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Metabolizable protein (MP) is protein that reaches the small intestine and is
available for absorption and utilization by the cow. Dairy rations may be limited in the
supply of MP essential to meeting the demands of milk synthesis, however as much as
half of the MP flowing to the small intestine may be attributed to microbial origins and is
referred to as microbial CP (MCP). Experiment 1 utilized a technique in which DNA
was used as a microbial marker to estimate the concentration of bacterial CP (BCP) in the
solid and liquid portions of rumen digesta. Rumen digesta was sampled and separated
into solid and liquid fractions and microbes were isolated from whole ruminal digesta.
Targeting bacterial DNA in samples using real-time PCR, in addition to N analysis,
allowed for estimates of the concentration of BCP in the solid and liquid fractions to be
attained. The concentration of BCP tended to be higher in the solid portion, highlighting
the need to consider both particle and liquid associated bacteria when conducting
experiments involving the microbial community. Experiment 2 focused on the ruminal
effects of a commercial feed additive when fed with diets low or high in MP. The feed
additive, 2-hydroxy-4-methylthio-butanoic acid (HMTBa) molecule (Alimet, Novus
Internation, St. Charles, MO), a methionine analog, is believed to result in several

positive effects on rumen fermentation, including increased MCP yield. Rumen pH was



decreased in response to the additive, while rumen VFA and ammonia were increased.
The MCP yield was unaffected across treatments. Nutrient digestibility was increased in
cows fed the diet low in MP. Rumen bacterial DNA was sequenced and analyzed
bioinformatically; the proportion of Fibrobacteres were increased in cows receiving the
additive, and a number of associations of the relative abundance of microorganisms with

ruminal observations and treatments were observed.
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INTRODUCTION

The formulation of dairy diets requires special focus on how protein supplied in
various feed ingredients will be utilized in the cow (Cabrita et al., 2011). Because of the
role of the microbial community in the rumen in the breakdown and restructuring of
protein, actual protein and amino acid availability post-ruminally can be difficult to
predict.

Dairy nutritionists refer to protein available for absorption and utilization by the
cow as metabolizable protein (MP) (NRC, 2001). The concentration of MP can be
manipulated firstly, because the proportion of protein degraded in the rumen varies across
feedstuffs. A number of feedstuffs contain protein that is highly undegradable, such as
many animal proteins, while others have been specifically designed to be protected from
rumen microbial activity. Secondly, microbial crude protein (MCP) contributes to the
overall MP available to cow (Korhonen et al., 2002). The MCP contributing to MP
consists of protein contained in the microorganisms themselves--this protein becomes
available for digestion and absorption when the microorganisms die and leave the rumen.

The concentration of microbial protein can be influenced by supporting favorable
ruminal conditions, which involves the supply of nutrients required by the mixed
microbial population. The two major nutrients required by rumen microbes are energy
and N, which are generally supplied by carbohydrates and proteins, however the most
ideal sources and proportions of each have not been clearly determined (Hoover and
Stokes, 1991). A variety feed additives have been shown to promote beneficial microbial
activity, including 2-hydroxy-4-methylthio-butanoic acid (HMTBa), an analog of the

amino acid methionine (Rosser et al., 1971; Bull and Vandersall, 1973; Gil et al., 1973;



Lundquist et al., 1983). The HMTBa (Alimet, Novus International, St. Charles, MO)
molecule is thought to have low ruminal escape (Vazquez-Anodn et al., 2001) and
promote microbial activity, potentially resulting in increased flow of MCP out of the
rumen.

Because MCP is not a nutrient that is directly fed to the cow, but is rather derived
by microbes in the rumen, it can be difficult to measure and ultimately predict. Several
methods have been developed to track MCP leaving the rumen, all of which include the
use of a marker. A marker is a substance closely related to or associated with the target
nutrient, in that it flows at similar rates through the digestive tract, but is itself
undigestible so that it can be measured in sample (Huhtanen et al., 1994).

Recent developments in DNA sequencing and bioinformatic technology can be
used to gain further insights into the existence and function of microbes in the rumen.
This new availability of information opens the door to a wealth of opportunity in terms of
ruminant nutrition, including improved productivity and health (Krause et al., 2014). For
example, bioinformatics technology may have the potential to lead to the design of
probiotics, which by competitive exclusion of undesirable microbes, could support a

healthy “core” microbial community (Tap et al., 2009).



CHAPTER I
REVIEW OF LITERATURE
Protein Digestion in Ruminants
Protein digestion in ruminant animals consists of a complex network of
interacting factors that can be difficult to describe and predict. Van Soest et al. (1981)
described dietary protein in three different categories; nonprotein N (NPN) (“A”
fraction), true protein (“B” fraction), and unavailable N (“C” fraction). Nonprotein N
accounts for essentially all of the soluble protein in silages and forages. Once consumed
by the animal and entering the rumen, it is rapidly degraded by rumen microbes and
converted into ammonia (Sniffen et al., 1992). Subsequently, ammonia is further utilized
as the primary source of nitrogen for microbial growth and proliferation (Baldwin and
Alison, 1983). In turn, the microbes incorporate this nitrogen into their own amino acids
and proteins; eventually they die and their proteins become available to the cow post-
ruminally, where it is digested and absorbed. Quantitatively, the microbial population of
the rumen provides more than 50 % of the amino acids available for absorption via the
small intestine of confined dairy cows (Dijkstra et al., 1998). In addition to microbial
protein, proteins capable of escaping microbial degradation in the rumen flow to the
small intestine and are available to the cow. Because of this initial division of available
protein utilized by microbe and animal, ruminant nutritionists have devised a system of

describing dietary proteins relative to their fate in the rumen.

Fractionation of Protein Entering the Rumen. Due to distinct differences in the

extent and nature of rumen degradation of proteins, nutritionists characterize them by



using a system of fractionation. Those proteins undergoing ruminal degradation by
microorganisms are described as rumen degradable proteins (RDP). Alternatively,
proteins escaping ruminal degradation are referred to as rumen undegradable protein
(RUP) (NRC, 2001). The characterization of protein into RDP or RUP is largely
dependent upon chemical and physical characteristics of the proteins and their amino
acids relative to their solubility in various solvents; rumen fluid, water, solutions of
sodium chloride, phosphate buffer, detergents, and dilute acids or alkali have been used
previously in literature to estimate the solubility of N in feed fed to ruminants (Blethen et
al., 1990). For example, some heat treated proteins exhibit altered secondary structural
characteristics, namely an increase in a-helix to -sheet ratios, which has been correlated
with total intestinally absorbed protein supply (Doiron et al., 2009). Furthermore,
proteins and amino acids have been synthetically protected from rumen degradation by
both physical and chemical means. For example, proteins and AA have been physically
encapsulated with material which is in itself undegradable in the rumen, or chemically,
by supplying an analog of a particular amino acid (Overton et al., 1996).

Another factor affecting the fractionation of protein entering is heavily dependent
on rumen kinetics, that is, rate of passage from the rumen. For example, a dairy cow
consuming a low forage to concentrate ratio diet will have a rapid rate of passage,
resulting in more protein escaping ruminal degradation, thus increasing RUP (NRC,
2001). Conversely, a cow consuming a higher forage to concentrate ratio diet will have a
lower rate of passage and consequently, protein will spend more time in the rumen,
reducing RUP. Farmer et al. (2014) observed a rumen OM turnover rate of 6.98 % and

8.02 % per hour in cows consuming a 52 % and 39 % forage diet, respectively.



Fractionation of Protein Leaving the Rumen. Protein leaving the rumen
eventually flows to the small intestine, where it contributes to MP. As its name implies,
MP is assumed to be available for digestion and absorption by the cow. Fractions
reaching the small intestine consist of RUP, MCP, and a small contribution of
endogenous proteins, around 1 to 7 % of duodenal protein flow (Rulquin et al., 1998).

In the formulation of dairy diets, an adequate supply MP is essential in meeting
production goals, as the efficiency of use of MP for lactation has been estimated to be 67
% (NRC, 2001). Many strategies exist for meeting this metabolic demand for MP, which
is dramatically elevated during early lactation; recommendations for mature, dry Holstein
cows fall between 1000 to 1200 g/d (Block, 2010), while the requirements for lactating
cows more than doubles to around 2600 g/d (Lee et al., 2012). Logically, sources of RUP
in the diet are increased, for example, by adding animal proteins and dried distillers
grains and solubles (Hubbard et al., 2009). Additionally, strategies are implemented in
order to increase MCP synthesis, including adequate supplies of RDP and fermentable
energy, enhancing ruminal fermentation (NRC, 2001). As sources of RUP may be costly,
maximizing microbial efficiency with lower quality, cost-effective inputs is often a
prudent strategy implemented by nutritionists, as the AA supplied by microorganisms is

similar to that which is required by the cow (Korhonen et al., 2002).

Microbes in the Rumen
The symbiotic relationship between the rumen microbial community and the
animal is unique and essential to maximizing digestive efficiency. In terms of ruminant

nutrition, the three most prominent categories of rumen microbes are bacteria, protozoa,



and fungi (Martin, 1994); yeasts and viruses are also present in the rumen, however the
mechanisms of their effects on nutrition and the microbial community is less understood.
The presence of these microbes in the rumen, along with favorable ruminal conditions for
microbial life, mutually benefits both microbe and ruminant. Specifically, isoacidic (pH
6-7) and isothermal (39°C) conditions of the rumen, along with a continual supply of
water and fermentative substrates, results in an ideal environment for microbial
propagation, while microbial fermentation of otherwise indigestible complex
carbohydrates release usable nutrients to the animal. Bacteria and protozoa offer
substantial contributions to MP as MCP, as high as 89 % of nonammonia N (Shabi et al.,

2000), and are further described below.

Bacteria. In terms of their contribution to digestion in ruminant animals, bacteria
are perhaps the most influential of the ruminal microorganisms mainly due to their sheer
numbers. Legions of microscopic bacterial species measuring 1 to 5 um inhabit the
rumen; it has been estimated that direct counts can be as high as 10'° cells per g of
ruminal contents (wet basis) (Russell, 2002).

