laser field, is driven away from
and then back to the atomic core by the laser field, where-
upon it may release its accumulated kinetic energy in the
form of harmonic photons� �16–18�. The success of this
single-active electron picture in predicting a key feature of
the HHG plateau led to single-active electron quantum for-
mulations that are consistent with this picture �see, e.g., Refs.
�19–22�, and references therein�. These theories are based on
the so-called “strong field approximation” in which, after
tunneling from the atom, the active electron is described by a
Volkov wave function, i.e., the atomic potential and all of its
bound states �except for the ground state� are ignored.

Despite these clear successes, however, evidence of the
need for an improved theoretical formulation of HHG has
appeared. First, HHG rates have been found to be very sen-
sitive to the bound �initial� state wave function employed,
especially for low harmonic orders and nonzero angular mo-
mentum of the bound electron �23�. Second, for intense laser
fields, the shift and ionization broadening of the initial state
energy by a strong laser field must be taken into account,
which is generally not done by most current theoretical
methods. Moreover, a number of analytical and semianalyti-
cal methods that originate from formulations claimed to be
“exact” or “ab initio” yield different final results after mak-
ing apparently the same chain of approximations. There thus
appears to be a need for a rigorous quantum formulation for
the HHG amplitude and for the development of semianalyti-
cal quantum models that are consistent with this formulation
and applicable over a wide range of laser parameters �in
particular, frequency and intensity�. These issues motivate
the present paper as well as the following paper �24�.

The HHG process for a single bound electron driven by
an intense monochromatic laser field is formulated in this
paper in terms of the system’s quasienergy, thereby avoiding
the necessity for an explicit form of the electron wave func-
tion to calculate HHG rates. This formulation makes use of
the Hellmann-Feynman theorem �25,26� for the quasistation-
ary quasienergy states �QQES� �or Floquet states� of the sys-
tem. Because of its focus on the complex quasienergy of the
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system, our formulation automatically includes both the
Stark shift and the ionization width of the initial bound state
in a strong laser field. Moreover, our wave-function-
independent formulation yields a result for the HHG ampli-
tude that is equivalent to that obtained using properly nor-
malized QQES wave functions, i.e., involving dual QQES
wave functions to obtain so-called dual dipole moments. Us-
ing our exact and approximate results for this dipole mo-
ment, we analyze the connection between various common
semianalytical HHG theories and exhibit their differences for
the case of a zero-range potential �ZRP� model �for a bound
electron in an s state�, which is an exactly solvable HHG
problem. In addition, we discuss the definition of HHG rates
for atomic systems having a nonzero, randomly oriented total
angular momentum.

Finally, in this paper we focus on the single atom or ion
response to a driving �monochromatic� laser field. We ana-
lyze neither propagation effects on the harmonics nor pulse
shape effects. However, as long as the driving laser pulse is
long �i.e., contains many laser cycles� and the paraxial ap-
proximation is valid �i.e., the laser focal dimension is much
greater than the laser wavelength�, then the calculation of the
single atom response can be carried out separately from the
calculation of the propagation of the harmonics generated in
the atomic medium �11�. Also, only in this �monochromatic�
approximation may we introduce the correct definition of
HHG rates, which provide a measure of those atomic param-
eters that depend only on laser intensity and carrier fre-
quency.

This paper is organized as follows. In Sec. II we discuss
in some detail current theoretical approaches to describing
HHG in terms of the field-induced dipole moments of an
atomic system. In Sec. III we formulate an expression for
HHG amplitudes in terms of a system’s complex quasien-
ergy. In Sec. IV we connect the formulation in terms of com-
plex quasienergy �or, equivalently, in terms of the dual dipole
moment� to commonly used alternative approaches for HHG
rates. In Sec. V we discuss the definition of HHG rates for
the case of a bound electron with nonzero angular momen-
tum and generalize the results of Sec. III to this case. In Sec.
VI we summarize the key results of this paper and present
some conclusions. Derivations of analytic results for induced
dipole moments and corresponding nonlinear susceptibilities
for a ZRP model, used in Sec. IV, are given in the Appendix.

II. ON THE QUANTUM DEFINITION
OF THE SINGLE-ATOM HHG AMPLITUDE

IN TERMS OF AN INDUCED DIPOLE MOMENT

For a single atom, the quantum definition of the HHG
amplitude in terms of a field-induced dipole moment is at-
tractive since this description is closely related to the classi-
cal picture of harmonic generation by an anharmonic oscil-
lator �e.g., by a classical electron bound in a static potential,
U�x�� subjected to a strong monochromatic perturbation.
However, the quantum generalization of this classical picture
is complicated by the fact that harmonic generation takes
place simultaneously with the competing process of multi-
photon ionization, which must thus be taken into account.

For this reason, the use of such sophisticated quantum ap-
proaches as quantum electrodynamics or formal S-matrix
methods are not the best choices for obtaining an accurate
quantum definition of the single-atom HHG amplitude. The
major concern is that while these methods are well-justified
mathematically for collision problems, which involve scat-
tering �i.e., continuum� states, in the case of single-atom
HHG both the initial and final states are bound and thus their
modification �or “dressing”� by a strong laser field, including
ionization effects, must be taken into account �see Ref. �27�
for additional discussion�. In this paper, we employ the
QQES �or Floquet� method to define accurately the quantum
amplitude for HHG by an atomic system in an initial �bound�
state of energy E0 with proper account for the field-induced
shift of the energy E0 and its broadening �the ionization
width� due to the ionization processes that accompany har-
monic generation. The principal features of this definition
may be most clearly presented for the simplest, single-active
electron model of the laser-atom interaction, i.e., the electric-
dipole interaction,

V�r,t� = − 1
2eF��e · r�e−i�t + �e* · r�ei�t� , �1�

which describes the interaction of a long monochro-
matic laser pulse (having an electric vector F�t�
=F Re�e exp�−i�t�� �e ·e*=1� and an intensity I= �cF2� /
�8��) with an electron that is subject also to a static poten-
tial, U�r�, that supports both bound ��n�r�� and continuum
��E�r�� stationary states. An initial bound state, �0�r , t�
=�0�r�e−iE0t/�, of an electron in the potential U�r� evolves as
the perturbation V�r , t� is turned on adiabatically according
to the time-dependent Schrödinger equation �TDSE�,

�−
�2

2m
�2 + U�r� + V�r,t� − i�

�

�t
���r,t� = 0. �2�

In order to organize our discussion in this longer section,
we divide it into three parts. We first discuss certain incon-
sistencies in a common perturbative approach for nonlinear
susceptibilities. We then discuss briefly the quasienergy ap-
proach for both perturbative and nonperturbative regimes of
the laser-atom interaction. Finally we introduce the concept
of the so-called “dual” dipole moment for the correct defini-
tion of the HHG amplitude in the strong field regime.

A. Inconsistency of the standard perturbative approach
for nonlinear susceptibilities at above-threshold frequencies

Consider first the case of a not too strong laser field so
that perturbation theory �PT� may be used to treat the inter-
action V�r , t� in Eq. �2�, including possibly higher-order PT
corrections to the lowest-order PT result. This formulation is
typical for traditional �“perturbative”� nonlinear optics, in
which case the generation of harmonics by an ensemble of
atoms subjected to a long monochromatic laser pulse of fre-
quency � is described by the atomic response at the har-
monic frequency �=N�, which is given by the Fourier com-
ponent d� of the light-induced dipole moment d�t� of the
atom at the harmonic frequency �. This Fourier component
is obtained from the perturbation expansion �in V� of d�t�,
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which is commonly defined as the expectation value of the
dipole moment operator, d=er,

d�t� = ���t��d���t�	 =
1

2

n=0

�

�dn�e−in�t + d−n�ein�t� , �3�

where ��t����r , t� is the PT solution of the TDSE �2� cor-
responding to the initial state �0�r� and where only odd val-
ues of n contribute for systems having inversion symmetry.
Defining the PT parameter as the ratio of the laser amplitude
F to the characteristic strength F0 of the internal atomic elec-
tric field �e.g., F0=e /a0

2�5.14�109 V/cm for the hydrogen
atom�, the vector dN� may be expressed as a series expansion
in terms of nonlinear susceptibility tensors, 	N+2k�N�� �k
=0,1 ,2 , . . . �, which depend on the frequency of the pump
�laser� field. In lowest order, dN� is proportional to
	N�N��FN; the next-order term in F is proportional to
	N+2�N��FN+2, and so on. Note that in order to keep our
notation as simple as possible, we omit here the tensor indi-
ces of 	N+2k�N��, which is a Cartesian tensor of rank N
+2k+1 �see, e.g., Ref. �28��.

