Reductions in Urinary Collection Frequency for Assessment of Reproductive Hormones Provide Physiologically Representative Exposure and Mean Concentrations when Compared with Daily Collection

Heather C.M. Allaway
The Pennsylvania State University, hca111@psu.edu

Nancy J. Williams
The Pennsylvania State University, niw1@psu.edu

Rebecca J. Mallinson
The Pennsylvania State University, mallinsonrj@gmail.com

Karsten Koehler
University of Nebraska - Lincoln, kkoehler3@unl.edu

Mary Jane De Souza
The Pennsylvania State University, mjd34@psu.edu

Follow this and additional works at:
http://digitalcommons.unl.edu/nutritionfacpub
Part of the [Human and Clinical Nutrition Commons](http://digitalcommons.unl.edu/nutritionfacpub), [Molecular, Genetic, and Biochemical Nutrition Commons](http://digitalcommons.unl.edu/nutritionfacpub), and the [Other Nutrition Commons](http://digitalcommons.unl.edu/nutritionfacpub)
Abstract

Objective — To determine if reducing the frequency of urinary sample collection from daily to 5, 3, or 2 days per week during a menstrual cycle or 28-day amenorrheic monitoring period provide accurate representations of the reproductive hormone metabolites estrone-1-glucuronide (E1G) and pregnanediol glucuronide (PdG) exposure and mean concentrations.

Methods — Exercising women presenting with eumenorrhea or exercise-associated menstrual disturbances collected daily urine samples for the assessment of E1G and PdG concentrations. After enzyme immunoassay analysis of the daily samples, E1G and PdG data were systematically removed from each menstrual cycle or amenorrheic monitoring period to mimic three reduced collection frequencies, representing 5, 3, and 2 days per week. Exposure and mean concentration were calculated for both hormones and all four urinary collection frequencies.

Results — E1G and PdG exposure and mean cycle concentrations derived from reduced collection frequencies were not different from daily collection (P>0.05), independent of whether menstrual cycles and monitoring periods were analyzed together or separately. Bland-Altman analysis indicated acceptable agreement between each reduced collection frequency and daily collection.

Conclusions — Compared with daily urinary collection, a reduced collection frequency of 5, 3, or 2 days each week provides accurate E1G and PdG profiles of collection periods of various lengths and types of menstrual function. Reduction of urinary sample collection frequency may enable researchers to reduce participant burden and costs, increase compliance, and study a wider range of study populations.
Unsupervised participants can easily collect urine samples, thus facilitating monitoring of ovarian function over extended time periods (Hall Moran et al., 2001). However, it has been noted that daily urine sample collection presents a substantial participant burden (Mumford et al., 2011). The substantial cost of time and participant burden can contribute to increased non-compliance and higher dropout rates (Mumford et al., 2011). Compliance with daily urinary sample collection is typically high in short-term studies (1–3 months). The potential for reduced compliance increases over time (Mumford et al., 2011); however, specific data on participant compliance to urinary collection is scant in publications. For studies lasting between 1 and 3 months, compliance to daily urinary sample collection is in the range of 92 to 97% (Kesner et al., 1992; Windham et al., 2002; Wright et al., 1992). For example, Kesner et al. (1992) reported that during a time period of two complete menstrual cycles, 97% of all scheduled samples were collected. In the Women’s Reproductive Health Study, 93% of all daily urine samples were collected over the course of two consecutive menstrual cycles (Wall et al., 1998).

In studies lasting between 5 and 12 months, compliance to urinary sample collection is more variable and somewhat lower, ranging between 50 and 100% (Kravitz et al., 2005; Liu et al., 2004; Santoro et al., 1996). For example, retrospective analysis of the Study of Women Across the Nation Daily Hormone substudy, only 680 of 848 eligible participants had collected 80% of the required samples (Kravitz et al., 2005). In the Semi-Conductor Health Study, where participants were asked to collect urine samples daily for five cycles, only 57% of all cycles had fewer than 3 days of missing data in any 5-day rolling window (Liu et al., 2004). In our laboratory, the participants who completed 4 or more months of a 12-month study collected an average of 90% of the requested samples; however, individual compliance ranged from 61 to 100% (unpublished data).

The design of any experiment needs to balance data quantity and quality while reducing participant burden and project cost and increasing compliance. To our knowledge, the only attempt to validate a reduced sampling frequency for use with urine specimens was conducted by O’Connor et al. (2006), who evaluated the specificity and sensitivity of reduced collection frequencies to determine the presence of ovulation with progesterone glucuronide based algorithms. The every other day reduced collection frequency accurately and precisely detected day of ovulation (O’Connor et al., 2006). Thus, a reduced collection frequency could be useful in conducting research in populations who may be hesitant to participate in research projects that involve daily urine sampling, such as children or adolescents, and may aid in collection of urinary samples in locations with limited cooling and storage capacity. In large-scale and long-term research studies, reduced collection frequencies would not only reduce project cost and participant burden but would also enable researchers to recruit from a larger demographic area due to the reduced need for storage.