Bacteria play a key role in a number of digestive and fermentative processes in
the rumen, and these supply nutrients to the animal which is essential for maintenance
and production. Perhaps most notably, bacteria are capable of breaking down cellulose
by secretion of cellulase enzymes. Carbohydrate fermentation by ruminal bacteria results
in the production of volatile fatty acids (VFA), most notably acetic acid, proponoic acid,
and butyric acid. Once absorbed through the rumen wall, VFA are further utilized by the

ruminant for energy, and supply approximately 70 % of the animal’s energy needs



(Bergman, 1990). In addition to supplying energy, bacteria contribute to a large
proportion of the MCP available for digestion and absorption via the small intestine
(NRC, 2001). Depending upon on the composition of the diet, over 80 % of MP may be
traced to microbial origins, largely composed of bacterial species.

Through direct observation, and in recent years, whole-genome sequencing,
pyrosequencing, proteomics, and transcriptomics (Krause et al., 2014) have allowed for
myriads of bacterial genera to be identified in the rumen. In fact, a recent meta-analysis
of 16s gene sequences in the Ribosomal Database Project (Michigan State University,
East Lansing, MI) revealed that 5,271 bacterial operational taxonomic units (OTUs),
clusters of similar 16s rRNA sequences, have been identified, representing 19 phyla, of
which Firmicutes (2,958 OTUs), Bacteroidetes (1,610 OTUs), and Proteobacteria (226
OTUs) were the most prevalent (Kim et al., 2011). Other major bacterial organisms that
have been identified in the rumen include: Fibrobacter succinogenes, Ruminococcus
albus, Ruminococcus flavenciens, Butyrivibrio fibrisolvens, Ruminobacter amylophilus,
Selenomonas ruminantium, Prevotella sp., Succinomonas amylolytica, Succinivibrio
dextrinosolvens, Eubacterium ruminantium, Magasphaera elsdinii, Lachnospira
multiparus, Anaerovibrio lipolytica, Peptostreptococcus anerobious, Clostridium
aminophilum, Clostridium sticklandii, Wolinella succinogenes and Methanobrevibacter

ruminantiun (Russell, 2002).

Protozoa. Being found in much lesser numbers in the rumen relative to bacteria,
the presence of protozoa was estimated to be 107 cells per ml of ruminal digesta (Russell,

2002). Despite their relatively low number, they can, at times, account for half of the



ruminal biomass as a result of their large size relative to bacteria, measuring 20 to 200
pm.

Apart from size, the major differentiation between bacteria and protozoa is their
eukaryotic nature. In addition, protozoa are grouped under two primary classifications,
flagellated or ciliated. Flagellated protozoa are further categorized under five genera
namely, Chilomastix, Monocercomonoides, Monocercomonas, Tetratrichomonas, and
Pentatrichomonas. Ciliated protozoa are classified into two broad groups, Holotrichs and
Entodiniomorphs, and the division is dependent on ciliary arrangement and presence or
absence of skeletal plates (Williams and Coleman, 1992).

The coexistence of protozoa and bacteria in the rumen is an interesting one,
resulting in several nutritional advantages to the animal (Firkins, 2012). First, protozoa
benefit bacterial fermentation by stabilizing ruminal pH, stemming from consumption of
starch granules, which they degrade more slowly than ruminal bacteria. Second,
Entodiniomorphids function to stabilize pH by metabolizing lactate and producing
butyrate (Brossard et al., 2004). The stabilization of rumen pH benefits the cow
nutritionally in that, unregulated, pH levels may slip into acidotic conditions, hindering
the function of the rumen. In addition to stabilizing ruminal pH, protozoa may benefit
rumen function by promoting fiber degradation via fibrolytic enzymes, in addition to the
incorporation of polyunsaturated fatty acids into their membranes (Firkins, 2012).
However, some interactions between protozoa and bacteria may yield negative nutritional
consequences. First, and possibly most importantly, protozoa may reduce bacterial
numbers in the rumen by predation. After consumption of bacteria, protozoa may release

up to 50 % of bacterial protein back into rumen fluid, resulting in a loss of what was



potentially protein that could be available post-ruminally to the cow as MCP (Firkins,
2012). Furthermore, protozoa may promote methane emissions; ruminal methanogens
sometimes attach to protozoa species, which could suggest hydrogen transfer between
species (Johnson and Johnson, 1995). Increased methane emissions may represent a loss

of energy that could have otherwise aided production.

Fractionation and Chemical Composition of Rumen Microorganisms. Storm
and Orskov (1983) determined the chemical composition of individual and combined
fractions of ruminal microorganisms by proximate analysis as listed in Table 1.1.
Isolation of rumen microorganisms from ruminal digesta was achieved by a series of
centrifugation steps. Storm and Qrskov (1983) considered rumen fluid that had been
centrifuged at 1,200 x g for 4 minutes to be free of most protozoa. Next, centrifuging at
19,000 x g for 8 minutes, they considered the precipitate to contain the bulk of the
microorganisms remaining, namely bacteria. Finally, after centrifugation at 19,500 x g
for 15 minute, all remaining microorganisms were assumed to be present in the
precipitate. This study provided an appropriate baseline for estimates of differing
chemical compositions of ruminal microorganisms; however this study was limited in
that microorganisms were isolated solely from ruminal fluid.

Several researchers have demonstrated differing compositions in bacteria
associated with liquid and solid fractions of ruminal digesta (Craig et al., 1987; Legay-
Carmier and Bauchart, 1989; Merry and McAllan, 1983), suggesting that the majority of
ruminal bacteria are associated with the solid portion of ruminal digesta, in that they are

physically attached to the particles that they are digesting. Consequently, methods have
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been developed in attempt to dislodge ruminal bacteria associated with particles before
isolation in order to obtain microbial isolates more representative of their existence in the
rumen. Cecava et al. (1990) harvested ruminal bacteria by first straining rumen contents
through four layers of cheesecloth, from which they would isolate bacteria considered to
be associated with fluid. Next, they rinsed the remaining particulate matter with a
volume of saline equal to that of the filtrate and blended the mixture in a commercial
blender in order to extricate bacteria associated with the particulate matter. The blended
mixture was subsequently strained through four layers of cheesecloth and the filtrate was
used to isolate bacteria considered to be associated with particles. Analysis of the
chemical composition of these bacterial fractions isolated while steers were fed high and
low forage diets revealed differences in nitrogen composition as illustrated in Table 1.2.
These findings mark the importance of the consideration of liquid and particle associated
fractions of ruminal microorganisms in experiments measuring nutritive components of

microbial origin.

Effects of HMTBa Supplementation on Ruminal Microorganisms

The 2-hydroxy-4-methylthio-butanoic acid (HMTBa) molecule, an analog (structurally
similar compound) of methionine (represented in Figure 1.1), has long been of interest in
dairy nutrition for its apparent enhancing effects on microbial protein yield, fiber
digestibility, VFA production, and consequently, the potential for improved lactational
performance (Rosser et al., 1971; Bull and Vandersall, 1973; Gil et al., 1973; Lundquist
et al., 1983; Vazquez-Afion et al., 2001). Specifically, the commercial product Alimet

(Novus International, St. Charles, MO) is the focus of the following project and was used
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as the source of HMTBa. It has been observed previously that methionine hyrdoxy
analogs similar to HMTBa have between 0 and 40 % rumen escape, and are therefore
largely utilized in the rumen, apparently stimulating microbial activity resulting in
increased microbial protein yield, fiber digestibility, and concentration of VFA (Vazquez-
Afon et al., 2001). However, the mechanisms of these effects resulting from ruminal
utilization are not completely understood. One reason for this may be the fact that the
bulk of previous work has employed in vitro techniques, which do not account for the
ruminal absorption of HMTBa, or the ability of the ruminant to recycle nitrogen.
Irrespective of these potential limitations, the enhancing effects of HMTBa
supplementation on several ruminal digestive properties have been explored in the

literature.

Microbial Protein Yield. Studies utilizing in vitro techniques have led
researchers to believe that HMTBa also has a positive effect on the amount of microbial
protein synthesized in the rumen. Gil et al. (1973) conducted an in vitro fermentation
experiment in which mixed populations of ruminal bacteria were exposed to a methionine
hydroxy analog (MHA) treatment, with glucose and cellulose used as fermentative
substrates, and urea as the source of nitrogen. They concluded that MHA accelerated
bacterial nitrogen incorporation and a congruent increase in glucose and cellulose
digestion rate was observed. As a consequence, bacterial dry matter and nitrogen yield
were more than twice that of the control after 6 hours of fermentation (Table 1.3). More
recently, an experiment in which continuous culture fermenters were fed a 50 % grain

mixture (containing high moisture shelled corn, corn distiller’s grains, cooked soybeans,
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wheat middlings, blood meal, fish meal, feather meal, and vitamin and mineral premix)
and 50 % forage diet which included four concentrations of HMTBa (0, 0.20, 0.77, and
1.43 % DM basis) added twice daily, bacterial protein synthesis and efficiency were
increased when 0.20 and 0.77 % HMTBa were added (Vazquez-Afion et al., 2001).
Interestingly, supplementing HMTBa at 1.43 % resulted in a negative effect on bacterial
protein synthesis and efficiency, suggesting over supplementation of methionine analog
may result in adverse effects relative to microbial productivity. Nevertheless, the results
of these studies suggest utilization of HMTBa by ruminal microorganisms may increase

rumen microbial protein yield.

Protozoa Number. Potentially related to microbial efficiency and synthesis, it has
been observed that supplemental HMTBa may result in an increase in ruminal protozoa
numbers in the rumen. As previously discussed, there are several advantages and
disadvantages related to the presence ruminal protozoa; the advent of increased protozoa
may have positive or negative effects on the efficiency of microbial fermentation, heavily
dependent on diet type and subsequent ruminal environments, for example, the
stabilization of rumen pH (Brossard et al., 2004).