We have started with the PT regime of laser-atom inter-
actions in order to show that even in this regime there is an
inconsistency in the standard definition �3� for d�t� in higher
orders of PT. The problem arises when taking into account
high-order PT corrections to dN� for the case of N
n0,
where n0 is the threshold number of photons for ionization
from the state �0�r�, i.e., n0 is the smallest integer for which
n0��� �E0�. In this case the high-order PT matrix elements
for the susceptibilities 	N+2k�N��, defined by the standard
�Rayleigh-Schrödinger� PT expansion of the matrix element
���t��d���t�	 in Eq. �3�, become divergent. This fact was
demonstrated in Ref. �29� in a calculation of the dynamic
hyperpolarizability, �����	3���, which determines the
lowest-order �i.e., linear in intensity I� correction to the or-
dinary dynamic polarizability of an atom in the state �0�r�,

����	1���, for the case of above-threshold frequencies,
��� �E0�. The origin of the divergences is as follows: the PT
expansion of ���r , t�	 in Eq. �3� contains outgoing wave
Green functions, GE+i0�r ,r��, of the electron in the potential
U�r�, which are complex when E= �E0+ p����0 �i.e., for
p
n0� and whose spectral decompositions,

GE+i0�r,r�� = 

n

�n�r��n
*�r��

E − En
+ 


0

�

dE�
�E��r��E�

* �r��

E − E� + i0
,

�4�

involve �regularizable� singular terms, �1/ �E−E�+ i0�, in
integrals over the energy E� of intermediate continuum
states. Since d�t� in Eq. �3� also contains the bra-vector,
���r , t��, the PT expansion of this state vector involves
complex-conjugated �ingoing wave� Green functions,
GE−i0�r ,r�� �GE−i0=GE+i0

* �, having the singular terms
�1/ �E−E�− i0� in integrals over E�. Thus the resulting ex-
pressions for high-order susceptibilities at above-threshold
frequencies involve double integrals over E� and E� which
contain nonregularizable �and thus nonintegrable� singulari-
ties �1/ ��E−E�+ i0��E−E�− i0�� on the line E�=E�. �For

example, for the case of linearly polarized F�t�, the hyperpo-
larizability ���� includes the following two fourth-order PT
matrix elements,

��0�r4��z4GE0+��−i0�r4,r3�z3GE0+2��+i0�r3,r2�

� z2GE0+��+i0�r2,r1�z1��0�r1�	 ,

��0�r4��z4GE0+��−i0�r4,r3�z3GE0

�0��r3,r2�

� z2GE0+��+i0�r2,r1�z1��0�r1�	 , �5�

which diverge at �E0+����0. The superscript �0� in GE0

�0�

indicates that the term with n=0 in the sum over n is omitted
in the spectral expansion �4� for this function.� Physically,
the occurrence of these divergences means that the definition
�3� is appropriate only for a stable system �e.g., one without
a continuous spectrum�, in which case the “field-dressed”
wave function ��r , t� is normalizable to unity in the usual
way, ���t� ���t�	=1, in each PT order. For a decaying sys-
tem �e.g., one described by the wave function ��r , t� that
takes into account open ionization channels�, the expectation
value of d diverges since ��r , t� involves a continuum com-
ponent �see Ref. �30� for further discussion�. Therefore, the
“classical” definition �3� of the dipole moment is not appro-
priate for a correct description of the atomic response to a
monochromatic perturbation when taking into account the
accompanying ionization effects even in the PT approach
�except for the lowest nonvanishing PT order for the nonlin-
ear susceptibilities, in which case the PT matrix elements do
not involve Green functions GE1+i0 and GE2−i0 with the same
energies, E1=E2�.

B. Quasienergy analysis of nonlinear susceptibilities

For a proper quantum definition of the atomic response at
the frequency �=N� for both perturbative �including high-
order PT terms� and nonperturbative treatments of V�r , t�, it
is convenient to use the quasienergy �or Floquet� solution of
the TDSE �2� since it explicitly takes into account the field-
induced shift and width of the initial-bound-state energy, E0
�see, e.g., Ref. �31��. This solution has the following form:

���r,t� = e−i�t/����r,t� = 

s

�s�r�e−�i/����+s���t, �6�

where the QQES wave function, ���r , t�, corresponding to
�0�r�, is the solution of the non-Hermitian eigenvalue equa-
tion in a space of periodic functions ����r , t+T�
=���r , t� ,T=2� /��,

Ĥ�r,t����r,t� � �−
�2

2m
�2 + U�r� + V�r,t� − i�

�

�t
����r,t�

= ����r,t� , �7�

for the complex quasienergy �=Re �− i�� /2��, where ��
=Re �−E0 and � are the energy shift and the total decay rate
of the state �0�r�. The fact that � is complex is ensured by
the complex boundary condition for ���r , t� at r→�: the
square root in �kn=�2m�n��+�−up� �where up is the pon-
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deromotive energy, �e2F2� / �4m�2�� is chosen so that in the
open ionization channels �Re kn

2�0� the Fourier-components
of ���r , t�, �s�r�, describe outgoing spherical waves, i.e.,
Re kn�0, while in the closed channels �Re kn

2�0� they de-
scribe exponentially damped waves, i.e., Im kn�0.

The integral form of the QQES equation �7� is useful in
many instances �cf. Ref. �32��. In the strong field �nonpertur-
bative� regime, it may be written in terms of the �retarded�
Green’s function, G�V��r , t ;r� , t��, of a free electron in the
laser field F�t� �cf. Appendix A for its explicit form; note that
G�V��r , t+T ;r� , t+T−��=G�V��r , t ;r� , t−���,

���r,t� =
 dr�

−�

t

dt� ei��t−t��/�G�V��r,t;r�,t��

�U�r�����r�,t��

=
 dr�

0

�

d� ei��/�G�V��r,t;r�,t − ��U�r��

����r�,t − �� , �8�

which is especially useful for finite-range potentials, U�r�,
and permits an exact solution of the QQES problem for the
widely used zero-range potential �ZRP� model �33,34�. In the
perturbative regime, the PT expansions for � and ���r , t�
may be obtained by converting the differential equation �7�
into an inhomogeneous integral equation involving the
“quasienergy Green function” of an electron in the potential
U�r�, G��r , t ;r� , t��=
k exp�ik��t− t���G�−k��

�0� �r ,r�� �where
the superscript �0� in G�−k��

�0� means that, at k=0, the term
with n=0 in the sum over n is omitted in Eq. �4� for this
function�,

���r,t� = �0�r� +
1

T



0

T

dt�
 dr�

�G��r,t;r�,t��V�r�,t�����r�,t�� . �9�

Together with the “Brillouin-Wigner relation” for � and E0,

� = E0 +
1

T



0

T

��0�r��V�r,t������r,t��	dt� �10�

�which is similar to that for the exact and unperturbed ener-
gies in time-independent problems; see, e.g., Ref. �35��, Eq.
�9� represents an eigenvalue problem for � and ���r , t� in a
form that is convenient for a PT treatment. In this formula-
tion, the perturbative expansion for � in a power series in F2,

� = E0 + 

n=1

�

�2n���F2n, �11�

can be obtained from Eq. �10� by substituting the iterative
solution for ���r , t�� that follows from Eq. �9� �see Refs.
�31,36� for further details�.