To reduce the burden of collecting daily urinary hormone specimens and reduce project costs, our goal was to evaluate if a reduction in the number of collection days from 7 days per week (i.e., daily sample collection) to 5 (i.e., weekday sample collection), 3 (i.e., Monday/Wednesday/ Friday), or 2 (i.e., Monday/Thursday) days per week would provide an accurate representation of estrone-1-glucuronide (E1G) and pregnanediol glucuronide (PdG) exposure and mean concentration during an entire menstrual cycle/monitoring period. We chose to evaluate the impact of reduced collection frequencies on E1G and PdG exposure and mean concentrations because both measures are important predictors of bone health (Mallinson et al., 2013a; Scheid et al., 2011), cardiovascular health (O’Donnell et al., 2007; Rickenlund et al., 2005; Zeni Hoch et al., 2003), and ovarian (Parazzini et al., 1989) and breast cancer risk (Iversen et al., 2011; Kossman et al., 2011; Parazzini et al., 1993; Terry et al., 2005; Whelan et al., 1994). We also sought to evaluate if the validity of the reduced sample collection frequencies would be affected by cycle type (eumenorrheic or amenorrheic) or by variability of cycle lengths (20–45 days range or 26–36 days range). As such, the purpose of this analysis was to explore the average and individual agreement of daily urine sample collection versus sample collection for 5 days, 3 days, or 2 days per week for the following variables: E1G exposure (area under the curve; AUC), E1G mean concentration, PdG exposure, and PdG mean concentration. We hypothesized that E1G and PdG cycle AUC and mean concentration would be similar when samples were collected daily versus 5 days, 3 days, or 2 days per week for a 28-day monitoring period or a menstrual cycle with an intermenstrual interval ranging from 20 to 45 days.

Materials and Methods

Experimental design

This study utilizes menstrual cycle data from subjects participating in a study conducted at two sites, University of Toronto (UT) and the Pennsylvania State University (PSU) over 8 years. Subjects included women with severe exercise-associated menstrual disturbances (EAMD), including oligomenorrhea (long and inconsistent menstrual cycle lengths of 36–90 days) and functional hypothalamic amenorrhea (the absence of menses for >90 days). The study also included a eumenorrheic exercising group (EU) that served as a control group. Concentrations of reproductive hormone metabolites were assessed in daily urinary sample collections. The study was approved by the Research Ethics Board at the UT and the Institutional Review Board at the PSU. All participants signed an approved informed consent document.

Participants

Women reporting regular menstrual cycles of 26 to 35 days for the previous 6 months before the study were recruited for the EU group, while women reporting no menses in the previous 3 months, or less than six cycles in the previous 12 months were recruited for the EAMD group. Eligibility criteria for the study included, (1) age 18 to 35 years; (2) weight stability (±2 kg) for at least 3 months; (3) body mass index (BMI) 16 to 25 kg/m²; (4) good health as determined by medical exam and no history of any serious medical conditions; (5) no chronic illness, including hyperprolactinemia and thyroid disease; (6) not currently dieting; (7) no current clinical diagnosis of an eating disorder or psychiatric disorder; (8) non-smoking, (9) not taking any form of hormonal therapy for at least 6 months; (10) currently participating
in ≥2 h/week of purposeful exercise; (11) no history of a clinical diagnosis of polycystic ovarian syndrome (PCOS); (12) not pregnant, lactating, or planning a pregnancy; (13) no medication use that would alter metabolic or reproductive hormone concentrations; and (14) no other contraindications that would preclude participation in the study.

Participant grouping categories

Classification of participant menstrual status (eumenorrheic, oligomenorrheic, or amenorrheic) was based on self-reported menstrual histories and menstrual calendars. Menstrual status was confirmed by urinary concentrations of the reproductive hormone metabolites, E1G, PdG, and luteinizing hormone (LH).

Demographic assessment

Height (to the nearest 1.0 cm) and weight (to the nearest 0.1 kg) were measured and participants completed questionnaires to assess medical history, exercise and menstrual history, eating behaviors and psychological health. A physical exam and blood sample were performed to determine overall health.

Urinary collection procedures

Participants in the EAMD group collected daily urinary samples for a 28-day monitoring period and EU participants collected daily specimens for an entire menstrual cycle. The EAMD group initiated urinary collection on an arbitrary day in the study, while the EU group initiated urinary collection on day 1 or 2 of the menstrual cycle subsequent to demographic assessment. All participants utilized calendars to record menses and time of urine collection. All urine specimens were labeled with calendar date, cycle/monitoring period number, and cycle/monitoring period day. Participants stored urine specimens in their household freezers between drop offs at the laboratory. Frozen ice packs and insulated lunch packs were used to keep samples cold during transport to the laboratory. In the laboratory urine samples were stored in a –20°C freezer until analyzed.

Urinary measurement of E1G and PdG

Microtiter plate competitive enzyme immunoassays (EIA) were used to measure E1G and PdG, as previously described (De Souza et al., 2010). The secretion of these estrogen and progesterone metabolites in the urine parallels serum concentrations of the parent hormones (Munro et al., 1991; O’Connor et al., 2003). Urinary concentrations of E1G and PdG were corrected for specific gravity, determined using a hand refractometer (NSG Precision Cells, Inc., Farmingdale, NY), to account for hydration status (Boeniger et al., 1993; Haddow et al., 1994; Miller et al., 2004).