In order to test if the methionine analog would increase protozoal numbers within
the rumen, researchers fed three groups of four whether lambs either a grain based diet,
grain plus hay, or grain plus MHA at a rate of 11 g/kg of the total ration in pelletized
form (Patton et al., 1970). After three weeks of adaptation, rumen samples were
collected via stomach tube twice a week for three successive weeks. The number of

protozoa in rumen samples was attained by staining and direct counts. The researchers
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observed an increase in protozoa concentration in grain diet containing MHA in
comparison to the grain only diet; protozoa concentrations increased from 1.19
protozoa/mL x 10° in the grain only diet to 22.8 protozoa/mL x 10° in the grain plus
MHA diet. Similarly, when the trial was repeated, there were 0.86 protozoa/mL x 10°
observed in the grain only diet and 50.0 protozoa/mL x 10° in the grain plus MHA diet.
In both trials, protozoal counts were slightly higher in the grain plus hay diets than in the
grain plus MHA diets. The results are listed in Table 1.4. These results were expected,
as grain based diets tend to reduce protozoal numbers (Owens et al., 1998), sometimes
resulting in complete defaunation, while the inclusion of higher proportion of forage
promotes protozoal competence. In this experiment, supplemental MHA seemed to

adequately restore protozoal concentrations in a grain based diet.

Fiber Digestibility. In addition to increasing microbial protein yield in vitro, it
has been observed that HMTBa may stimulate ruminal microorganisms to increase fiber
digestibility. Bull and Vandersall (1973) observed an increase in the in vitro digestion of
cellulose from 48.5 % to above 82.0 % with the addition of methionine hydroxy analog at
0.08 % of substrate dry matter. Exploring these observations, a more recent study was
conducted in which HMTBa was fed to eight ruminally cannulated cows at 0.10 % of the
diet dry matter. With the inclusion of HMTBa verses the control, the researchers
observed an increase in apparent ruminal digestibility of organic matter from 43.8 % to
51.6 %, as well as an increase in the ruminal digestibility of NDF from 37.2 % to 40.7 %

(Noftsger et al., 2005). These data support the previous in vitro work, suggesting ruminal
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digestion is altered by the inclusion of HMTBa, perhaps as a result of stimulatory effects

on the rumen microbiome (the ecological community of microbes inhabiting the rumen).

Volatile Fatty Acids. A product of microbial fermentation and an essential source
of energy to the cow, VFA play a central role in ruminal digestion and utilization of
substrates. Several studies have indicated that supplemental HMTBa may alter ratios of
ruminal concentration of VFA.

In order to test the effects of HMTBa on concentration of VFA, Rosser et al.
(1971) included 40 g of methionine analog per day in diets fed to 24 Holstein cows in
early to midlactation. Rumen digesta samples were collected via stomach pump at the
end of each period and analyzed for VFA concentrations. An increase in the
concentration of butyrate was observed in comparison to the control, accounting for 15.3
% of total VFAs in the experimental treatment and 11.8 % in the control diets.

In accordance with these observations, two experiments were conducted involving
59 and 63 lactating Holstein cows, respectively (Lundquist et al., 1983). The cows were
fed either 40 % or 60 % concentrate diets with or without the inclusion of methionine
analog at a rate of 0.25 % of the diet dry matter. On weeks 14 and 16 of each trial,
samples of rumen fluid were taken via stomach tube from all cows and analyzed for
VFAs by gas chromatography. While ruminal VFA concentrations remained similar
between control and methionine analog cows on the 40 % concentrate diet, VFA
concentrations seemed to be altered in cows receiving the 60 % concentrate diet;
methionine analog increased acetate and decreased propionate. Similar to Rosser and

others’ observations, rumen butyrate was lower for cows on the 60 % concentrate control
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diet than those on the 40 % diet including methionine analog. These data suggest that the
inclusion of methionine analog may increase the ratio of acetate to propionate in the
rumen as well as butyrate concentrations.

Supplementation of HMTBa in rations fed to dairy cattle is believed to improve
cow productivity resulting from enhanced microbial activity, measured by the rumen
microbial digestive properties described above. However, past experiments have yielded

mixed results (Table 1.5), and a clear mechanism of these effects has not been described.

Estimation of Rumen Microbial Protein Production and Utilization

For microbial protein generated in the rumen to be utilized by the cow, it must
flow out of the rumen and to the small intestine for digestion and absorption. Inherent of
the kinetic nature of this process, estimation of MCP in the rumen alone is not necessarily
representative of protein available for utilization by productive mechanisms, as MCP
must first reach the small intestine. As a result, several techniques have been developed
which attempt to quantify the flow of microbial protein out of the rumen by the combined
use of digesta flow markers along with markers of nitrogen of microbial origin.

The basic process of the estimation of microbial protein available post-ruminally
is as follows (Zinn and Owens, 1986; Aharoni and Tagari, 1991; Hristov et al., 2005;
Castillo-Lopez et al., 2014;): 1) digesta flow to the small intestine is estimated via the
appearance of an indigestible marker (such as Cr203, TiOz, indigestible ADF) in duodenal
digesta samples; 2) total nitrogen is estimated in duodenal digesta samples and is
multiplied by the estimate of total daily duodenal digesta flow in order to attain an

approximation of total daily nitrogen flow; and 3) markers indicating nitrogen assumed to
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have originated from microbes (such as purines, diaminopimelic acid (DAPA), or DNA)
are measured in duodenal digesta samples and is multiplied by the daily digesta flow rate
to attain an estimate of daily microbial nitrogen flow, which can be expressed on a

percentage of total daily nitrogen flow to the small intestine.

Digesta Flow Markers. In order to estimate post-ruminal availability of
microbial nitrogen, the amount of digesta flowing daily to the small intestine must first be
measured. Commonly, digesta flow is estimated by measuring the concentration of
indigestible markers in samples, given that the daily dosage of the marker is known.

Several external markers have been used extensively in the literature. Utilized as
a digesta flow marker for many years (Waller et al., 1980; Firkins et al., 1986;
Christiansen and Webb, 1990), chromic oxide (Cr203) is an inorganic compound
employed as an external marker by virtue of its apparent indigestibility. Chromic oxide
has been used less frequently in recent years due to concerns of its carcinogenicity and
has been replaced by the similar use of titanium dioxide (TiO2). Apart from fewer
concerns regarding handling relative to chromic oxide, titanium dioxide may also be
advantageous for use as a maker as it can be legally added directly to diets, while
chromic oxide cannot (Titgemeyer et al., 2001).

In addition to external makers, internal markers have been utilized as digesta flow
markers, including acid detergent insoluble nitrogen (ADIN), acid insoluble ash, lignin,
and indigestible ADF (Cochran et al., 1986; Sunvold and Cochran, 1991). Similar to the
external markers discussed, these nutritive entities are selected for use as markers due to

their apparent indigestibility in the animal.
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Unfortunately, a perfect marker of digesta flow does not exist, as there are several
limitations associated with digestion and absorption. Consequently, a number of
assumptions must be made regarding digesta flow markers. First, it must be assumed that
there is no absorption of the marker from the digestive tract. Second, it is assumed that
the marker is not affected by the digestive tract or microbial populations. Third, it must
be assumed that the marker flows parallel with, and is physically similar to and

associated with the material it is intended to mark (Owens and Hanson, 1991).

Microbial Markers. After digesta flow has been estimated as described above,
the total amount of microbial protein flowing to the small intestine daily can be estimated
by use of microbial markers. As the name implies, microbial markers are designed to
determine the proportion of nitrogen in a sample derived from microbial origins. Several
methods have been developed including use of (DAPA), nitrogen-15, purines, and DNA
(Castillo-Lopez et al., 2010). Dehority (1995) suggested that the ideal microbial marker
should, not be present in the feed, not be absorbed, be biologically stable, have a
relatively simple assay procedure, occur in a similar percentage between the various
types of microbes, be a constant percentage of the microbial cell in all stages of growth,
and all forms should flow at a similar rate. Unfortunately, similar to digesta flow
markers, a perfect microbial marker does not exist and these assumptions must be borne

in mind when designing experiments.

Purines. Developed by Zinn and Owens (1986), the use of purines as microbial

markers for net ruminal protein synthesis has been extensively utilized and is perhaps the
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most commonly used microbial marker. The procedure takes advantage of the fact that
bacteria are inherently high in nucleic acids, including the purine bases adenine and
guanine, while feeds are typically low in adenine and guanine. Subsequently, the digesta
being analyzed is hydrolyzed with perchloric acid, followed by the precipitation of the
purines with silver nitrate (AgNO3). The isolated purine bases are then measured via
spectrophotometry or high-performance liquid chromatography (HPLC). Net microbial
protein synthesis is estimated by first establishing a ratio of purine to nitrogen in isolated
ruminal microbial pellets, which then allows for an estimate of microbial nitrogen to be
calculated based on the amount of purine quantified in samples of duodenal digesta
collected over the period of a day.

Several assumptions must be made with the use of purines as microbial markers,
giving rise to limitations with this method. First, it is assumed that purines originating
from the feed are completely degraded in the rumen, as dietary purines escaping ruminal
degradation would lead to overestimation of microbial purines. Second, it must be
assumed that the purine to nitrogen ratio is held constant among microbial communities
and in digesta samples from which they are isolated; in reality, this ratio varies with
bacterial growth rate and digesta components, as purines tend to be higher in the liquid
fraction. Third, purines in the duodenum are assumed to be purely microbial—Zinn et al.
(1986) suggested that sloughed epithelial cells and feed particles might also contribute to
purines present in the digesta. Belanche et al. (2011) observed greater purine
concentrations in the duodenum (54.5 mmol/g) than in the abomasum (26.7 mmol/g) of

lambs, which they attributed to sloughed epithelial cells.
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DNA for Microbial Markers. A recently developed approach, real-time
polymerase chain reaction (PCR) may be used for the detection and quantification of
microbial populations (Castillo-Lopez et al., 2010; Yu et al., 2005) by use of a
fluorescence probe in addition to two primers. As real-time PCR can be used to target a
group of microorganisms (Nadkarni et al., 2002), the technology can be used as a marker
for microbial protein, and unlike purines, can differentiate between proteins generated
from bacteria or protozoa by targeting genes unique to either population.