The high-order PT corrections to E0, �2n=�2n���F2n, be-
come complex for n
n0 and their imaginary parts determine
the PT expansion of the decay rate �. We emphasize that, in
contrast to d�t� in Eq. �3�, the matrix element on the right-
hand side of Eq. �10� involves only the ket-vector ���r , t�	

�whose PT expansion involves only outgoing wave Green
functions GE+i0�r ,r���, so that the high-order PT matrix ele-
ments for �2n do not involve the nonintegrable singularities
discussed above and hence all coefficients �2n��� are finite
�36�. Moreover, the explicit form of the coefficients �2n���
in terms of high-order PT matrix elements may be formally
represented in terms of susceptibilities 	2n−1��� �which de-
fine the PT expansion of the Fourier component d� of the
dipole moment d�t� in Eq. �3��, provided, however, that one
takes in the matrix elements for 	2n−1��� all Green functions
that arise from the PT expansion of ���t�� in Eq. �3� without
complex conjugation, i.e., with the same sign of the infini-
tesimal, i0, as in GE+i0 in Eq. �4�. (For n�n0, both �2n���
and 	2n−1��� are real since the energy parameters E=E0

+ p�� �p�n� in all Green functions are negative and thus
the infinitesimal ±i0 in Eq. �4� has no consequence. For this
case, the exact relation between �2n��� and 	2n−1��� follows
from the Hellmann-Feynman theorem in the �real-valued�
quasienergy approach for potentials U�r� supporting only
bound stationary states �see Ref. �37� and, also, the discus-
sion of Eqs. �21� and �23� at the end of Sec. III below�.) This
recipe indicates how one can avoid the divergences �i.e., the
appearance of ingoing wave Green functions GE−i0 �=GE+i0

* �
with E�0� in calculations of high-order nonlinear suscepti-
bilities using PT expansions of d�t� in Eq. �3�. Namely, one
should use in Eq. �3� in place of the bra-vector ���r , t��
=�*�r , t� the wave function ��r , t� without complex conju-
gation but with the substitution t→−t, i.e., ���r , t��→��r ,
−t�. This simple prescription is valid for a nondegenerate
initial state �0�r� in a linearly polarized field F�t�. However,
if the polarization of F�t� is not linear, the substitution e
→e* should also be made. In addition, if ��r , t� depends on
the signs of the magnetic quantum numbers m, then they
should be changed to the opposite ones, m→−m. Therefore,
even in the PT regime, in order to obtain finite values of the
high-order PT corrections to the nonlinear susceptibilities
	n�n�� at energies corresponding to open multiphoton ion-
ization channels �i.e., for n�n0�, the following substitution,

���r,t�� → ���r,− t��m→−m,e→e*, �12�

should be used in the definition �3� of the field-induced di-
pole moment of the nonstable �due to ionization� atomic sys-
tem initially in the bound state �0�r�.

In the PT regime, the correct definition of the HHG am-
plitude taking into account ionization effects and including
high-order corrections, 	N+2k�N��, to 	N�N�� up to some
�finite� order k may also be obtained unambiguously �i.e.,
without, in fact, employing the prescription �12�� as the tran-
sition amplitude between the same initial and final states,
�0�r�, for the process of absorption of N laser photons fol-
lowed by the emission of a spontaneous harmonic photon in
the direction of the laser beam. In this way, both the lowest-
order PT amplitude and high-order PT corrections to it �with
each higher order describing virtual absorption and emission
of an additional pair of laser photons� involve only outgoing
wave Green functions GE+i0. With proper handling of the
so-called secular and normalization terms that appear in high
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orders of PT for the case of a monochromatic perturbation
�see, e.g., Refs. �31,38��, all high-order PT matrix elements
are convergent at any frequency �. Furthermore, the results
coincide with those obtained from Eq. �3� using the prescrip-
tion �12�. This agreement thus justifies this prescription for
calculations of high-order nonlinear susceptibilities with
proper account of ionization effects on the PT level in terms
of the �modified� dipole moment.

C. Nonperturbative regime of laser-atom interactions:
The dual dipole moment

Owing to its difficulties �i.e., its singularities� in the PT
regime, Eq. �3� for the field-induced dipole moment may be
expected to present problems also in the nonperturbative
�strong field� regime. However, the prescription �12� proves
to be useful for defining the HHG amplitude also in the
nonperturbative regime, for which a PT expansion of the
solution of equations �2� or �7� is not applicable. Indeed, it is
necessary in this case to deal with the entire set of high-order
corrections 	N+2k�N�� �i.e., for all k� to the lowest-order PT
result 	N�N��. In this regime the QQES solution �6� de-
scribes a quasistationary �decaying� state. Thus the usual
�Hermitian� theory of quantum transitions cannot be used to
justify the prescription �12�, in part because the function
���r , t� itself is formally divergent at r→� �owing to the
asymptotically divergent waves in the ionization channels�
and thus cannot be normalized to unity in the standard way.
The proper normalization of ���r , t� is achieved instead by

introducing a “dual” function, �̃��r , t�, such that

1

T



0

T

dt��̃��t�����t�	 =
1

T



0

T

dt
 dr��̃��r,t��*���r,t� = 1.

�13�

The explicit form of �̃��r , t� follows from Eq. �12� upon
substituting ���r , t� �cf. Eq. �6�� in place of ��r , t�, i.e.,

��̃��r,t��* = ����r,− t��m→−m,e→e*. �14�

We note also a definition for �̃��r , t� that is equivalent to Eq.
�14� �39�: the function ���r , t� with its quasienergy complex-
conjugated �i.e., �→�*� and satisfying the ingoing-wave
asymptotic boundary condition in the open �ionization� chan-
nels.

The normalization procedure for QQES wave functions,
given by Eqs. �13� and �14�, was suggested in Ref. �40� �see
also Refs. �30,41� for additional discussions�. As shown
above, it is supported by the PT analysis. In addition, it rep-
resents a straightforward extension of the well-known
“Zel’dovich normalization” for quasistationary �or reso-
nance� states in time-independent problems �see Refs.
�42,43�� to the case of time-dependent, QQES problems.
Reference �42� emphasized the necessity of using dual func-
tions in calculations of matrix elements within a basis of
quasistationary states and indicated how to regularize the
singular radial integrals that appear in these matrix elements
and in the normalization integral �13�, i.e., by introducing the
regularization factor, exp�−�r2���→ +0�. �Recently, this

“Zel’dovich regularization” was employed in Refs. �44–46�
for a number of time-independent problems involving singu-
lar integrals, including that of QQESs in a circularly polar-
ized light field. �For this case the problem reduces to a sta-
tionary one in the reference frame rotating with frequency �
around the direction of the laser beam.��

According to the normalization �13�, the nonlinear sus-
ceptibilities �i.e., the response to a strong monochromatic
perturbation� of an unstable system must be calculated by

substituting ��̃��t�� instead of ���t�� in the definition �3� for
the field-induced dipole moment, giving thus the definition

for the “dual” dipole moment, d̃�t�,

d̃�t� = ��̃��t��d̂����t�	 = ��̃��t��d̂����t�	

=
1

2

n=0

�

�d̃n�e−in�t + d̃−n�ein�t� , �15�

where

d̃±N� =
2

T



0

T

dt e±iN�t��̃��t��d����t�	 . �16�

As defined in Eq. �15�, d̃�t� coincides with the standard defi-
nition �3� for a system without a continuous spectrum �i.e.,
neglecting ionization effects� and is consistent with the pre-
scription �12� for taking account of ionization effects on the
level of high-order PT corrections to the lowest-order PT
result for nonlinear susceptibilities. Note that the necessity
for using the “dual” form �15� for the field-induced dipole
moment of a decaying system may be argued also in terms of
“non-Hermitian quantum mechanics,” in which dual func-
tions are introduced as the “left” eigenfunctions of the
Hamiltonian H†*