Selection of eligible cycles

A flow chart is presented (Fig. 1) to describe the design of the study and the contribution of participants and cycles from each study site. A total of 116 participants and 572 cycles/monitoring periods were evaluated for eligibility for this analysis. There were 63 amenorrheic participants with 267 28-day monitoring periods and 79 eumenorrheic participants with 305 menstrual cycles within the range of 20 to 45 days. Menstrual cycle length was defined as the number of days from day 1 of menses to the day before the

![Image](image-url)

Figure 1. Number of participants and menstrual cycles/monitoring periods which contributed to and were excluded from the current analysis. Data from participants recruited at two study sites, University of Toronto (UT) and the Pennsylvania State University (PSU), were included. Initially there were 572 menstrual cycles/28-day monitoring periods from 116 participants evaluated for complete sample collection. Three hundred eighty-two menstrual cycles/monitoring periods from 61 participants were excluded from the analysis due to missing collection days. Included in the analysis were 190 menstrual cycles/monitoring periods from 55 participants, which included 90 menstrual cycles/monitoring periods from 27 participants enrolled at the UT site and 100 menstrual cycles/monitoring periods from 28 participants enrolled at the PSU site. (contained no missing samples) that were collected during the 12-month study were used in this analysis. In addition, 41 menstrual cycles with no more than 3 missing days in the first 6 days of the cycle were also used. In these cases, concentrations of E1G and PdG for the missing days were estimated by averaging the concentrations from the day before and after the missing day. If the missing day was the first day of the cycle, days 2 to 4 of the cycle were averaged to estimate the concentration for the missing day. Menstrual cycles included in the complete sample analysis were a combination of ovulatory (n = 23), luteal phase defect (LPD; n = 43), and anovulatory (n = 54) cycle classifications. Classifications of menstrual cycles were completed from the original daily specimens and conducted to ensure inclusion of all types of menstrual cycles in the analysis. Specific hormonal criteria for classification of ovulatory, LPD, and anovulatory cycles has been described previously (De Souza et al., 2010). Sixty-one participants and their 382 menstrual cycles/monitoring periods were excluded from the analysis (Fig. 1). Monitoring periods (used for amenorrheic women) were excluded if there were any missing samples. Menstrual cycles (used for eumenorrheic and oligomenorrheic women) were excluded if there were more than 3 missing days in the first 6 collection days or any missing days beyond the first 6 days. Menstrual cycles were also excluded if the cycle length was outside the 20- to 45-day range included in this analysis. The UT site contributed 27 participants and 90 menstrual cycles/monitoring periods to this analysis while the PSU site contributed 28 participants and 100 menstrual cycles/monitoring periods to this analysis (Fig. 1).
The daily samples per menstrual cycle/monitoring period (n = 190) collected by the participants were referenced to day of the menstrual cycle/monitoring period and collection calendar date. To determine if fewer days of urine collection would provide accurate and precise data for E1G and PdG exposure and mean concentration during the menstrual cycle/monitoring period, E1G and PdG data were systematically removed from each menstrual cycle or 28-day monitoring period to mimic a reduced frequency of sample collection for participants with 100% compliance to daily collection. The reduced sample collection frequencies were selected to reduce participant burden and represented three different collection frequencies as follows: 5 days of urine collection each week, 3 days of urine collection each week, and 2 days of urine collection each week. Specifically, for the simulation of collecting five urinary samples per week, E1G and PdG data for Saturday and Sunday each week of the menstrual cycle/monitoring period were systematically removed, leaving only the E1G and PdG concentrations from the weekdays for analysis. For the simulation of collecting three urinary samples per week, E1G and PdG data were systematically removed for Tuesday, Thursday, Saturday, and Sunday each week of the menstrual cycle/monitoring period leaving E1G and PdG concentrations for Monday, Wednesday, and Friday for the analysis. For simulation of collecting two urinary samples per week, E1G and PdG data were systematically removed for Tuesday, Wednesday, Friday, Saturday, and Sunday each week of the menstrual cycle/monitoring period leaving only E1G and PdG concentrations for Monday and Thursday for analysis.

Urinary hormone assessment calculations

E1G and PdG exposures across the menstrual cycle or monitoring period were determined by calculating the AUC for daily, 5 days, 3 days, and 2 days per week collection frequencies using Kaleidagraph Software (Synergy Software, Reading, PA). Mean E1G and PdG concentrations across the cycle or monitoring period for all collection frequencies were also calculated.

Statistical analyses

The data presented were obtained at two different locations, the UT and PSU, over 8 years. E1G and PdG data were analyzed as a merged group of eumenorrheic cycles of 20 to 45 days in length and 28-day amenorrheic monitoring periods (complete sample analysis; n = 190). Subanalyses of eumenorrheic cycles of 26 to 36 days in length (which is the most common range of intermenstrual intervals among regularly menstruating women; n = 94) alone and 28-day amenorrheic monitoring periods (n = 70) alone. Data screening was conducted before statistical analysis in order to identify whether the data met the assumptions required by the specific statistical techniques in this analysis. Data screening involved examination of variable distributions within each of the three analysis groupings for all four collection frequencies (daily, 5 days, 3 days, and 2 days) and all four hormone variables (E1G AUC, PdG AUC, E1G mean, and PdG mean). All hormonal variables were found to be not normally distributed. However, logarithmic transformation did not improve normality of these variables. In addition, logarithmic transformation was not considered as a practical approach for Bland-Altman analysis, as the limits of agreement (LOA) are expressed as multiples of the measured concentration following logarithmic transformation (Euser et al., 2008). All data are presented as means±SD, unless otherwise indicated. Linear mixed model ANOVA was used to compare all ovarian steroid (E1G AUC, E1G mean, PdG AUC, or PdG mean) data between daily urinary collection and each reduced urinary collection frequency for the complete samples analysis and the eumenorrheic and amenorrheic sub-analyses. Since the same individual provided multiple cycles and/or monitoring periods these data were considered to be of nested nature; therefore, the participant identifier was included as a random effect in the linear model. A significance level of α = 0.05 was used to detect differences, and for multiple comparisons, a was adjusted using Bonferroni correction. Bland Altman analysis was performed to determine the 95% LOA and to identify potential mean and proportional bias for both AUC and mean concentration (Bland and Altman, 1995). Errors were calculated as the difference between daily urinary collection data and each reduced urinary collection data since daily urinary sample collection was regarded as the criterion method. For convenience, mean error and lower and upper LOA are also reported as percent of the average of daily and each reduced urinary collection values. All analyses were conducted using R statistical software (Revolution Analytics, Palo Alto, CA).