The PCR reaction involves the “unwinding” of each strand of the parent DNA,
which is used as a template to produce a complementary daughter strand. The synthesis
of DNA by DNA polymerase is primed by a short DNA sequence which is
complementary to the template sequence that is being targeted. The process of
unwinding and replicating the DNA strand is dependent on temperature cycling,
occurring in three basic steps: denaturation, annealing, and extension. First, at high
temperatures (typically around 94-95°C), denaturing of the strands of the DNA template
occurs. Second, the temperature is lowered specific to the primers being used in order for
them to anneal to the template strand (55-72°C dependent on the types of primers).
Third, the temperature is raised to around 72°C, at which DNA polymerase activity
occurs. Temperature cycles are repeated a handful of times (typically around 25 to 40)
and the DNA is exponentially replicated as a result (McPherson and Meller, 2006). As
the name implies, the difference between real-time PCR and PCR alone is that real-time
PCR allows for the monitoring and visualization of DNA amplification in real-time.

Several technologies exist which emit a fluorescent signal during the real-time

PCR reaction, allowing for the amplification of DNA to be quantified as the reaction



20

progresses. The fluorescent signal associated with each technology increase their
signaling proportional to the exponential increase in DNA products. Three basic
approaches are used in order for signaling to occur: One, free dye is incorporated into the
newly formed, double-stranded DNA; two, dye-primer based signaling; and three,
fluorescently labeled oligonucleotide probes between two primers (Dorak, 2006). One
commercially available fluorescent signaling technology, TagMan (Applied Biosystems,
Foster City, CA), involves a fluorescently labeled probe as well as forward and reverse
primers represented in Figure 1.2. While the TagMan probe is free in solution, the 6-
carboxy fluorescein molecule (FAM), the reporter dye at the 5° end of the probe, is
quenched by the 6-carboxy-tetra-methyl-rhodamine (TAMRA) molecule, which is
located at the 3’ end of the probe. In the annealing phase of the PCR reaction, the probe
binds to the complementary template strand. While primer extension is occurring via Taq
DNA polymerase, the probe is released from the 5° end by a nuclease contained in the
Taq DNA polymerase. When the probe is released, it is no longer quenched and the
signal can be detected by the real-time PCR instrumentation.

In order to estimate microbial protein in digesta samples using DNA as a marker,
forward and reverse primers, as well as a fluorescence probe, are designed specific to a
gene common to the microbial population of interest. Ruminal microorganisms are
isolated and their DNA is extracted. The DNA isolated from ruminal microbes is then
exposed to the real-time PCR procedure; the cycle threshold values attained are used to
calculate the relative abundance of target DNA in the sample according to the equation
derived by Castillo-Lopez et al. (2010). The isolated microbial samples are then

analyzed for protein content in order for a ratio of relative abundance of DNA to protein
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to be established. Finally, DNA is isolated from samples of duodenal digesta and is
exposed to the real-time PCR procedure using the same primers and probe. The relative
abundance of target DNA in digesta samples is then calculated, and the previously
established ratio of abundance of DNA to nitrogen in microbial isolates is used in order
to estimate nitrogen in the samples which originated from the target rumen
microorganisms.

Compared with purines, DNA markers yield consistently lower estimates of
intestinal microbial protein, potentially due to the contribution of purines from feed and
sloughed epithelial cells (Zinn and Owens, 1986; Belanche et al., 2011). However,
differences in intestinal microbial protein observed as a result of varying dietary
experimental treatments are reflected similarly when both purines and DNA are used as

makers, validating the use of DNA as a microbial marker (Castillo-Lopez et al., 2014).

DNA Sequencing

The advent of the use of high throughput sequencing technology on the ruminal
microbial community offers new insight into the structure of the rumen microbiome
relative to varying nutritional factors. Sequencing technology offers a plethora of
exciting new opportunities when utilized as an approach to determine optimal rumen
environments to support and sustain different functions of the microbiome. Krause et al.
(2014) suggested that the manipulation of ruminal fermentation and microbial
populations via ionophores, antimicrobials, colicins and bacteriocins, and diet change can
now be examined in detail with this technology in order to better understand the impacts

they may have on the rumen microbiome, as well as how they can be replicated to
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enhance productive efficiency. Several technologies currently exist which allow for high

throughput DNA sequencing.

Pyrosequencing. Based on real-time monitoring of DNA synthesis, the technique
known as pyrosequencing utilizes four-enzyme DNA sequencing technology by
monitoring DNA synthesis via bioluminescence. Nucleotides are added sequentially to a
primed template while the sequence of nucleotides being incorporated into the growing
DNA chain are traced and recorded (Ronaghi, 1998).

The 4 enzymes used in the reaction are the Klenow fragment of DNA polymerase
I, ATP sulfurylase, Luciferase, and Apyrase (Ahmadian et al., 2006). The steps of
pyrosequencing are outlined by Ahmadian et al., (2006): Firstly, DNA polymerization
occurs if the added nucleotide forms a base pair with the sequencing template, leading to
the incorporation of the growing strand of DNA; Secondly, inorganic pyrophosphate
(PPi) is released by the Klenow DNA polymerase and becomes a substrate for ATP
Sulfurylase, producing ATP; Thirdly, ATP is converted to light by Luciferase which is
detected by the sequencing instrumentation. Apyrase removes nucleotides and ATP
which were not incorporated between additions of different bases; this reaction insures

that light is only produced when the correct nucleotide is added.

Semiconductor-based Sequencing. A recently developed sequencing
technology, semiconductor-based sequencing involves the detecting of protons that are

released while nucleotides are incorporated during synthesis (Rothberg et al., 2011).
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One such platform utilizing this technology is known as the Ion Torrent Personal
Genome Machine (Life Technologies, Carlsbad, CA). Within the Ion Torrent Personal
Genome Machine, semiconductor-based sequencing begins on the surface of 3-micron
diameter beads called Ion Sphere Particles, where fragments of DNA with specific
adapter sequences are linked and amplified by emulsion PCR (Quail et al., 2012). Next,
beads containing the amplified DNA are loaded into wells situated above complementary
metal-oxide semiconductor pH-sensitive field effect transistors (Merriman and Rothberg,
2012) and sequencing is primed based on the location of the adapter sequence. At this
point, the DNA fragments are single stranded, and in the presences of polymerase,
sequencing begins as each of the four bases (A, C, G, T) are introduced sequentially. Ifa
base is incorporated into the strand, H ions are released as a result of polymerase activity.
As a result, the pH of the solution is altered and can be detected by the pH sensors.
Conversely, if the next base in the sequence is not incorporated, little or no change in pH
is detected.

Semiconductor-based sequencing platforms such as the Ion Torrent Personal
Genome Machine, sometimes referred to as “next-generation sequencers”, offer the
potential for affordably reducing workloads and the rapid acquisition of genomic data
(Ulrich et al., 2012). The use of next-generation sequencers for the evaluation of the
microbial community in the rumen is an emerging field which will contribute to

advancements in our understanding of microbial ecology in the context of the rumen.
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SUMMARY

One of the most important considerations when formulating diets to enhance
lactation performance in dairy cows is the supply of MP, as the efficiency of its use for
lactation is around 67 % (NRC, 2001). Contributions to MP include RUP, MCP, and
endogenous proteins, of which MCP typically represents the largest fraction. Of protein
originating from microbial populations, bacteria contribute the majority post-ruminally
and play perhaps the most important role in the digestion of fermentative substrates
provided in the diet. The HMTBa molecule has been utilized as a supplement in dairy
diets in order to improve microbial efficiency, and consequently, improve lactation
performance. In several experiments, microbial protein yield, as well as protozoal
concentration, has increased in the presence of MHA. Increased digestibility of cellulose,
NDF, and organic matter have also been observed in vitro as well as in vivo.
Additionally, MHA supplementation appears to increase acetate to propionate ratios, as
well as butyrate concentration, in ruminal fluid. Few studies have been conducted in vivo
with regards to MCP synthesis resulting from HMTBa supplementation; an in vivo
approach is warranted to account for nitrogen recycling and potential ruminal absorption
of the molecule. The use of purines and DNA as microbial markers, as well as DNA
sequencing and bioinformatics analysis, will yield further insight into the effects of

HMTBa on the efficiency and community structure in the rumen.

General Objectives
The general objectives of this research were to measure several in vivo effects

resulting from HMTBa supplementation in diets that were formulated to be either high or
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low in metabolizable protein. The factors of interest were; 1) intake and digestibility; 2)
lactation performance; 3) ruminal pH, VFAs, and ammonia; 4) MCP flow to the

duodenum; and 5) microbial community structure.
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TABLES AND FIGURES

Table 1.1 Mean chemical compositions with their pooled standard errors of individual and
combined fractions of rumen microorganisms (Storm et al., 1983)

Centrifugal fraction 1? 2° 3° 2+3 SEM
Proximal analysis (g/kg DM)

Crude fiber 17.1 9.40 4.20 5.80 1.93
Moisture 76.2 62.0 49.5 55.9 2.33
Ash 143 116 98.3 104 4.02
Lipid --- --- --- 92.1 6.65
Carbohydrate - - - 93.2 7.05
Nitrogen 84.4 99.7 103 102 1.59
Composition of N (g/kg N)

RNA-N 96.4 112 114 113 7.45
DNA-N 334 40.6 42.9 41.3 9.20
Amino acid-N 799 810 806 808 5.06

aSupernatant centrifuged at 1200 x g for 4 minutes considered to be free of most protozoa
and most of the remaining dietary matter.