, i.e., the transpose of H in the QQES equa-
tion �7� �47�. �This formulation was used in numerical HHG
calculations for a one-dimensional inverted Gaussian poten-
tial �48� and for He �49,50�.�

The nonperturbative HHG amplitude AN�e�� in terms of

d̃�t� is given by

AN�e�� = e�* · d̃N�. �17�

Complete information concerning the intensity and polariza-
tion properties of the Nth harmonic may be extracted from
the amplitude �17�, which describes dipole emission of radia-
tion with frequency N� and measured polarization e�.
�While we do not discuss the general properties of the har-
monics in the present paper, we note that appropriate QQES
results for a ZRP model, including those for the elliptic di-
chroism effect, can be found in Refs. �51,52�. Also, for a
review of polarization effects in HHG, see Ref. �13�.� The
total intensity, summed over the polarizations of the emitted

photons, is proportional to �d̃N��2 and is commonly described
�see, e.g., Refs. �20,22,40�� by the harmonic rates RN, i.e., by

the rates for dipole emission into the direction k̂ of the fun-
damental laser beam,

dWN�,k̂

d�k̂
� RN =

�N��3

8��c3 �d̃N��2. �18�
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As argued above, the fully quantum definition of the
single-atom HHG amplitude, including proper account of la-
ser field-induced Stark shifts and level widths, ultimately re-
quires the use of a modified �dual� definition �15� of the
dipole moment for a decaying system that differs from the
commonly used definition �3� involving the expectation
value of d. Note that since Im � is small for not too strong

fields, the matrix elements involved in d�t� and d̃�t� “feel”
the divergence in the radial wave functions only at very large
distances r �beginning approximately from r�rd�. Thus nu-
merical calculations of the HHG amplitude may give stable
�convergent� results within a sphere 0�r�R, with R�rd,
using either the dual or the common definitions for the dipole
moment. �For example, in the nonperturbative multiphoton
regime, the difference between these two sets of results for
the ground-state hydrogen atom is about 0.1% �39�. This
difference increases substantially, however, with increasing

F.� Nevertheless, a key difference between d�t� and d̃�t� is
that the former is real-valued �as follows from Eq. �3�,
d−N�=dN�

* �, while the dual dipole moment d̃�t� is complex,
as follows from the relation

d̃−N� = �d̃N��m→−m,e→e*, �19�

which may be verified by substituting t→−t in the integral
over t in Eq. �16� and employing the definition�14� for dual

functions. In particular, d̃−N�= d̃N� when F�t� is linearly po-
larized, in which case e=e*�ez and the results depend only
on the modulus, �m�, of the azimuthal angular momentum
quantum numbers with respect to the direction ez of laser
polarization.

III. HHG AMPLITUDE IN TERMS
OF THE COMPLEX QUASIENERGY

Both accurate and approximate calculations of matrix el-

ements for d̃N� in Eq. �17� require knowledge of QQES
wave functions over the entire coordinate space in order to

evaluate the matrix element of d̃�t� in Eq. �15�. However, a
number of approximate methods allow one to obtain these
wave functions with reasonable accuracy only over a limited
interval of r, mostly outside the atomic core. For these cases,
it is therefore not possible to obtain accurate values either for

d̃N� or for the proper normalization of �̃��r , t� according to
Eq. �13�. For this reason, we present below an alternative
expression for the HHG amplitude �17�, in terms of the com-
plex quasienergy, that avoids the explicit involvement of
QQES wave functions. The derivation of the appropriate ex-
pression provides also additional justification for the correct-
ness of the definition of AN�e�� in Eq. �17�.

Our derivation is based on the Hellmann-Feynman theo-
rem for quasistationary states �30�. We note first that for
systems without a continuous spectrum �i.e., for quasienergy
states having a real-valued, discrete quasienergy spectrum
�n�, this theorem was introduced in Ref. �37� and has been
employed in various applications �see, e.g., Ref. �53��. It has
a form similar to that for time-independent Hamiltonians,

��n���
��

=
1

T



0

T

dt���n
�r,t�� �Ĥ�r,t;��

��
���n

�r,t�� ,

�20�

where the “QES Hamiltonian” Ĥ�r , t ;�� is defined by Eq.
�7� and depends parametrically on some parameter �. As
argued in Ref. �30�, the relation �20� holds also for QQESs,

replacing ���n
�r , t�� by the dual bra-vector ��̃��r , t��. In par-

ticular, choosing the parameter � in Ĥ�r , t ;�� to be �=Fe*

�F*, i.e., �Ĥ�r , t ;�� /��=�V�r , t� /�F*=−�1/2�d exp�i�t�,
one obtains �cf. Eqs. �1�, �7�, and �16�:

��

�F* =
1

T



0

T

dt��̃��r,t�� �V�r,t�
�F* ����r,t�� = −

1

4
d̃�.

�21�

This equation is valid for an arbitrary F and connects the

Fourier-component of d̃�t� for the fundamental frequency �
with the complex quasienergy.

To obtain a relation similar to Eq. �21� for the dipole
moment components corresponding to the harmonic fre-

quency �, d̃N�, we add to the QQES Hamiltonian Ĥ�r , t� in
Eq. �7� an interaction with a probe �“harmonic”� field Fh�t�
of amplitude Fh, Vh�r , t�=−d ·Fh�t�, where Fh�t�
=Fh Re�e� exp�−i�t�� �e� ·e�*=1�,

Ĥ�r,t� → Ĥ�r,t� = Ĥ�r,t� + Vh�r,t� . �22�

We assume that both fields propagate in the same direction,

k̂, so that the vectors F�t� and Fh�t� lie in the plane perpen-

dicular to k̂. Since the fields F�t� and Fh�t� have commensu-
rable frequencies, �=N�, the ordinary �single-frequency�
QQES formalism continues to apply to this bichromatic field
case. We denote by �� the quasienergy corresponding to the
initial state �0�r� in the two-color field F�t�+Fh�t�. The
Hellmann-Feynman theorem for the QQES ����r , t� with �
=Fhe�*�Fh

* gives,

���

�Fh
* =

1

T



0

T

dt��̃���r,t�� �Vh�r,t�
�Fh

* �����r,t�� = −
1

4
d̃�� ,

�23�

where

d̃�� =
2

T



0

T

dt ei�t��̃���r,t��d�����r,t�	 . �24�

Equations �23� and �24� are exact and valid even when

both fields F�t� and Fh�t� are strong, so that in general d̃��
depends nonlinearly on both F and Fh. However, in the case

of a weak �infinitesimal� harmonic field, Fh→0, d̃�� in Eq.

�23� reduces to the dual dipole moment component d̃� for
Fh�t�=0, which enters the HHG rate �18�. Indeed, for this
case we have ��=�+��, where �� is linear in Fh and, ac-
cording to PT for QQESs, is given by the first-order �in Fh�
PT correction to �,
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�� =
1

T



0

T

dt��̃��r,t��Vh�r,t�����r,t�	

= −
Fh

2T



0

T

dt��̃��r,t��ei�te�* · d + e−i�te� · d����r,t�	 .

�25�

Equation �23� now gives the desired result for d̃N� in terms
of �� �cf. �16��,

d̃N� = − 4
���

�Fh
* =

2

T



0

T

dt eiN�t��̃��r,t��d����r,t�	 , �26�

which is independent of Fh�t� and reduces to Eq. �21� for
N=1 ��=��.