Results

Complete sample analysis

In total, there were 55 participants and 190 menstrual cycles (20–45 days in length) and 28-day monitoring periods with complete data. There were 120 menstrual cycles and 70 28-day amenorrheic monitoring periods. The participants were aged 22.6±64.3 years, weighed 57.0±6.6 kg, were 164.3±6.6 cm tall, and had a BMI of 21.1±2.0 kg/m². The average age at menarche was 13.2±1.6 years and the mean gynecologic age was 9.5±4.6 years.

Mixed model analysis

Composite graphs of the average E1G and PdG concentrations, respectively, across the entire cycle/monitoring period for daily, 5-day, 3-day, and 2-day collection frequencies are shown in Figure 2A, B. The average AUC and cycle mean concentration for each urinary collection frequency are displayed in inset bar graphs within the composite graphs and in Table 1. There were no significant differences detected between daily collection and each reduced collection frequency (P > 0.99) with regard to E1G mean concentration; however, E1G AUC for 2 days per week collection was significantly lower when compared with E1G AUC for daily collection (P < 0.046). There were no significant differences detected between daily collection and each reduced collection frequency (5 days, 3 days, or 2 days per week) with regard to PdG AUC (P > 0.050) or mean concentration (P > 0.99).

Bland Altman analysis

On average, the reduced urine collection frequencies for the complete sample analysis underestimate the daily E1G AUC by 1.4% for the 5-day collection frequency, 3.2% for the 3-day collection frequency, and by 8.2% for the 2-day
collection frequency. The 5-day collection frequency demonstrated the lowest degree of underestimation and 2-day collection frequency demonstrated the greatest degree of underestimation when compared with daily sample collection. The E1G AUC for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the inclusion of zero in the 95% LOA for the Bland Altman analyses. The best agreement was observed with the 5-day collection frequency, indicated by the smallest range for the 95% LOA (see Fig. 3A–C). A proportional bias was observed in all reduced collection frequencies (P < 0.010) indicating larger AUC values are, on average, underestimated more than smaller AUC values in all reduced collection frequencies compared with daily urine collection (see Table 2).

On average, reduced sample collection underestimated the daily PdG AUC by 0.6% for the 5-day collection frequency, 2.9% for the 3-day collection frequency, and by 10.8% for the 2-day collection frequency (see Fig. 3D–F and Table 3). The 5-day collection frequency demonstrated the lowest degree of underestimation of daily sampling, while the 2-day collection frequency demonstrated the greatest degree of underestimation. The PdG AUC for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. The best agreement was observed with 5-day
collection frequency, indicated by the smallest range for the 95% LOA. A proportional bias was not observed in the 5-day and 3-day collection frequencies \((P = 0.10)\), while a proportional bias was observed in the 2-day collection frequency \((P < 0.000)\) indicating larger AUC values are, on average, underestimated more than smaller AUC values in the 2-day collection frequency compared with daily urine collection (see Table 3).

Table 1. Reproductive steroid hormone metabolite parameters for the all cycles, eumenorrheic cycles only, and amenorrheic monitoring periods only analyses for all collection frequencies

<table>
<thead>
<tr>
<th></th>
<th>All cycles and monitoring periods ((n = 190))</th>
<th>Eumenorrheic cycles ((n = 94))</th>
<th>Amenorrheic periods ((n = 70))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daily</td>
<td>5-d/wk</td>
<td>3-d/wk</td>
</tr>
<tr>
<td>E1G cycle mean AUC (ng × day/mL)</td>
<td>856.0±36.3</td>
<td>844.0±35.3</td>
<td>829.0±35.1</td>
</tr>
<tr>
<td>E1G cycle mean concentration (ng/mL)</td>
<td>29.5±1.2</td>
<td>29.6±1.2</td>
<td>29.7±1.2</td>
</tr>
<tr>
<td>PdG cycle mean AUC (mg × day/mL)</td>
<td>50.0±2.7</td>
<td>49.6±2.8</td>
<td>48.5±2.7</td>
</tr>
<tr>
<td>PdG cycle mean concentration (mg/mL)</td>
<td>1.7±0.1</td>
<td>1.8±0.1</td>
<td>1.8±0.1</td>
</tr>
</tbody>
</table>

Reproductive steroid metabolite parameters include estrone-1-glucuonoide (E1G) and pregnanediol glucuronide (PdG) area under the curve (AUC) and mean concentration. d/wk, days per week.

a. Significant differences \((P<0.05)\) between the reduced collection frequency and daily collection frequency.

b. A trend for a difference \((P<0.1)\) between the reduced collection frequency and daily collection frequency.