®Supernatant re-centrifuged at 19000 x g for 8 minutes considered to contain the bulk of
the microorganisms.

“Supernatant re-centrifuged at 19500 x g for 15 minutes considered to harvest virtually all
remaining microorganisms.



Table 1.2 Composition of ruminal bacteria isolated from steers fed two energy levels

(Cecava et al., 1990)

Energy level,!

Mcal ME/kg DM
Item 2.24 (HF) 2.29 (LF) SEM
Organic matter, mg/g DM
Mixed bacteria? 822 842
FAB? 815 845 8.80
PAB* 825 845
Nitrogen, mg/g OM
Mixed bacteria 97.9% 94.7%
FAB 1012 97.8% 1.40
PAB 93.5% 93.6*
Nitrogen:purines
Mixed bacteria 0.77% 0.77%
FAB 0.64° 0.64° 0.02
PAB 0.72°¢ 0.75%

“Means in the same column, and within the same item, that do not have a common

superscript differ (P < 0.05).
'HF = High forage; ME = Metabolizable energy.
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2Mixed bacteria = Bacterial isolate prepared from fresh, homogenized ruminal contents;

number of observations per isolate fraction was 64.
3FAB = fluid-associated bacteria.
“PAB = particle-associated bacteria.
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Table 1.3 Effect of methionine hydroxy analog (MHA) (8 mg/ml) on bacterial
protein nitrogen (N), bacterial dry matter (DM), and production percent glucose
disappearance (% GLU. Dis.) measured at 0, 3, 6, and 13.5 hours of fermentation (Gil

etal., 1973)

Item Fermentation time, hours  Control! MHA!
DM, mg’ 0 62.4 56.0
N, mg? 0 232 1.92
% GLU. Dis. 0 0.00 0.00
DM, mg 3 54.4 88.8%*
N, mg 3 3.44 3.44
% GLU. Dis. 3 13.0 11.0
DM, mg 6 157 398
N, mg 6 6.08 14.6%*
% GLU. Dis. 6 44.0 100%**
DM, mg 13.5 272.8 271
N, mg 13.5 9.52 8.40
% GLU. Dis. 13.5 100 100

! Averages of four determinations.
2Milligrams per 160 ml of medium.
**P < 0.01, value different from control.



Table 1.4 Average concentration of protozoa in rumen fluid of lambs
fed grain with or without methionine hydroxy analog and orchard
grass hay (Patton et al., 1970)

Ration Protozoa/ml x 10>
Trial 1

A, grain! 1.19

B, grain + MHA 22.8?

C, grain + hay 37.5
Trial 2

A, grain? 0.86

B, grain + MHA 50.0

C, grain + hay 68.9

174.0 % ground shelled corn, 13.4 % dehydrated alfalfa meal, 5.0 %
ground oats, 5.0 % molasses, 1.0 % urea, 0.8 % dicalcium phosphate,
0.8 % trace-mineral salt.

264.3 % ground shelled corn, 10.0 % dehydrated alfalfa meal, 10.0 %
ground oats, 7.9 % soybean oil meal, 3.2 % beat pulp, 3.0 % molasses,
0.8 % dicalcium phosphate, 0.8 % trace-mineral salt.

®The difference between each ration and each other ration in a trial is
significant P < 0.01, except B vs. C in Trial 1 where P < 0.05.
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Table 1.5 The effects of methionine analog supplementation on rumen digestive conditions; the '+' represents a positivie effect, '-' a negative
effect, and 'm' no effect

Rumen Microbes Digestibility VFA Rumen Measurements
Study MCP Yield Protozoa Count Fiber Starch Acetate Propionate Butyrate Ammonia pH Pool
Patton et al., 1970' +
Rosser et al., 19712 + - +
Gil et al., 19733 + + + -
Bull and Vandersall, 1973 +
Lundquist et al., 19832 + - ]
Vazquez-Aion et al., 20013 + m m n m - m
Noftsger et al., 2005> u u + u u = = = = u

'Experiment was conducted in vivo (ovine).
2Experiment was conducted in vivo (bovine).
SExperiment was conducted in vitro.

9¢
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Figure 1.1 The structure of 2-hydroxy-4-methylthio-
butanoic acid (HMTBa) (left), or methionine analog,
versus the structure of methionine (right)
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Figure 1.2 Fluorescent signal generation via the TagMan probe, adapted from
Dorak, 2006
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INTERPRETIVE SUMMARY
The experiment evaluated the difference in bacterial crude protein concentration
between the solid and liquid portions of rumen digesta using DNA as a bacterial marker.
The concentration of bacterial crude protein tended to be higher in the solid portion of
rumen digesta than in the liquid portion. The results emphasize the need to sample both
the solid and liquid portions of rumen digesta in experiments evaluating the bacterial

community in the rumen.
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ABSTRACT

The objective of this study was to use DNA as bacterial markers to estimate and
compare the concentration of bacterial crude protein (BCP) in solid and liquid portions of
rumen digesta. Using a completely randomized design, 2 multiparous, lactating Holstein
cows (average days in milk 14 + 4 d, average BW 618 + 40 kg, average DMI 23 + 4 kg/d,
average milk yield 34 + 10 kg/d), fitted with ruminal cannulae were fed the same diet
once daily at 0930 h. Every 4 h over a 24 h period, a sample of approximately 1.5 kg of
rumen contents was collected from each cow and was strained through 4 layers of
cheesecloth. Particle associated bacteria (PAB) was separated from the solid portion of
rumen contents by adding phosphate buffered saline (PBS) and blending the mixture in a
commercial blender, followed by straining through four layers of cheesecloth. Fluid
collected after blending, as well as fluid retained from the initial straining, underwent
differential centrifugation, yielding bacterial pellets consisting of fluid associated bacteria
(FAB) and PAB. Next, DNA was then extracted from bacterial pellets and from the non-
centrifuged samples of rumen fluid and particles. The DNA from the bacterial pellets,
rumen fluid, and rumen particle samples were subjected to real-time PCR using the
TagMan assay. Primers and a probe were designed from DNA encoding part of the 16s
rRNA. The relative abundance of bacterial DNA tended to be higher (P = 0.09) in the
solid portion (209.5 £+ 26.6 mg BCP/g DM) than in the liquid portion (106.4 + 43.6 mg
BCP/g DM). Results suggest that BCP is detected in both the solid and liquid portion of
rumen digesta and that it is found in higher concentrations in the solid portion.

Key words: bacteria, DNA marker, particle associated bacteria, fluid associated bacteria
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INTRODUCTION

Rumen digesta is often sampled for the purpose of bacterial analysis. The
presence of ruminal bacteria is believed to be different between the solid and liquid
portions, however the extent of the difference has not been clearly outlined. Isolated
bacteria that are found to be more commonly attached or “associated” with feed particles
are known as particle associated bacteria (PAB), while bacteria isolated from ruminal
fluid are known as liquid associated bacteria (LAB) (Martin, 1994). The extent of
differentiation of PAB and LAB between rumen digesta fractions becomes important
when considering sampling method for bacterial analysis. For example, if only the liquid
portion of rumen digesta was sampled, bacterial concentration of whole rumen digesta
may be misrepresented. We hypothesized that, using DNA as bacterial markers, we
would observe greater concentrations of BCP in the solid portion of rumen contents than

in the liquid portion.

MATERIALS AND METHODS

Animals and Treatments

The experimental cows were managed according to the guidelines stipulated by
the University of Nebraska Animal Care and use Committee. Two lactating, multiparous
Holstein cows fitted with rumen cannulas were used (n = 2). The cows were 14 £ 4 DIM
and averaged 34 + 10 kg/d milk yield and 618 + 40 kg BW throughout the experiment.

Cows were fed the same diet (Table 2.1). The total mixed ration (TMR) was
mixed daily and was fed once daily at 0930 h with feed offered for ad libitum

consumption (5 % refusals). Water was available for ad libitum consumption.
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Feed Sampling

Approximately 2.5 kg (wet basis) of individual feed ingredients as well as
samples of the TMR were collected immediately after feeding on the day of collections.
Feed samples were frozen at -20°C and a subsample of each was sent to an external
laboratory (Cumberland Valley Analytical Services, Hagerstown, MD) for nutrient
analysis of DM (method 930.15; AOAC, 2000), N (Leco FP-528 N Combustion
Analyzer; Leco Corp., St. Joseph, MI), soluble protein (Krishnamoorthy et al., 1982),
RDP (Krishnamoorthy et al., 1983), NDF (Van Soest et al. 1991), ADF (method 973.18;
AOAC, 2000), ADIN and NDIN (Leco FP-528 N Combustion Analyzer; Leco Corp., St.
Joseph, MI), lignin (Goering and Van Soest, 1970), starch (Hall, 2009), sugar (DuBois et
al., 1956), ether extract (method 2003.05; AOAC, 2006), ash (method 942.05; AOAC,

2000), and minerals (method 985.01; AOAC 2000).

Ruminal Digesta and Microbe Sampling

Ruminal contents were sampled every 4 h over the course of one day. Separate
samples of the solid and liquid portions of rumen digesta were taken by straining through
four layers of cheesecloth. Sample collection occurred at 0400, 0800, 1200, 1600, 2000,
and 0000. Ruminal bacteria were isolated according to the procedure described by
Histrov et al. (2005). Ruminal contents were composited and squeezed through 4 layers
of cheesecloth and the filtrate was retained. Solids remaining on the cheesecloth were
added to a volume of cold phosphate-buffered saline equal to the volume of the filtrate,
and blended in a commercial blender in attempt to dislodge the ruminal microorganisms

loosely associated with feed particles. This suspension was then squeezed through 4
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layers of cheesecloth and the 2 filtrates were combined (1:1). From this sample, bacteria
were harvested immediately via differential centrifugation (Hristov and Broderick, 1996)
with an initial low-speed centrifugation at 400 x g for 5 min at 4°C and a subsequent
high-speed centrifugation at 20,000 x g for 15 min at 4°C. Samples were maintained on
ice while being processed. The supernatant was then discarded and the isolated bacterial

pellets were composited by cow and period and frozen at -20°C for later analysis.