For a linearly polarized field F�t� �e=e*�ez�, the vector

d̃N� is proportional to ez �since there are no other vectors in
the problem�,

d̃N� = 	̃N��,F�ez, �27�

where 	̃N�� ,F� is the generalized nonlinear susceptibility,
which reduces to the usual nonlinear susceptibility, 	N�N��
�cf. Sec. II B�, in the lowest order in F: 	̃N�� ,F→0�
=	N�N��FN. According to Eq. �17�, the HHG amplitude is
given by

AN = e�* · d̃N� = 	̃N��,F��e�* · ez� , �28�

while the harmonic rate �18� reduces to

RN =
�N��3

8��c3 �	̃N��,F��2. �29�

Since the final result for d̃N� in Eq. �27� is independent of
Fh�t�, in calculating �� in Eq. �25� for the case of a linearly
polarized laser field, F�t�, it is sufficient to calculate only the
linear in Fh correction �� to the quasienergy in the linearly

polarized two-color field F̃�t�= F̃�t�ez, where F̃�t�=F cos �t
+Fh cos �t ��=N��.

Finally, we note that the definition �15� does not presume
a direct connection �as in Eqs. �21� and �23�� between the

Fourier components of d̃�t� and the complex quasienergy.

Rather, our goal in introducing d̃�t� was only to avoid both
the divergences that occur in the commonly used definition
�3� for the dipole moment in the strong field regime as well
as the nonregularizable singularities that occur in high-order
PT corrections to the nonlinear susceptibilities in the PT re-
gime. Equations �21� and �23� may also be considered to be
definitions of the Fourier components of a field-induced di-
pole moment in terms of the complex quasienergy, which is
the eigenvalue of the Schrödinger equation for the QQES
and is thus insensitive to the normalization of the QQES

wave function. The remarkable coincidence of d̃� and d̃�� in
Eqs. �21� and �23� with those defined in terms of the dual
functions in Eqs. �16� and �24� gives, apparently, a convinc-
ing justification for the consistency of redefining the dipole
moment in Eq. �3� for a decaying system as in Eq. �15�, i.e.,
using the dual functions �14�. In addition, upon substituting

the formal PT expansion �11� for � into Eq. �21� and obtain-
ing the expressions for �2n��� in terms of high-order PT
matrix elements using Eq. �10�, Eq. �21� gives the PT expan-

sion for d̃� involving unambiguous, convergent expressions
for the high-order PT corrections �i.e., high-order hyperpo-
larizabilities, 	2n−1���� to the dynamic polarizability 
��� of
the state �0�r�. �Note that Ref. �29� used Eq. �21� to properly
define the hyperpolarizability 	3��� at above-threshold fre-
quencies, a case not requiring the dual function formalism.�

IV. CONNECTION WITH COMMON SEMIANALYTICAL
METHODS FOR HHG CALCULATIONS

In this section we connect the formulation in terms of the
dual dipole moment to commonly used alternative ap-
proaches for HHG rates. The above considerations demon-
strate that the term “dipole moment” for an atomic system
interacting with an intense laser field �in which case ioniza-
tion effects are important� has a conditional meaning. Its

clearest physical interpretation is that e�* · d̃N� is the ampli-
tude for conversion of N laser photons into a high-order har-
monic photon having polarization vector e� and with the
atom remaining in the field-free bound state �0�r� �30,51�. In
contrast, the expectation value of d for a decaying system is
formally divergent and thus does not correspond to a physi-
cal observable. These divergences imply therefore that the
dipole moment expectation value �3� cannot be used for ab
initio calculations of the atomic response to a strong mono-
chromatic perturbation. Although the discussed divergences
may be �erroneously� avoided in direct numerical calcula-
tions �e.g., by restricting the interval of integration over r� or
may vanish within some approximations �such as the
Keldysh approximation �KA�, as discussed below�, they
must appear as nonregularizable singularities in any accurate
analytical calculation of d�t� involving integrations of wave
functions over the entire coordinate space. For example, the
expectation value of d in Eq. �3� was used in detailed HHG
calculations �20� starting from the exact QQES equations for
a ZRP model �33�. The divergence of dN� for N=1 is explic-
itly shown in Ref. �20� and, for higher N, the divergences
were avoided in Ref. �20� by neglecting all but one of the
Fourier-coefficients of the QQES wave function near the ori-
gin. This latter approximation is similar to the KA in HHG
theory �27�. We note that the numerical results in Ref. �20�,
for the laser parameters that are considered there, are in good
agreement with exact “dual” ZRP results �54� except for
small values of N.

We emphasize that the dual function �̃��r , t� remains dif-
ferent from ���r , t� even when the unperturbed bound state
energy E0 is employed in place of the complex quasienergy �
owing to the different �ingoing and outgoing spherical wave�
boundary conditions for �̃�=E0

�r , t� and ��=E0
�r , t� at large

distances. In the approximation that �=E0, the exact dual
dipole moment �15� reduces to that in the “S-matrix ap-
proach” �see Eqs. �2.27�–�2.29� in Ref. �21�� and to that in
Eq. �2.8� of Ref. �22�. Although the approaches used in Refs.
�21,22� �and also in the S-matrix formulation for the HHG
process in Ref. �14�� fail to account for the laser field-
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induced level shift and width effects, in calculations of the
matrix element of d in these references use is made of initial
and final state wave functions that differ in the range of the
temporal integrations and hence result nevertheless in a com-
plex value of the dipole moment. Note that in approximating
� by E0, the exact dual dipole moment results for the HHG
amplitude reduce to the initial �“exact”� results for the HHG
amplitude in Refs. �14,21,22� �which contain exact Green
functions of the atomic electron in a laser field�. Note, how-
ever, that neither the S-matrix method nor the equivalent
semianalytical method �22� has ever been used for practical
HHG calculations beyond the simplest “strong field” ap-
proximation, in which the binding potential U�r� is com-
pletely neglected in intermediate states of the active electron.
This approximation is similar to the KA �55,56� for the ion-
ization amplitude. In particular, the approximate initial and
final state wave functions used in actual calculations in Ref.
�22� coincide exactly with the wave functions �KA�r , t� and

�̃KA�r , t� in the KA to the QQES �27�. �For the ZRP model,
comparisons of exact QQES results with those in Refs.
�21,22� can be found in Ref. �54�; see also Refs. �51,52� in
which the first accurate calculation of HHG rates for a ZRP
model were performed using the dual dipole moment within
the QQES approach.�

Concerning the dipole moment expectation value d�t� in
Eq. �3� in the ��=E0� wave function approximation, we note
that it remains generally divergent, as in the case that the
exact � is used in Eq. �3�. In particular, in Eq. �2.15� for d�t�
in Ref. �21� the formal divergences exist in those terms cor-
responding to “continuum-continuum transitions” �i.e., the
fourth term in Eq. �2.15��, within which nonregularizable
singularities appear in the double temporal integral in the
matrix element involving two exact time-dependent Green
functions of the atomic electron in a laser field. Note that in
the KA �or strong field approximation, i.e., replacing these
exact Green functions by free-electron Green functions
G�V��r , t ;r� , t�� �cf. the Appendix��, the aforementioned sin-
gularities disappear and the KA result for the dipole moment
expectation value, dKA�t� �cf. Eq. �2.16� in Ref. �21��, be-
comes finite in this approximation even with the inclusion of
continuum-continuum terms. Moreover, by neglecting the
continuum-continuum transitions this result reduces to that in
the effective-dipole �or Lewenstein� model �19�. A compari-
son of results of this latter model with those in the strong
field approximation version of the S-matrix approach is
given in Ref. �21� for the polarization properties of harmon-
ics produced by an elliptically polarized field within the ZRP
model. In spite of the fact that both models agree quite well
in many respects �for the laser parameters considered in Ref.
�21��, there are instances in which the results are different,
such as, e.g., for the rotation angle of the polarization ellipse
of high harmonics with energies around the end of the pla-
teau. A similar comparison of the magnitudes of HHG rates
for the He atom is discussed in Ref. �14� �cf. Sec. II F 3�:
while for N�1 the S matrix and effective-dipole results
agree very well �to within 1%�, for small N the differences
between the results increase to as much as 17% �for N=5�.