Figure 3. Bland Altman plots for all cycles 20 to 45 days in length and 28-day monitoring periods. The difference between daily and reduced collection frequencies are plotted against the mean of the daily and reduced collection frequency in the 190 paired measurements from the all cycles/monitoring periods analysis. The comparison of daily and 5 days/week collection frequency is in column 1, daily and 3 days/week collection frequency is in column 2, and daily and 2 days/week collection frequency is in column 3. Differences between daily and the reduced collection frequencies for E1G AUC (A-C) and PdG AUC (D-F) are demonstrated.
On average, daily E1G mean concentration was overestimated by 0.5% for the 5-day collection frequency, 0.8% for the 3-day collection frequency, and by 0.4% for the 2-day collection frequency (see Fig. 4A–C and Table 4). The 2-day collection frequency demonstrated the lowest degree of overestimation of daily sampling, while the 3-day collection frequency demonstrated the greatest degree of overestimation. The E1G cycle mean concentration for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. The best agreement was observed with the 5-day collection frequency, indicated by the smallest range for the 95% LOA. A proportional bias was not observed in the 5-day and 3-day collection frequencies (P > 0.60), while a proportional bias was observed in the 2-day collection frequency (P = 0.040) indicating greater cycle mean concentrations are, on average, overestimated more than smaller mean cycle concentrations in 2-day collection frequency compared with daily collection (see Table 4).

Daily PdG mean concentration was overestimated by 2.2% for the 5-day collection frequency and 2.1% for the 3-day collection frequency, while the 2-day collection frequency underestimated the daily PdG mean concentration by 0.2% (see Fig. 4D–F and Table 5). The 5-day collection frequency demonstrated the greatest degree of overestimation of daily sample collection, while the 2-day collection frequency demonstrated underestimation of daily sample collection. The PdG cycle mean concentration for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. The best agreement was observed with the 5-day collection frequency, indicated by the smallest range for the 95% LOA. A proportional bias was observed in the 5-day and 3-day collection frequencies (P < 0.010) indicating greater cycle mean concentrations are, on average, overestimated compared with daily urine collection, while a trend toward a proportional bias was observed in the 2-day collection frequency (P = 0.060; see Table 5).

Subanalysis of eumenorrheic cycles

A subanalysis of eumenorrheic menstrual cycles of 26 to 36 days in length included 31 participants and 94 menstrual cycles with complete data. This subanalysis included anovulatory (n = 14), LPD (n = 31), and ovulatory (n = 49) menstrual cycles, which were classified using daily collection frequency hormonal measurements. The participants were

Table 2. Bland-Altman analysis for all menstrual cycle/monitoring period analyses of E1G AUC

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean difference (ng x day/mL)</th>
<th>Lower limit of agreement (ng x day/mL)</th>
<th>Upper limit of agreement (ng x day/mL)</th>
<th>Proportional bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cycles and monitoring periods (n = 190)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>12.0</td>
<td>-133.8</td>
<td>157.9</td>
<td>0.0132</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>27.2</td>
<td>-141.8</td>
<td>196.2</td>
<td>0.0140</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>67.0</td>
<td>-136.8</td>
<td>270.8</td>
<td>0.0001</td>
</tr>
<tr>
<td>Eumenorrheic cycles (n = 94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>10.0</td>
<td>-106.1</td>
<td>126.1</td>
<td>0.6988</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>22.7</td>
<td>-112.1</td>
<td>167.5</td>
<td>0.9908</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>65.0</td>
<td>-123.4</td>
<td>257.3</td>
<td>0.1528</td>
</tr>
<tr>
<td>Amenorrheic periods (n = 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>6.6</td>
<td>-65.9</td>
<td>79.1</td>
<td>0.4515</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>23.7</td>
<td>-60.4</td>
<td>107.8</td>
<td>0.0405</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>50.6</td>
<td>-84.1</td>
<td>185.2</td>
<td>0.8165</td>
</tr>
</tbody>
</table>

E1G, estrone-1-glucuronide; AUC, area under the curve; d/wk, days per week.

Table 3. Bland-Altman analysis for all menstrual cycle/monitoring period analyses of PdG AUC

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean difference (mg x day/mL)</th>
<th>Lower limit of agreement (mg x day/mL)</th>
<th>Upper limit of agreement (mg x day/mL)</th>
<th>Proportional bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cycles and monitoring periods (n = 190)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.3</td>
<td>-8.8</td>
<td>9.5</td>
<td>0.1819</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>1.4</td>
<td>-12.7</td>
<td>15.6</td>
<td>0.4675</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>5.1</td>
<td>-12.4</td>
<td>22.7</td>
<td>0.0000</td>
</tr>
<tr>
<td>Eumenorrheic cycles (n = 94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.1</td>
<td>-12.1</td>
<td>12.2</td>
<td>0.5247</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>1.4</td>
<td>-17.8</td>
<td>20.5</td>
<td>0.3789</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>6.2</td>
<td>-15.8</td>
<td>28.3</td>
<td>0.0541</td>
</tr>
<tr>
<td>Amenorrheic periods (n = 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.4</td>
<td>-3.5</td>
<td>4.3</td>
<td>0.1814</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>1.4</td>
<td>-3.7</td>
<td>6.5</td>
<td>0.0016</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>2.8</td>
<td>-4.4</td>
<td>10.1</td>
<td>0.0314</td>
</tr>
</tbody>
</table>

PdG, pregnanediol glucuronide; AUC, area under the curve; d/wk, days per week.
aged 24±4.5 years, weighed 57.1±6.0 kg, were 164.5±6.5 cm tall, and had a BMI of 21.1±1.7 kg/m². The average age at menarche was 12.5±.3 years and the mean gynecologic age was 11.5±4.3 years.

Mixed model analysis

Composite graphs of the average E1G and PdG concentrations, respectively, across the entire cycle for daily, 5-day, 3-day, and 2-day collection frequencies are shown in Figure 5A,B. The classic characteristics of ovulatory cycles, i.e. the mid-cycle E1G peak and luteal phase PdG peak, are evident. The average AUC and cycle mean concentration for each urinary collection frequency are displayed in inset bar graphs within the composite graphs and in Table 1. There were no significant differences detected between daily collection and each reduced collection frequency (5 days, 3 days, or 2 days per week) with regard to E1G AUC (P > 0.46) or mean concentration (P > 0.99). There were no significant differences detected between daily collection and each reduced collection frequency (5 days, 3 days, or 2 days per week) with regard to PdG AUC (P > 0.27) or mean concentration (P > 0.99).