Estimation of BCP using DNA Markers

DNA Extraction. Bacterial CP was estimated based on the ratio bacterial DNA
marker:N. Bacterial DNA was extracted from rumen solid, liquid, and bacterial samples
by the repeat bead beating plus column method according to the extraction method for
PCR-quality DNA described by Yu and Morrison (2004). Briefly, collected samples of
rumen solids, liquids, and bacteria were combined with lysis buffer and beads, and then
they were shaken for physical disruption of cells and exposure of cellular contents. Then,
DNA and RNA were precipitated. Next, DNA was purified by applying a series of
centrifugation steps and by eliminating the RNA and proteins. The concentration of DNA
in each sample was measured by spectrophotometry (NanoDrop ND-1000
Spectrophotometer, NanoDrop Technologies, Inc. Wilmington, DE) and stored at -20 °C

in aliquots of 25 pL for later analysis for BCP using real-time PCR.

Real-time PCR. The bacterial DNA marker used in this study has been reported
elsewhere (Yu et al., 2005) and is part of the gene encoding the 16S rRNA, which has

been shown to be highly preserved in bacteria (Ogier et al., 2002; Zimmermann et al.,
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2010). The National Center of Biotechnology Information (NCBI) accession number of
the targeted bacterial DNA marker is FI715623. The marker is composed of a forward
primer, a TagMan probe, and a reverse primer (Castillo-Lopez et al., 2010). Forward
primer: 5’-act cct acg gga ggc agc ag-3’°. TagMan probe: 5’-FAM/tgc cag cag ccg cgg taa
tac/TAMRA-3’. Reverse primer: 5’-gac tac cag ggt atc taa tcc-3’.

Real-time PCR reactions were as follows, 4 uL. of DNA sample were combined
with 1 pL of 10 uM forward primer, 1 pL of 10 uM reverse primer, 0.25 pL of 10 uM
TagMan probe, 7.5 pL. of TagMan Master Mix (Applied Biosystems, Foster City, CA,
USA) and 1.25 pL of nanopure water. Two samples with no DNA were included and
used as non-template controls. Each sample was run in duplicate in separate wells of the
384-well real-time PCR plate. DNA samples were subjected to real-time PCR using a
7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA).
Temperature cycling was as described by Moya et al. (2009) with some variations,
specific conditions were as follows: stage 1: 50 °C for 2 minutes; stage 2: 95 °C for 10
minutes; stage 3: 50 cycles alternating denaturation at 95 °C for 15 seconds, then

annealing and polymerization at 60 °C for 1 minute.

Calculation of BCP. Results from real-time PCR were used to estimate BCP
according to calculations described by Castillo-Lopez et al. (2010) and expressed in mg
of CP/g of DM. Real-time PCR results and concentration reactions (amount of DNA
placed in each well, and amount of total DNA recovered from each sample) were used to
calculate the abundance of DNA marker per g of DM. In addition, the abundance of DNA

marker per g of CP from a pure sample of bacteria was estimated to obtain the ratio of
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DNA marker to CP. To do so, the pure bacterial samples were analyzed for CP.
Bacterial CP content from either cow averaged 48.9 + 0.05 % and 49.7 £ 0.26 %,
respectively. From those values, the amount of BCP was calculated and reported in mg

of CP per unit of DM.

Statistical Analysis

Data collected on the concentration BCP in the solid and liquid portions of rumen
digesta were analyzed using the GLIMMIX procedure of SAS (Version 9.2; SAS
Institute, Inc., Cary, NC) as a completely randomized design. Fixed model effect
included digesta sample type as treatment with cow as the random effect, representing 2

replicates. Means were generated using the LSMEANS statement.
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RESULTS AND DISCUSSION

Bacterial crude protein concentrations tended to be higher (P = 0.09) in the solid
portion of rumen digesta than in the liquid portion as illustrated by Figure 2.1. The
relative abundance of BCP in the solid and liquid portions averaged 209.5 + 26.6 mg
BCP/g DM and 106.4 + 43.6 mg BCP/g DM, respectively. This trend we observed
favors our initial hypothesis that BCP concentrations would be greater in the solid portion
of rumen digesta than in the liquid portion. These results are not surprising, in that it has
been observed in previous studies that most rumen microorganisms are associated with
feed particles in the rumen (Forsberg and Lam, 1977; Olubobokun and Craig, 1990); up
to 70-80 % of microbial organic matter in whole rumen contents may be associated with
the particulate phase (Craig et al., 1987). However, to our knowledge, we are the first to
estimate the differentiation of BCP concentration between solid and liquid portions of
rumen digesta using DNA as a microbial marker. These results emphasize the need to
sample both the solid and liquid fractions when estimating bacterial crude protein in
rumen digesta. Future research that evaluates the bacterial community structure within
these sample types may contribute to further understanding of the nature of the observed

differences.
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TABLES AND FIGURES

Table 2.1 Ingredient and chemical composition of
TMR fed during the experiment'
Ingredient, % DM

Corn silage? 31.4
Ground corn 22.9
Alfalfa hay? 18.4
Soy bean meal, 47.5 % CP 14.8
Ground Soybean Hulls 7.90
Soy pass? 2.00
Calcium carbonate 0.90
Sodium bicarbonate 0.70
Dicalcium phosphate, 18.5 % P 0.30
Sodium chloride 0.20
Magnesium oxide 0.20
Trace Min/Vit premix’ 0.20
Chemical, % DM®
CP 17.9
NDF 29.2
Starch 20.3
Ether Extract 3.40

'Values determined by Cumberland Valley
Analytical Services, Hagerstown, MD.

NDF =39.5+0.60 %, CP=7.4+0.10 %.

SNDF =39.4 +0.90 %, CP =19.3 + 0.65 %.
4LignoTech, Overland Park, KS.

SFormulated to supply approximately 120, 000 IU/d
vitamin A, 24, 000 IU/d of vitamin D, and 800 IU/d
Vitamin E, 1.0 % Ca, 0.50 % P, 0.36 % Mg, and 1.3
% K in total ration.

SAccording to the CPM Dairy Ration Analyzer
(v3.0.8.1; Boston et al., 2000).
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Figure 2.1 Bacterial crude protein (BCP) concentration in rumen contents
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INTERPRETIVE SUMMARY

This experiment evaluated the effects of 2-hydroxy-4-methylthio-butanoic acid
(Alimet, Novus International, St. Charles, MO) on milk production and composition,
rumen microbial activity and protein flow out of the rumen, and rumen microbial
community composition when fed with diets deficient or in excess of metabolizable
protein. Milk production and composition was similar among treatments and the flow of
microbial protein was not affected by the supplement, but rumen VFA and ammonia
concentrations were increased with the addition of 2-hydroxy-4-methylthio-butanoic
acid. The rumen microbial community was also affected at the phylum level by the
supplement, and a number of associations were drawn between microorganisms and

treatments and observations.
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ABSTRACT

Four multiparous, lactating Holstein cows (average DIM 169.5 + 20.5 d), fitted
with ruminal and duodenal cannulae, were used in a 4 x 4 Latin square with a 2 x 2
factorial arrangement of treatments to investigate the effects of 2-hydroxy-4-methylthio-
butanoic acid (HMB; Alimet, Novus International, St. Charles, MO) when fed with diets
deficient or in excess of metabolizable protein (MP) on milk production and composition,
rumen microbial activity and protein flow out of the rumen, and rumen microbial
community composition. Experimental periods were 28 d in length. Cows were housed
in individual tiestalls and fed diets designated as “Low MP” or “High MP”, which were
top dressed with 250 g of HMB, once daily at 0930 h. No interactions were observed
between HMB and level of dietary MP, with the exception of ruminal acetate to
propionate ratio (P = 0.04). Milk yield was not affected by treatment and averaged 23.8
+ 2.06 kg. There was a tendency (P = 0.06) for increased milk protein percent in cows
receiving Low MP diets, averaging 3.30 = 0.09 % and 3.21 + 0.09 % for Low MP and
High MP, respectively. The DM, OM, NDF, and N digestibilities were greater (P < 0.03)
in cows consuming the Low MP diet. Rumen pH was lower (P = 0.05) in cows
consuming High MP diets as well as in those consuming HMB (P < 0.01). Rumen
kinetics were not affected among treatments. Rumen ammonia concentrations tended to
be greater (P = 0.06) in cows consuming HMB. Rumen VFA concentrations were greater
(P =10.02) in cows consuming HMB. Duodenal DM flow, N flow, and bacterial N flow
did not differ between treatments (P > 0.15). The microbial community structure of cows
receiving HMB was affected at the phylum level, as the proportion of Fibrobacteres was

increased (P =0.04). A number of association (P < 0.05) of specific microorganisms and



55

metadata were observed, including animal, HMB supplementation, level of dietary MP,
DMI, digestibility, rumen ammonia, microbial N flow, and milk production and
components. Results suggests that HMB affects rumen microbial activity, irrespective of
dietary MP level. Consequently, further investigation is warranted into the mechanism of
these effects in the rumen.

Key words: HMB, microbial protein, rumen, bioinformatics
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INTRODUCTION

Metabolizable protein (MP) is protein which is available for absorption and
utilization by the cow via the small intestine. Cows consuming rations which are low in
MP may harm productivity, as milk and protein yields can be decreased (Cabrita et al.,
2011; Lee et al., 2012). One approach to meet the needs of MP is to formulate diets to
support a high plane of microbial activity and growth in the rumen, which results in
increased microbial crude protein (MCP) available to the cow post-ruminally (NRC,
2001), as the AA profile supplied by microorganisms is believed to be similar to that
required by the cow (Korhonen et al., 2002). This practice is frequently achieved by
supplying adequate energy and proteins (Hoover and Stokes, 1991). Additionally, the
concentration of MP in the diet can be altered by feeding sources of RUP, for example,
animal proteins and dried distillers grains and solubles (Hubbard et al., 2009). As feeds
high in RUP are may be costly, promoting microbial protein productivity with cheaper
feeds is often a prudent strategy.