In spite of the fact that in the Keldysh �or strong field�
approximation the numerical differences between S-matrix

and dipole moment expectation value results for HHG rates
are small, the differences are nevertheless significant as they
raise the question of how to interpret two different numerical
values for the microscopic atomic parameter describing the
emission of harmonic photons, both of which take into ac-
count the effects of the binding potential on the same level of
accuracy, i.e., only in the bound state wave function �0�r�.
This problem has been known for about 10 years �21�. Since
the question of the divergence of the apparently exact ex-
pression �3� for the dipole moment expectation value in the
strong field regime did not attract much attention at the time,
apparently in order to resolve this dilemma, the authors of
Ref. �21� suggested that one consider the dipole moment
expectation value as the atomic parameter relevant to the
coherent emission of harmonics in the propagation of a laser
pulse through an atomic medium, while one should consider
the S-matrix result as describing the emission of harmonic
photons by a single atom. Although this statement was criti-
cized in Ref. �22�, in which it was argued that “the theory of
collective emission should be ultimately based on the proper
description of a single atom process,” some authors still ap-
parently accept the rather surprising conception of a “dual-
ity” of microscopic quantum parameters relevant to the har-
monic photon emission by a single atom on the one hand and
by an ensemble of dynamically noninteracting atoms on the
other �cf. Ref. �14��. Our considerations above give the un-
derlying physical explanation of this surprising duality.
Namely, the dipole moment expectation value in the KA,
dKA�t�, becomes finite only as a consequence of its neglect of
binding potential effects in the exact result �3� for d�t�,
which otherwise becomes divergent �and thus physically
meaningless� in the strong field regime, even in the ��=E0�
approximation.

In order to illustrate explicitly the divergences in dipole
moment expectation value results, in the Appendix we
present these results in an analytic form for the exactly solv-
able ZRP model and compare them with the corresponding
dual dipole moment results. For numerical comparisons, in
Fig. 1 we compare KA dipole moment expectation value
results with dual dipole moment results in the KA �which are
equivalent to S-matrix results in the strong field approxima-
tion� for a ZRP model. Specifically, we present the ratio of

�dN�
KA�2 to �d̃N�

KA�2 �which equals the ratio of HHG rates� calcu-

N (harmonic number)

η N

3 5 7 9 11 13 15

1

1.5

2

2.5

3

x 0.1

FIG. 1. �Color online� The ratio, �N= �dN�
KA/ d̃N�

KA�2, for a ZRP
model s state of energy E0 for F=0.2F0 and �=0.045�0 �circles;
solid line� and 0.098�0 �squares; dashed line�. �0= ��E0� /�� and
F0=�2m�E0�3 / ��e���. Note that dN�

KA diverges for N=1 and for �
=0.045�0, the ratio for N=3 is divided by 10.
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lated according to Eqs. �A12�, �A14�, �A13�, and �A15� �at
k=k�=0, f0=�2 and �=E0=−1� at two different frequencies
for the case of the bound ZRP model s state. The ratio differs
significantly from unity only in the region of low-order har-
monics, up to the plateau onset �i.e., the extent of this region
increases with decreasing ��. The qualitative explanation of
this result follows from our quantum interpretation �27� of
plateau structures in HHG in terms of the Fourier compo-
nents, �s

KA�r� �cf. Eq. �6��, of the KA wave function
�KA�r , t�. In the strong-field regime, the Fourier component
of the KA dual dipole moment,

d̃N�
KA = 


s=−�

�

��̃s−N
KA �d��s

KA	 , �30�

is well approximated by the two terms involving �0
KA�r� and

�̃0
KA�r� �which is equivalent to neglecting continuum-

continuum transitions �21� in the exact KA result �30��,

d̃N�
KA � ��0�d��N

KA	 + ��̃−N
KA�d��0	 , �31�

where we have in addition approximated �0
KA�r� and �̃0

KA�r�
by �0�r�. �Note that according to the definition �14� of the

dual function, �̃s�r�=�s
*�r� for s states.� As shown in Ref.

�27�, plateaus in HHG spectra originate from similar plateau
structures in the spectrum of the harmonics �s

KA�r� with
positive numbers s, beginning from s��E0 � / ���� up to s
���E0 � +3.17up� / ����. In this region the contribution of the
last term in Eq. �31� is negligible, while for N� �E0 � / ���� its
contribution increases rapidly with decreasing N. �Within the
three-step model �22�, the smallness of this “time-reversed”
term is interpreted in terms of the rescattering scenario
�16,18,57�.� The Fourier-component dN�

KA of the dipole mo-
ment expectation value dKA�t� also has the form �31� upon

substituting �̃−N
KA→�−N

KA in the “time-reversed” term �which
is equivalent to its complex conjugation�. As discussed
above, this substitution has no consequence for the plateau
part of the HHG spectrum, but leads to inaccuracies of �dN�

KA�2
for low-order harmonics �cf. Fig. 1�.

Therefore, in contrast to the KA version of the S-matrix
result �which follows from the ab initio result �15� for the
dual dipole moment by �i� approximating �=E0 and �ii� ne-
glecting binding potential effects in intermediate states of the
active electron�, dKA�t� cannot be obtained unambiguously as
the approximate version of a well-behaved, proper ab initio
definition of the dipole moment expectation value. Neverthe-
less, dKA�t� �or its reduced, effective-dipole version� has
been employed for HHG analyses on an equal footing with
results of the S-matrix approach and, generally, both methods
yield comparable numerical results. However, if the differ-
ences between the dipole moment expectation values and the
S-matrix results become significant �as, e.g., for the case of
small N in Fig. 1�, then the latter results must be taken to be
the physically meaningful ones.

V. HHG RATES FOR THE CASE OF AN INITIAL STATE
WITH NONZERO ANGULAR MOMENTUM

For simplicity, in our considerations so far it has been
assumed that the initial bound state �0�r� and the corre-
sponding QQES ���r , t� are nondegenerate, e.g., that �0�r�
describes an s state. For an initial state with nonzero angular
momentum l, �0�r�=��lm�r�Ylm�r̂�, the QQES approach be-
comes more complicated for the case of an elliptically polar-
ized laser field, which mixes initially degenerate sublevels
with different angular momentum projections m, so that
�0�r� evolves in a laser field to �2l+1� Stark-split QQES
substates, ��i

�r , t� �i=1, . . . ,2l+1�, with generally different
complex quasienergies �i �31�. The situation simplifies for
the case of a linearly polarized field F�t�, which we assume
below. In this case the projection m of the angular momen-
tum on the direction of laser polarization, e�ez, is a con-
served quantum number �as follows from the axial symmetry
of the problem� and �0�r� splits into �l+1� substates
���m�,m

�r , t�, with each of them �except for m=0� being dou-
bly degenerate �in the sign of m�.