Figure 4. Bland Altman plots for all cycles 20 to 45 days in length and 28-day monitoring periods. The difference between daily and reduced collection frequencies are plotted against the mean of the daily and reduced collection frequency in the 190 paired measurements from the all cycles/monitoring periods analysis. The comparison of daily and 5 days/week collection frequency is in column 1, daily and 3 days/week collection frequency is in column 2, and daily and 2 days/week collection frequency is in column 3. Differences between daily and the reduced collection frequencies for E1G mean (A–C) and PdG mean (D–F) are demonstrated.

Table 4. Bland-Altman analysis for all menstrual cycle/monitoring period analyses of E1G mean

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean difference (ng/mL)</th>
<th>Lower limit of agreement (ng/mL)</th>
<th>Upper limit of agreement (ng/mL)</th>
<th>Proportional bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cycles and monitoring periods (n = 190)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-3.8</td>
<td>-13.0</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>-0.2</td>
<td>-0.8</td>
<td>-5.2</td>
<td>-17.7</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>-0.1</td>
<td>-0.4</td>
<td>-6.7</td>
<td>-22.6</td>
</tr>
<tr>
<td>Eumenorrheic cycles (n = 94)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>-0.3</td>
<td>-0.8</td>
<td>-3.8</td>
<td>-10.6</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>-0.5</td>
<td>-1.4</td>
<td>-5.3</td>
<td>-14.7</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>-0.5</td>
<td>-1.5</td>
<td>-7.1</td>
<td>-19.7</td>
</tr>
<tr>
<td>Amenorrheic periods (n = 70)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.0</td>
<td>0.0</td>
<td>-1.8</td>
<td>-9.1</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>0.0</td>
<td>-0.2</td>
<td>-2.9</td>
<td>-14.3</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>0.0</td>
<td>-0.2</td>
<td>-5.7</td>
<td>-28.7</td>
</tr>
</tbody>
</table>

E1G, estrone-1-glucuronide; d/wk, days per week.
Bland Altman analysis

The reduced collection frequencies for eumenorrheic cycles of 26 to 36 days in length, on average, underestimated the daily E1G AUC as shown in Table 2. The E1G AUC for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. The best agreement is observed with 5-day collection, indicated by the tighter range for the 95% LOA. A proportional bias was not observed in any of the reduced collection frequencies (P > 0.20), as shown in Table 2. As shown in Table 3, the reduced collection frequencies for eumenorrheic cycles alone, on average, underestimated the daily PdG AUC. The smallest range for the 95% LOA was observed in the 5-day collection frequency indicating the best agreement with daily sample collection. A proportional bias was not observed in any of the reduced collection frequencies (P > 0.050), as shown in Table 3.

Reduction of the collection frequency for eumenorrheic cycles of 26 to 36 days in length, on average, overestimated the E1G mean concentration as shown in Table 4. The 5-day collection frequency demonstrated the lowest degree of overestimation of E1G cycle mean concentration, while the 2-day collection frequency demonstrated the greatest degree of overestimation. A proportional bias was not observed in the 5-day and 3-day collection frequencies (P > 0.10); however, a proportional bias was observed in the 2-day collection frequency (P = 0.007), as shown in Table 4. On average, the daily PdG cycle mean concentration was overestimated by the reduced collection frequencies for eumenorrheic cycles of 26 to 36 days in length, as shown in Table 5. The best agreement was observed with 5-day collection frequency, indicated by the smaller range for the 95% LOA. A proportional bias was not observed in the 3-day collection frequency (P = 0.20); however, a proportional bias was observed in the 5-day and 2-day collection frequencies (P < 0.030), as shown in Table 5.

Subanalysis of amenorrheic monitoring periods

In a subanalysis of amenorrheic monitoring periods of 28 days there were 19 participants and 70 monitoring periods with complete data. The participants were aged 21.2±3.5 years. The average age at menarche was 14.1±1.4 years and the mean gynecologic age was 7±3.9 years.

Mixed model analysis

Composite graphs of the average E1G and PdG concentrations, respectively, across the entire monitoring period for daily, 5-day, 3-day, and 2-day collection frequencies are shown in Figure 6A,B. The chronic suppression of E1G and PdG that is characteristic of reproductive hormone concentrations among amenorrheic women is clearly evident. Within the inset bar graphs and Table 1, the average AUC and cycle mean concentrations are displayed for each frequency of urinary collection. There were no significant differences detected between daily collection and each reduced collection frequency (5 days, 3 days, or 2 days per week) with regard to E1G AUC (P > 0.12) or mean concentration (P > 0.99). There were no significant differences detected between daily collection and each reduced collection frequency (5 days, 3 days, or 2 days per week) with regard to PdG AUC (P > 0.080) or mean concentration (P > 0.99).

Bland Altman analysis

In amenorrheic 28-day monitoring periods daily sample collection E1G AUC was, on average, underestimated by the reduced collection frequencies (see Table 2). The E1G AUC for all reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. The best agreement was observed with the 5-day sample collection frequency, indicated by the smaller range for the 95% LOA. A proportional bias was not observed in the 5-day and 2-day collection frequencies (P > 0.20), but a proportional bias was observed in the 3-day collection frequency (P = 0.04; see Table 2). Daily PdG AUC was, on average, underestimated by the reduced collection frequencies for 28-day monitoring periods (see Table 3). The smallest range for the 95% LOA was observed in the 5-day collection frequency, indicating the best agreement with daily sample collection. A proportional bias was not observed in the 5-day collection frequency (P > 0.20); however, a proportional bias was observed in the 3-day and 2-day collection frequencies (P < 0.030; see Table 3).