The commercial HMTBa product Alimet (Novus International, St. Charles, MO),
when supplemented in dairy diets, has been shown to have enhancing effects on rumen
microbial activity, including MCP yield, fiber digestibility, and VFA production. (Rosser
et al., 1971; Bull and Vandersall, 1973; Gil et al., 1973; Lundquist et al., 1983; Vazquez-
Andn et al., 2001). Despite these observations, little has been published regarding the
mechanism of action in the rumen or its performance under different ruminal conditions,
namely if the response is affected by the concentration of MP supplied by the ration.
Furthermore, much of the past research focusing on the effects of HMTBa on rumen

microbial productivity have been conducted in vitro, and does not discount the possibility
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of ruminal absorption of HMTBa (McCollum et al., 2000) and the effects of N recycling.
We hypothesized that in an in vivo experiment, rumen microbial activity would be
increased by HMTBa supplementation with the High MP diet, and that the responses
would be lower or nonexistent when fed with the Low MP diet. In addition, we
hypothesized that the rumen microbial community structure would be altered by diet type

and HMTBa supplementation.

MATERIALS AND METHODS

Animals and Treatments

The experimental cows were managed according to the guidelines stipulated by
the University of Nebraska-Lincoln Animal Care and use Committee. Four multiparous,
lactating Holstein cows fitted with ruminal and closed T-shaped duodenal cannulae were
used in this experiment, which was a replicated 4 x 4 Latin square design (Kononoff and
Hanford, 2006). Cows received each treatment once on 1 of four 28-d experimental
periods. Cows were 169.5 + 20.5 DIM at the start of the experiment and averaged 690.9
+ 98.5 kg of BW (as determined by weight tape) throughout. Cows were housed in a
temperature-controlled barn at the Dairy Metabolism Facility in the Animal Science
Complex of University of Nebraska-Lincoln (Lincoln, NE) in individual tiestalls
equipped with rubber mats.

Treatments were formulated to be either low or high in MP in the diet (stated as
“Low MP” or “High MP” within the context of these diets) according to the dairy NRC
(2001) model (Appendix II). A portion of ground corn was replaced by soybean meal in

the High MP diet in order to achieve a concentration of MP accepted as more than
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sufficient for milk production. The Low MP diet included more urea so that an adequate
amount of N was supplied, keeping CP content similar between diets, while lowering MP
down to a concentration considered to be deficient. Low and High MP diets were top
dressed with 25 g of 2-hydroxy-4-methylthio-butanoic acid (HMB) (Alimet, Novus
Interrnational, St. Charles, MO), a methionine analog, with 225 g of ground corn as a
carrier. Additionally, Low and High MP diets were top dressed with 250 g of ground
corn to serve as negative controls. The HMB and ground corn were top dressed by direct
application to the top of the TMR after it was deposited in feed bunks. The TMR were
mixed daily and animals were fed once daily at 0930 h with feed offered for ad libitum
consumption (5 % refusals). Water was available for ad libitum consumption. Cows
were milked twice daily at 0700 and 1800 h. Chromic oxide (Cr203) was used as a
marker for the estimation of digesta flow (Harvatine et al., 2002; Sylvester et al., 2005).
Seven and a half grams of Cr203 was weighed and placed in gelatin capsules (Torpac
Inc., Fairfield, NJ), then dosed into the rumen via the ruminal cannula twice daily at
approximately 0730 and 1830 h on d 17 through 26 of each experimental period to

provide a marker to estimate digesta flow.

Ruminal and Duodenal Digesta Sampling

Samples of whole rumen contents and duodenal digesta were collected every 4 h
on d 23 through 26 of each period. Whole rumen contents were strained through four
layers of cheesecloth. The pH of the filtrate was then measured with a hand held pH
probe (model M90, Corning Inc., Corning, NY) and was then placed in 50 mL conical

tubes. The solid portion of the rumen contents were retained. Duodenal digesta contents
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(200 mL) were collected and placed in 250 mL Nalgene bottles (Thermo Scientific Inc.,
Waltham, MA). Collection time was advanced 1 h in subsequent collection d, so that
every 60-minute interval in a 24-h period was represented (6 samples per d and a total of
24 samples per cow per period). Samples were collected on d 23 at 0100, 0500, 0900,
1300, 1700, and 2100; d 24 at 0200, 0600, 1000, 1400, 1800, and 2200; d 25 at 0300,
0700, 1100, 1500, 1900, and 2300; d 26 at 0400, 0800, 1200, 1600, 2000, and 0000.
Samples were then composited by cow, by day within period and immediately frozen at -

20°C for later analysis.

Feed and Fecal Sampling

Approximately 2.5 kg of individual feed ingredients as well as samples of the
TMR for each treatment were collected immediately after feeding on d 27 and 28.
Samples of refusals were taken before feeding on d 27 and 28. Feed samples were frozen
at -20°C for later analysis.

Fecal grab samples were collected at every other ruminal and duodenal digesta
collection time. Approximately 0.50 kg of feces were placed in quart-sized bags and
were frozen at -20°C for later analysis. Specifically, fecal samples were collected on d 23
at 0100, 0900, and 1700; d 24 at 0200, 1000, and 1800; d 25 at 0300, 1100, and 1900; d

26 at 0400, 1200, and 2000.

Milk Sampling
Milk yields were recorded daily. Milk samples were collected twice daily for 7

consecutive days on d 20-26. Milk samples were placed in 50 mL conical tube and
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immediately frozen at -20°C for later analysis. Additional samples were collected in 50
mL tubes and shipped to DHIA (Heart of America DHIA, Manhattan, KS) where they
were analyzed for fat, true protein, lactose, and SNF (AOAC, 200) using a B2000
Infrared Analyzer (Bentley Instruments. Chaska, MN). Milk urea nitrogen was
determined by the same laboratory using a modified Berthelot reaction concentration
using a ChemSpec 150 Analyzer (Bentley Instruments. Chaska, MN). Yields of milk
components were estimated according to milk weight and time of collection. During the

last 7 d of each period, milk yield was averaged.

Rumen Evacuation and Kinetics

Rumen contents were evacuated and weighed on d 27 approximately 4 h after
feeding and on d 28 approximately 4 h before feeding in order to estimate pool sizes and
rumen kinetics. Approximately 2.5 kg of ruminal digesta were taken during each
evacuation and immediately placed in a 60°C forced air oven and dried for 72 h for
determination of DM.

Rumen kinetics were calculated according to the equations described by Van
Soest (1994). First, rate of disappearance calculated by dividing DMI (kg DM per day)
by the rumen pool (kg DM). The resulting value was then divided by 24 and multiplied
by 100, so that rate of disappearance was expressed as % per hour. Second, rate of
passage (kp) was calculated by dividing fecal output (kg DM per day) by the rumen pool
(kg DM). The resulting value was then divided by 24 and multiplied by 100, so that kp
was expressed as % per hour. Third, rate of digestion (ka) was calculated by subtracting

kp from the rate of disappearance, and was expressed as % per hour.
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Isolation of Ruminal Bacteria and Protozoa

Ruminal bacteria were isolated according to the procedure described by Histrov et
al. (2005). Briefly, ruminal contents were composited and squeezed through 4 layers of
cheesecloth and the filtrate was retained. Solids remaining on the cheesecloth were
added to a volume of cold buffer (McDougall, 1944) equal to the volume of the filtrate,
and shaken manually in a screw-capped jar to dislodge the ruminal microorganisms
loosely associated with feed particles. This suspension was then squeezed through 4
layers of cheesecloth and the 2 filtrates were combined (1:1). From this sample, bacteria
were harvested immediately via differential centrifugation (Hristov and Broderick, 1996)
with an initial low-speed centrifugation at 400 x g for 5 min at 4°C and a subsequent
high-speed centrifugation at 20,000 x g for 15 min at 4°C. Samples were maintained on
ice while being processed. The supernatant was then discarded and the isolated bacterial
pellets were composed by cow and period and frozen at -20°C for later analysis.

Rumen protozoa were isolated using a separation funnel according to the
procedure described by Shabi et al. (2000). The strained ruminal digesta were mixed
with 1 volume of warm 0.9 % saline and held in a separation funnel for 1.5 h at 39°C.
The precipitate was then removed. The protozoal pellet was mixed with 500 mL of warm
saline and kept in a separation funnel for another 1.5 h at 39°C. Protozoa were then

collected and frozen at -20°C.

Laboratory Procedures
Analysis of Feed and Feces. Collected feed ingredients, orts, TMR, and fecal

samples were dried for 48 h at 60 °C in a forced air oven, ground to pass through a 1-mm
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screen (Wiley mill, Arthur A. Thomas Co., Philadelphia, PA). The feed samples were
then composited by period and a subsample of each was sent to an external laboratory
(Cumberland Valley Analytical Services, Hagerstown, MD) for nutrient analysis of DM
(method 930.15; AOAC, 2000), N (Leco FP-528 N Combustion Analyzer; Leco Corp.,
St. Joseph, MI), soluble protein (Krishnamoorthy et al., 1982), RDP (Krishnamoorthy et
al., 1983), NDF (Van Soest et al. 1991), ADF (method 973.18; AOAC, 2000), ADIN and
NDIN (Leco FP-528 N Combustion Analyzer; Leco Corp., St. Joseph, MI), lignin
(Goering and Van Soest, 1970), starch (Hall, 2009), sugar (DuBois et al., 1956), ether
extract (method 2003.05; AOAC, 2006), ash (method 942.05; AOAC, 2000), and
minerals (method 985.01; AOAC, 2000). Samples of TMR were used to determine
particle size according to Kononoff et al. (2003) using the Penn State Particle Separator.
Feed samples, orts, and fecal samples were also analyzed at the University of
Nebraska-Lincoln for N (Leco FP-528, Leco Corp., St. Joseph, MI), NDF (Van Soest et
al., 1991), starch (Megazyme, AOAC method 996.11 and AACC method 76.13), and ash
(method 942.05; AOAC, 2000). Heat stable a-amylase (number A3306; Sigma Chemical

Co., St. Louis, MO) was included in the NDF procedure (0.5 mL per sample).