The definition of HHG rates RN for a degenerate initial
state �0�r� requires a detailed explanation as we have not
found a proper definition in the literature. Although we con-
sider RN as a single-atom, microscopic parameter, we have
in mind the generation of coherent radiation of frequency
�=N� by an ensemble of uncorrelated atoms having ran-
domly oriented angular momenta and subjected to a laser
field F�t�. The intensity of this radiation should thus be pro-
portional to the square of the atomic density, N �as is well-
established experimentally�. On the quantum, single-atom
level, this means that the proper quantum atomic parameter
relevant to this problem is given by the tensor of coherent
scattering of harmonic photons ��� by an atom �A� in an
�N+1�-photon scattering process involving the absorption of
N laser photons ���,

A + N� → A + � , �32�

or, equivalently, by the cross section for this coherent scat-
tering process. The coherent scattering of radiation is pos-
sible only if initial and final states of the atom are identical,
i.e., have the same quantum numbers �58� �see also the peda-
gogical example for harmonic generation in Ref. �59��. For a
nondegenerate s state, the process �32� is always coherent
�58�, so that the rate �18� is the relevant quantity. For l�0,
however, the single-atom HHG rate must be calculated simi-
larly to the cross section of coherent light scattering, i.e., by
averaging the “diagonal” partial rates RN

�m� over m,

RN �
1

2l + 1

m

RN
�m� =

�N��3

8��c3

1

2l + 1

m

�d̃N�
��m���2, �33�

where d̃N�
��m�� is given by the matrix element of d in Eq. �16�

involving wave functions ���m�,m
�r , t� and �̃��m�,m

�r , t� with
the same quantum number m, i.e.,

d̃N�
��m�� =

2

T



0

T

dt eiN�t��̃��m�,m
�r,t��d����m�,m

�r,t�	 . �34�
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In order to calculate d̃N�
��m�� in terms of the complex

quasienergy ��m�, we can still use the Hellmann-Feynman
theorem �23� considering split states ���m�� ,m�r , t� in a two-

color �strong laser and weak harmonic� field F�t�+Fh�t� as
single states. �The Hellmann-Feynman theorem for quaside-
generate or degenerate QQESs may be formulated similarly
to that applicable to degenerate time-independent problems
�60�.� Following the transition from Eq. �23� to Eq. �26�, one
obtains

d̃N�
��m�� = − 4

����m�

�Fh
* , �35�

where ���m� ����m����m�� −��m�� is linear in Fh and given by

Eq. �25� in which �̃��r , t�→�̃��m�,m
�r , t�. As a result, the

Fourier-component d̃N�
��m�� calculated according to Eq. �35� is

equivalent to that in Eq. �34�. Since we consider a linearly

polarized field F�t� �e=e*�ez�, the vector d̃N�
��m�� and the

HHG amplitude AN
��m�� may be expressed in terms of the gen-

eralized nonlinear susceptibility 	̃N
��m�� �� ,F� analogously to

Eqs. �27� and �28�,

d̃N�
��m�� = 	̃N

��m����,F�ez, �36�

AN
��m�� = 	̃N

��m����,F��e�* · ez� , �37�

so that the harmonic rate �33� reduces to

RN =
�N��3

8��c3

1

2l + 1

m

�	̃N
��m����,F��2. �38�

As discussed below Eq. �29�, in actual calculations of ���m�
in Eq. �25� it is sufficient to consider only the linearly polar-

ized two-color field F̃�t�= F̃�t�ez, where F̃�t�=F cos �t
+Fh cos �t.

The definitions �33� and �38� differ from the definition of
the cross section for spontaneous light scattering, or of the
spontaneous dipole emission rate, in that the latter two in-
volve averaging over the initial �m� and summing over the
final �m�� state magnetic quantum numbers, which in general
differ, m�=m ,m±1. Besides possible numerical differences
between the HHG rates �33� and �38� and those defined for
the case of a degenerate bound state �0�r� as the rates for
spontaneous dipole emission, RN

sp, the most important differ-
ence is in the polarization properties of harmonic �as well as
spontaneously emitted� photons. In particular, according to
Eqs. �33� and �38�, harmonics generated by a linearly polar-
ized light field have the same �linear� polarization �as for the
case of s states�, while the spontaneously emitted photons
may be elliptically polarized �for transitions with m�=m±1�.
�The definition RN

sp of the harmonic rates for a p state �0�r�
is assumed in Refs. �23,61�. Therefore, as discussed in these
references, generation of elliptically polarized harmonics by
atoms with nonzero angular momenta subjected to a linearly
polarized pump field may be observed only as a weak �inco-
herent� spontaneous emission of photons of frequency N�,
whose intensity is linear in N.�

VI. CONCLUDING REMARKS

The main result of this paper is the development of a
wave-function-independent theoretical formulation of the
HHG amplitude in terms of the complex quasienergy of a
system. Based on the Hellmann-Feynman theorem for
QQESs, in Sec. III we have formulated the HHG amplitude
in terms of the complex quasienergy of a bound electron in a
bichromatic �strong laser and weak harmonic� field. The am-
plitude for generation of the Nth harmonic can be defined in
terms of the generalized nonlinear susceptibility 	̃N�� ,F� of
an atomic system subjected to both a strong field F�t� of
frequency � and a probe �harmonic� field of frequency �
=N�. This susceptibility represents the generalization of the
well-known intensity-independent �lowest-order PT� suscep-
tibility 	N�N�� to the case of a strong, non-perturbative laser
field. Its expansion in F inside the range of convergence of
the PT series yields an infinite set of high-order nonlinear
susceptibilities 	N+2k�N��, which are common in traditional
�“perturbative”� nonlinear optics �cf. Sec. II A�. Our result
for the HHG amplitude in terms of 	̃N�� ,F� is equivalent to
its definition in terms of the dual dipole moment, thereby
giving additional justification for using dual QQES wave
functions for calculating the quantum, single-atom response
to a strong monochromatic perturbation that takes proper ac-
count of the accompanying ionization processes. As dis-
cussed in Sec. II, these results permit a clear and unambigu-
ous way to avoid the nonregularizable singularities that
appear in both weak-field �PT� and strong-field �non-
perturbative� regimes of laser-atom interactions when using
quantities that are only well-defined for a stable quantum
system �such as the expectation value of the dipole operator�
to describe the nonlinear phenomena that occur simulta-
neously with multiphoton above-threshold ionization. Also,
these fully quantum, exact results, which are valid for a wide
range of laser parameters F and �, allow one to establish
quantitatively the accuracy of common approximate �e.g.,
strong-field, low-frequency� results for the HHG amplitude.

In addition to the utility of our formulation for analyzing
formal aspects of HHG theory, another advantage of formu-
lating the HHG amplitude in terms of the complex quasien-
ergy is that one avoids the necessity of knowing the explicit
form of the QQES �as well as the initial bound state� wave
functions in practical calculations of HHG rates. Indeed, in
general, the complex quasienergy � can be obtained as the
eigenvalue of equations �7� or �8�. Its determination does not
require complete knowledge of the wave function ���r , t�
corresponding to this eigenvalue nor on the normalization of
this function. This fact allows for practical calculations of
HHG rates even for cases when the exact form of ���r , t�
over the entire space is unknown so that the straightforward

calculation of the matrix element for d̃�t� in Eq. �15� is im-
possible. This very situation occurs in the time-dependent
effective range �TDER� theory of strong laser processes �62�,
in which the QQES wave function ���r , t� of a weakly
bound electron is known only outside a short-range atomic
core. The complex quasienergy, however, may be obtained
independently of ���r , t�, as the eigenvalue of a one-
dimensional integro-differential equation for a periodic func-
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tion of time. The self-consistent, essentially analytical theory
of HHG within the TDER theory is developed in the next
paper �24� and is employed there to analyze quantitatively
harmonic generation by negative ions.
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APPENDIX: EXPLICIT FORM OF d̃„t… AND d„t…
FOR A ZRP MODEL

We present here explicit expressions for the dipole mo-
ment expectation value �3� and dual dipole moment �15� for
the case of a weakly bound electron in the s state of energy
E0 of a ZRP. This model allows an essentially exact analyti-
cal treatment of the QQES problem �33�. In this appendix we
use scaled units: energies are measured in units of �E0� and
field amplitudes F in units of F0=�2m�E0�3 / ��e���. The exact
ZRP QQES wave function and its dual function �see Eqs. �8�
and �14�� have the following form �34�:

���r,t� = − �4�

0

�

d� ei��G�V��r,t;0,t − ��f�t − �� ,

�A1�

�̃�
*�r,t� = �4�


−�

0

d�� e−i���G�V��0,t − ��;r,t�f��� − t� ,

�A2�

where � is the complex quasienergy; f�t�=
kfke
−2ik�t is a

periodic function that originates from the boundary condition
for ���r , t� at the origin �33�. The Fourier coefficients fk are
normalized so that Eq. �13� is satisfied �for an explicit form
of the normalization factor see, e.g., Appendix A in Ref.
�34��; G�V��r , t ,r� , t�� is the �retarded� Green function for a
free electron in a linearly polarized field F�t�=ezF cos �t,
which we express in Feynman’s form in terms of the classi-
cal action, S�r , t ,r� , t��,

G�V��r,t,r�,t�� = −
i��t − t��

�4�i�t − t���3/2eiScl�r,t,r�,t��, �A3�

where ��x� is the Heaviside function,

Scl�r,t,r�,t�� =
�r − r��2

4�t − t��
−

�r − r��
�2�t − t��

�F�t� − F�t���

+
r

�2

�

�t
F�t� −

r�

�2

�

�t�
F�t�� + Scl�t,t�� ,

�A4�

Scl�t,t�� � Scl�r = 0,t,r� = 0,t��

= −
up

�
���t − t���1 −

4 sin2���t − t��/2�
���t − t���2 �

− cos ��t + t���sin ��t − t��

−
4 sin2���t − t��/2�

��t − t��
�� . �A5�

It follows from Eqs. �A1� and �A2� and our use of the
Feynman form for G�V��r , t ;r� , t��, that the spatial integrals
in the matrix elements �3� and �15� have Gaussian integrands
and thus may be evaluated analytically. These spatial integra-
tions are easily performed using the following equation for

the case of d̃�t�:


 dr G�V��0,t − ��;r,t�rG�V��r,t;0,t − ��

=
2i

�2��� − ��
���F�t − ��� − F�t�� − ���F�t − �� − F�t���

�G�V��0,t − ��;0,t − �� , �A6�

which is valid for �t−���
 t
 �t−�� �cf. Eqs. �A1� and
�A2��; and Eq. �B4� in Ref. �20� �involving the “homoge-
neous” Volkov propagators G�E��rt ,r�t��� for d�t�. Thus, the
problem reduces to the evaluation of double temporal inte-
grals having similar integrands but different integration lim-
its �for d�t�, we use the “��=E0� approximation,” cf. Sec.
IV�,

d�t� =
2iez

��i



0

�

d�

0

�

d��
eiS�0,t−��;0,t−��

��� − ��5/2 f�t − ��f*�t − ���

�R�t;�,���eiE0��−���, �A7�

d̃�t� = −
2iez

��i



0

�

d�

−�

0

d��
eiS�0,t−��;0,t−��

��� − ��5/2 f�t − ��f��� − t�

�R�t;�,���ei���−���, �A8�

where

R�t;�,��� =
F

�2 ��� sin���/2�sin���t − �/2��

− � sin����/2�sin���t − ��/2��� . �A9�

For further integrations, we introduce new variables in
Eq. �A7� for d�t�,
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� = � + ��, � = �� − �, where − � � � � �, ��� � � � � ,

�A10�

and in Eq. �A8� for d̃�t�,

� = � + ��, � = � − ��, where 0 � � � �, − � � � � � ,

�A11�

which correspond to the rotation of the �� ,���-plane by 45°

�clockwise for d̃�t� and counterclockwise for d�t��. In the
new variables, the integration over � is carried out analyti-
cally, where for d�t�, the standard substitution, 
→
+ i0, is
used for regularization of singular integrals of the form
����

� �mei
�d�. As a result, the Fourier components of d�t� and

d̃�t� in Eqs. �3� and �15� may be expressed in terms of one-
dimensional integrals over ���� /2 �cf. Eq. �3.14� for dn�

in Ref. �20��,

dn� = 	n��,F�ez, 	n��,F� = 

k,k�

fk
*fk�	n;k,k�, �A12�

d̃n� = 	̃n��,F�ez, 	̃n��,F� = 

k,k�

fkfk�	̃n;k,k�, �A13�

where n �the harmonic number� is a positive odd integer,
n=1,3 , . . . ,

	n;k,k� = C0

−�

� d�

�3/2e−2i�E0/�+k+k���+i����

��r−���J−��� + ir+���J+���� , �A14�

	̃n;k,k� = C0

0

� d�

�3/2e2i��/�+k+k���−i����

��j−���J−��� − ij+���J+���� , �A15�

where J±��� is shorthand for the Bessel function, J±���
=Jk−k�+�n±1�/2�z����,

���� =
2up

�
�� −

sin2 �

�
� , �A16�

z��� =
2up

�
sin ��cos � −

sin �

�
� , �A17�

r±��� =
sin �

�
ein��� −

n

n ± 1
ei�n±1����, �A18�

j±��� = Im�r±���� =
sin � sin�n��

�
−

n sin��n ± 1���
n ± 1

,

�A19�

C0 =
2ik−k�+n/2

n2 � up

��3 , up =
F2

2�2 . �A20�

Simple inspection of the integral in Eq. �A14� shows that
the generalized nonlinear susceptibility 	n�� ,F� in Eq.
�A12� for Fourier-component dn� is generally divergent for
any n. For n=1, it is obvious owing to the divergence of
r−��� in Eq. �A18�, which appears as a result of the integra-
tion in d�t� over �. For n�1, the nonintegrable singularity at
small �, ��−3/2, appears in the terms 	n;k,k� with k�=k
+ �n±1� /2. Indeed, for small �, we have r±������2±n� / �1
−n��, z�����3, and J±����1 for k�=k+ �n±1� /2 �since
J0�z�����1�, so that the integrand in Eq. �A14� behaves as
�−3/2 at ���→0. In contrast, for the dual dipole moment
�A13�, the integral in Eq. �A15� is finite for any n, k, and k�,
since j±�����3 and the integrand has a smooth behavior
�e.g., ��3/2 for k�=k+ �n±1� /2� at ��0.

Mathematically, the divergence of d�t� stems from the
difference between the integration limits for �� in Eqs. �A7�
and �A8� and, as a consequence, between � and � in Eqs.
�A10� and �A11�. Physically, this difference originates from

the different asymptotic behaviors of ��
*�r , t� and �̃�

*�r , t� at
large distances: the latter behaves asymptotically as an out-
going wave, as does ���r , t�, so that the integrand in

��̃��t��d����t�	 contains oscillatory functions at �r�→� and

the spatial integral for d̃�t� is regularizable; ��
*�r , t� behaves

asymptotically, in contrast to ���r , t�, as an ingoing wave, so
that the oscillatory �at �r�→�� terms cancel in the integrand
of ����t��d����t�	 and the result for d�t� diverges. This result
is general and does not depend upon the specific forms of

���r , t� and �̃�
*�r , t� in Eqs. �A1� and �A2� for the ZRP

model.
For the ZRP model, the KA �in which, as discussed in

Sec. IV, d̃�t� relates to the S-matrix result and d�t� to the
dipole moment expectation value, dKA�t�� corresponds to ne-
glecting all coefficients fk except f0=�2, i.e., approximating

f�t�=�2 and �=E0 �33�. In this approximation, d̃n� in Eq.
�A13� is determined by 	̃n

KA�� ,F�= 	̃n;0,0, substituting �=E0

in the exponent in Eq. �A15�, while dn�
KA also becomes finite

�except for n=1� and the corresponding susceptibility,
	n

KA�� ,F�, is given by 	n;0,0 in Eq. �A14�. This unexpected
finiteness of dKA�t� is in some sense fortuitous and is a con-
sequence of the unique relation �B4� in Ref. �20� �which is
similar to Eq. �A6��, which occurs only for the free electron
�Volkov� propagator G�V��r , t ;r� , t�� and is not valid for the
Green function of a bound �atomic� electron in a laser field.
Finally, we note that our result for dn�

KA=	n
KA�� ,F�ez is

equivalent to that in Eq. �4.1� of Ref. �20� which was used
there in actual numerical calculations of HHG rates for a
ZRP model.
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