Table 5. Bland-Altman analysis for all menstrual cycle/monitoring period analyses of PdG mean

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean difference (ng/mL)</th>
<th>Lower limit of agreement (ng/mL)</th>
<th>Proportional bias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>All cycles and monitoring periods (n = 190)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.0</td>
<td>-2.2</td>
<td>0.0000</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>0.0</td>
<td>-2.1</td>
<td>0.0115</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>0.0</td>
<td>0.2</td>
<td>0.0635</td>
</tr>
<tr>
<td>Eumenorrheic cycles (n = 94)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>-0.1</td>
<td>-2.9</td>
<td>0.0004</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>-0.1</td>
<td>-3.1</td>
<td>0.2167</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>0.0</td>
<td>-1.3</td>
<td>0.0296</td>
</tr>
<tr>
<td>Amenorrheic periods (n = 70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily vs. 5-d/wk</td>
<td>0.0</td>
<td>-0.6</td>
<td>0.2336</td>
</tr>
<tr>
<td>Daily vs. 3-d/wk</td>
<td>0.0</td>
<td>0.7</td>
<td>0.3317</td>
</tr>
<tr>
<td>Daily vs. 2-d/wk</td>
<td>0.0</td>
<td>1.6</td>
<td>0.4256</td>
</tr>
</tbody>
</table>

PdG, pregnanediol glucuronide; d/wk, days per week.
The 5-day collection frequency for 28-day monitoring periods, on average, estimated the daily E1G cycle mean concentration, while 3-day and 2-day collection frequencies overestimated E1G cycle mean concentration (see Table 4). The calculated E1G cycle mean concentration for all 28-day monitoring periods and reduced collection frequencies demonstrate good agreement with daily urine collection as indicated by the 95% LOA including zero. A proportional bias was not observed in the 5-day and 3-day collection frequencies (P > 0.50); whereas, a proportional bias was observed in the 2-day collection frequency (P < 0.007; see Table 4). The 3-day and 2-day collection frequencies for 28-day monitoring periods underestimate the daily PdG cycle mean concentration, on average, while the 5-day collection frequency overestimated the PdG mean cycle concentration (see Table 5). The best agreement is observed with 5-day collection frequency, indicated by the smaller range for the 95% LOA. A proportional bias was not observed in any of the reduced collection frequencies (P > 0.20; see Table 5).

Discussion

The present study was designed to assess the level of agreement between reduced urinary collection frequencies (5 days, 3 days, or 2 days per week) and the urinary gold standard of daily specimen collection in a sample of exercising eumenorrheic and amenorrheic women and in specific subpopulations of eumenorrheic and amenorrheic exercising women. This report is the first to provide detailed information on the accuracy and precision of quantifying...
reproductive hormone exposure using a reduced sampling schedule. This report supports and builds upon the work of O’Connor et al. (2006), which tested the presence and day of ovulation during reduced urinary collection frequencies. All comparisons between daily collection and each of the reduced collection frequencies (5 days, 3 days, or 2 days per week) for the average AUC and mean concentration for both E1G and PdG were not different when eumenorrheic cycles and amenorrheic monitoring periods were analyzed together and when analyzed separately; however, a difference was observed between daily collection and 2 days per week collection frequency with regard to the average E1G AUC in the complete cycle analysis. In general the 5-day collection frequency demonstrated the best agreement with daily sample collection in all three analyses. The 3-day and 2-day collection frequencies also showed good agreement with daily sample collection in all three analyses of exercising women. The LOA for individual AUC and mean concentrations, however, appeared to increase with reduced sample collection frequencies. Depending on the required level of accuracy and precision, researchers may choose to use varying sampling frequencies. The present analysis is the first to quantify mean error as well as individual agreement for urinary reproductive hormones.

The Bland Altman analysis was used to compare the daily and reduced collection frequencies (Bland and Altman,
Reduced collection frequency of less than 5 days per week was associated with an increased range for the LOA due to the potential of missing peak hormonal concentrations, which may also compromise the use of reduced collection frequencies in studies evaluating individual subjects and clinical outcomes, such as day of ovulation.

The shape and timing of the peaks of E1G and PdG greatly affect the determination of exposure and cycle mean concentration. For example, the E1G peak is generally narrow and rises quickly to a peak, while the PdG peak is a broad curve. Hence, the narrow peak for E1G is more likely to be missed by a reduced sample collection frequency compared with the peak of a broad curve, like PdG. Differences in capture of the E1G and PdG peaks are shown in the composite graphs (Figs. 2, 5, and 6). Figure 5 shows that the broad PdG peak was not influenced by the reduced collection frequencies; however, the shape of the E1G peak is varied, though not visually different, between the reduced collection frequencies and daily collection hormone profile. Within a group analysis a proportion of the narrow peaks would be captured with the reduced collection frequencies, thus the increased LOA; however, when analyzing a cycle from an individual participant it is highly likely the E1G peak concentration would have occurred on a non-sample collection day. When evaluating individual cycles for a case report, as seen with Mallinson et al. (2013), a reduction in the collection frequency as low as 2 days per week would not influence the characterization of the cycle via hormonal exposure in a participant who has had amenorrhea for a long period of time. In a participant who had amenorrhea for a short period of time a reduction in sample collection to 2 days a week would underestimate the exposure of the participant to reproductive hormones due to higher variations in monitoring period peaks of E1G and PdG across a year (Mallinson et al., 2013b).

Urinary samples are self-collectable, noninvasive, can be easily stored and transported, and have been shown to tolerate a wide variety of non-perfect experimental conditions in the field (O’Connor et al., 2006; Kesner et al., 1995). Initially it was assumed that daily samples could be collected for prolonged periods of time with a high degree of compliance, however, many recent studies have shown compliance to be highly variable depending on study length (Kesner et al., 1992; Kravitz et al., 2005; Liu et al., 2004; Santoro et al., 1996; Waller et al., 1998; Wright et al., 1992). The level of compliance to sample collection may be due to personal or housemate comfort level with storage of specimens or ability to store samples when away from the primary residential address. Participants in early studies which evaluated perceptions of urinary sample collection reported that the benefits of increased knowledge about their body outweighed the uncomfortable nature of urine collection (Wilcox et al., 1987; Wright et al., 1992). According to Wright et al. (1992), urine collection was one of the least objectionable of the eight methods used to assess reproductive function (transvaginal ultrasound, basal body temperature, salivary electrical resistance, blood sampling, salivary samples, vaginal mucus electrical resistance, and manual cervical mucus consistency). The study by Wright et al. (1992) was one of the first to assess the attitudes of the general population, instead of nurses, to reproductive hormone collection methods. Anecdotal evidence from our laboratory has indicated that participant travel over weekends and for vacations lead to large gaps in sample collection and decreased
compliance, thus the reduced collection frequencies evaluated in this article provided the participants with weekends free from sample collection. In fact, for this analysis we excluded 67% of available cycles due to reduced compliance. In studies of long duration it is unavoidable to have participants run into vacation time such as Thanksgiving, family summer holidays, or winter break, when reduced compliance to sample collection is more likely to occur.

One limitation of the present analysis was the restriction of the data set to only include subjects who were 100% compliant to the reduced collection frequencies. The presence of missed collection days within the reduced sample collection frequencies would decrease the accuracy of the urinary reproductive hormone metabolite profile across the menstrual cycle or monitoring period. Reduced collection frequency strategies still require the use of a valid menstrual cycle calendar in order to create an accurate presentation of the hormonal profile. Not all urinary collections for eumenorrheic cycles will begin on the first day of the menstrual cycle nor will the final collection always be on the last day of the menstrual cycle. Another limitation of the study was that we did not evaluate clinical reproductive outcomes in this analysis; however, such outcomes are integral in the usefulness of reduced collection frequencies. Future studies should evaluate the validity of the reduced collection frequencies evaluated in this article in detecting luteal sufficiency and assessing this strategy in an independent sample.

The strengths of this analysis are that there were a large number of cycles included, individual participants provided multiple cycles, and the cycles used for reducing the collection frequency were based on menstrual cycles, and 28-day monitoring periods that had all samples collected. In the data set, there are near equal numbers of short, normal, and long menstrual cycles in the eumenorrheic participant cycles and 28-day monitoring periods. Within our eumenorrheic cycles we intentionally included all cycle classifications (LPD, anovulatory, and ovulatory cycles) to show that even with cycles of highly variable hormone levels the reduced collection frequencies continue to have good agreement with daily urinary sample collection.

Though daily urinary collection is the most accurate reflection of reproductive hormone production when using urinary analysis, our results demonstrate that accurate E1G and PdG profiles of menstrual cycles of various lengths (20–45 days) and types (eumenorrheic and amenorrheic) can be measured with reduced urinary collection frequencies. This work supports and builds on the work of O’Connor et al. (2006) demonstrating that a reduced sampling schedule can provide useful and accurate information in a manner that is comparable to that obtained from daily sampling of urine regarding ovarian hormone exposure and mean concentrations. The accuracy in quantifying exposure allows reduced collection frequency strategies to be utilized in under researched populations and in less developed regions around the world, where the capacity to store samples in a cold environment may be limited. The reduced collection frequencies produced composite E1G and PdG profiles for an entire cycle or monitoring period that were similar to the composite graphs of daily urinary collection. We have shown that daily ovarian steroid levels are not necessarily required to quantify AUC or mean values E1G or PdG across the entire menstrual cycle or monitoring period when conducting group examinations for the assessment of disease risk, such as osteoporosis, endothelial dysfunction, ovarian cancer, and breast cancer, in large populations. Further research is needed to evaluate whether clinical outcomes, such as luteal sufficiency, are possible to determine through these specific reduced collection frequencies. We suggest reducing the urinary collection frequency in an effort to reduce the participant burden, increase compliance, and decrease project costs, depending on the accuracy and precision required to answer the reproductive questions of interest.

Funding — United States Department of Defense (DOD); Contract grant number: PR054531 (to M.J.D. and N.I.W.); Contract grant sponsor: National Institutes of Health; Contract grant number: MO1RR010732.

Author contributions — H.C.M.A. was responsible for study execution, data collection, subanalysis design, data analysis and interpretation, and manuscript writing. N.I.W. and M.J.D. designed the study and obtained study approvals, supervised data collection and analysis, and participated in data interpretation. M.J.D. supervised the design of the subanalysis and writing of the manuscript. R.J.M. participated in study execution, data analysis and interpretation, and manuscript revision. K.K. participated in statistical analysis and interpretation, and manuscript revision.

Acknowledgments — The authors thank the participants whose dedication to sample collection was invaluable for the completion of this analysis.

Literature cited