Ammonia and VFA in Rumen Digesta. Samples of rumen fluid collected from
each cow in each period (over the course of the 4 d and representing a 24-h period) were
analyzed for ammonia and VFA.

Rumen fluid samples were analyzed for ammonia according to (Chaney and
Edward, 1962). A stock solution was prepared using known amounts of ammonium

chloride. The rumen fluid was centrifuging at 12,000 x g for 20 min at 4°C to obtain a
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clear supernatant. Next, 40 pL of the supernatant or standard was combined with 40 uLL
of water in glass test tubes. 2.5 mL of phenol reagent, containing sodium nitroprusside
and dry phenol, was added along with 2.0 mL of alkaline hypochlorite. Samples and
standards were then incubated in a 37°C water bath for 10 min. Last, 300 puL of samples
and standards were added to a microtiter plate, and the absorbance was read at a
wavelength of 500 nm on a SpctraMax 250 (Molecular Devices, Sunnyval, CA)
spectrophotometer. Ammonia concentration was estimated using linear regression,
where x = absorbance and y = concentration.

The concentration of VFA were estimated according to Erwin et al. (1961).
Rumen fluid samples were first centrifuged at 5,000 x g for 10 min. An aliquot of 2.0
mL of supernatant was combined with 0.5 mL of 25 % meta-phosphoric acid and 25 mM
2-ethybutyrate solution. A stock standard was prepared containing known amounts of
VFA, and 2.0 mL of this solution was also combined with 0.5 mL of 25 % meta-
phosphoric acid and 25 mM 2-ethybutyrate solution. Samples and standards were
refrigerated for 30 min and then centrifuged at 10,000 x g for 15 min. The supernatant
was filtered through a 25-mm Whatman (GE Healthcare Life Sciences, Pittsburgh, PA)
syringe filter using a 3 mL BD (Becton, Dickinson and Company, Franklin Lakes, NJ)
tuberculin syringe into a 2 mL screw top vial. The vials were then analyzed for VFA
using gas chromatography by a Thermo Scientific Trace 1300 (Thermo Fisher Scientific,

Waltham, MA) gas chromatographer.

Estimation of MCP Using Purines as a Microbial Marker. Collected duodenal

contents were lyophilized and ground to pass through a 1-mm screen using a Wiley mill
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(Arthur H. Thomas Company, Philadelphia, PA). Then, ground samples were analyzed
for DM (100°C oven for 24 h). Subsamples of isolated ruminal microbial pellets were
ground with a mortar and pestle and analyzed for N (method 990.03; AOAC, 2006; Leco
FP-528 Nitrogen Combustion Analyzer, Leco Corp.). Purines (Zinn and Owens, 1986;
Broderick and Merchen, 1992) were used as a microbial marker to measure duodenal
flow of total microbial N. The analysis of purines was conducted according to the
procedure described by Aharoni and Tagari (1991). Approximately 50 mg of lyophilized
microbial and duodenal samples were placed in Pyrex (Corning Inc., Corning, NY)
screw-cap tubes. Then, samples were combined with 2.5 ml of 70 % HCLO4. Samples
were then vortexed and incubated in a 90-95°C water bath for 15 min before an additional
vortexing and 45 min incubation. Next, 17.5 mL of 28.5 mM HsNPO4 was added and the
samples were reinserted into the water bath for 15 min. Samples were then filtered
through Whatman #1 filter paper (Whatman Inc., Florham Park, NJ) into 60 % 125 mm
disposable glass culture tubes. An aliquot of 0.25 mL of the filtrate was transferred into
165 x 125 mm disposable glass culture tubes and combined with 0.25 mL 0.4 M AgNO3
and 4.5 mL 0.2 M HeNPO4 and were allowed to stand overnight in the refrigerator.
Samples were then centrifuged for 10 minutes at 1,000 % g and the supernatant was
removed. The pellet was washed with 4.5 mL of washing solution and 250 pL of
AgNOs. Samples were then incubated in the water bath for 30 minutes and centrifuged
again for 10 minutes at 1,000 x g. After cooling, 200 uL of the supernatant was pipette
into a microtiter plate and total purines were measured using a 717 HPLC system (Waters

Corp. Inc., Milford, MA). Calculation of microbial N was based on the ratio of purine:N
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obtained from the isolated rumen bacterial pellet and on the concentration of purines in

duodenal samples.

Estimation of MCP using DNA as a Microbial Marker. Bacterial CP was also
estimated based on the ratio bacterial DNA marker:N. To do so, bacterial DNA was
extracted by the repeat bead beating plus column method according to the extraction
method for PCR-quality DNA from digesta samples described by Yu and Morrison
(2004) using a PowerMag Soil DNA Isolation Kit (Mo Bio, Carlsbad, CA). Collected
samples duodenal digesta and rumen bacteria were combined with lysis buffer and beads,
and then they were shaken for physical disruption of cells and exposure of cellular
contents. Then, DNA and RNA were precipitated and DNA was purified by applying a
series of centrifugation steps and by eliminating the RNA and proteins. Finally, the
MagMAX Express-96 Deep Well Magnetic Particle Processor (Applied Biosystems,
Foster City, CA) was used for magnetic bead-based extraction of DNA. The
concentration of DNA in each sample was measured by spectrophotometry (NanoDrop
ND-1000 Spectrophotometer, NanoDrop Technologies, Inc. Wilmington, DE) and stored
at -20 °C in aliquots of 90 pL for later analysis for BCP using real-time PCR.

The bacterial DNA marker used in this study has been reported elsewhere (Yu et
al., 2005) and is part of the gene encoding the 16S rRNA, which has been shown to be
highly preserved in bacteria (Ogier et al., 2002; Zimmermann et al., 2010). The National
Center of Biotechnology Information (NCBI) accession number of the targeted bacterial
DNA marker is FJ715623. The marker is composed of a forward primer, a TagMan

probe and a reverse primer. Forward primer: 5’-act cct acg gga ggc agc ag-3’. TagMan
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probe: 5’-FAM/tgc cag cag ccg cgg taa tac/TAMRA-3’. Reverse primer: 5’-gac tac cag
ggt atc taa tcc-3’. For protozoa, marker (composed of forward primer, reverse primer and
probe) was designed from DNA encoding part of the 18S rRNA gene. The NCBI
accession number of the targeted DNA is EU796177. Forward primer: 5’-gct ttc gat ggt
agt gta tt-3°. TaqMan Probe: 5’ -FAM/cgg aag gca gca ggc gc/TAMRA- 3°. Reverse
primer: 5’-act tgc cct cta atc gta ct-3’.

Real-time PCR reactions were as follows, 6.25 uL. of DNA sample were
combined with 0.5 pL of 10 uM forward primer, 0.5 pL of 10 uM reverse primer, 0.25
uL of 10 uM TagMan probe, 7.5 pL of TagMan Master Mix (Applied Biosystems, Foster
City, CA, USA). Two samples with no DNA were included and used as non-template
controls. Each sample was run in duplicate in separate wells of the 384-well real-time
PCR plate. DNA samples were subjected to real-time PCR using a 7900HT Fast Real-
Time PCR System (Applied Biosystems, Foster City, CA). Temperature cycling was as
described by Moya et al. (2009) with some variations, specific conditions were as
follows: stage 1: 50 °C for 2 minutes; stage 2: 95 °C for 10 minutes; stage 3: 50 cycles
alternating denaturation at 95 °C for 15 seconds, then annealing and polymerization at 60
°C for 1 minute.

Results from real-time PCR were used to estimate BCP and PCP according to
calculations described by Castillo-Lopez et al. (2010) and expressed in mg of CP/g of
DM. Real-time PCR results and concentration reactions (amount of DNA placed in each
well, and amount of total DNA recovered from each sample) were used to calculate the
abundance of DNA marker per g of DM from each dietary treatment. In addition, the

abundance of DNA marker per g of CP from a pure sample of each microbial type
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(bacteria, protozoa) was estimated to obtain the ratio of DNA marker to CP. To do so,
pure bacterial and protozoal samples were isolated from a portion of the ruminal fluid by
differential centrifugation as described by Shabi et al. (2000). From those values, the

amount of BCP, PCP will be calculated and reported in mg of CP/g of DM.

Rumen Microbial Community Analysis. DNA was extracted as described above
and analysis of rumen microbiota composition was performed by deep sequencing of 16S
rDNA tags on rumen digesta collected at four different time-points (0, 4, 12 16 h after
feeding) which were composited by day. Semiconductor-based sequencing was
performed on the Ion Torrent Personal Genome Machine (Life Technologies, Carlsbad,
CA) according to manufacturer protocols. Sequencing was obtained at a depth of
approximately 30,000 raw reads per sample (top 99.99 % of the microbiota) using the
341F-518R (V3) segment of the 16S rRNA gene. Conditions for PCR were as follows:
stage 1: 95°C for 2 minutes; stage 2: 25 cycles of 95°C for 30 seconds, 52°C for 30
seconds, and 72°C for 30 seconds; stage 3: 72°C for 2 minutes. Negative control and a
positive control reactions were also performed to control for any PCR contamination.
Routinely, the output of greater than 3 million filter-pass reads is achieved from amplicon
runs using 200 bp chemistry and custom bar-coded fusion primers. Amplicons from 96
samples were multiplexed after barcoding and sequenced on a single chip. The methods
used for emPCR, bead deposition, and semiconductor based sequencing on the Ion
Torrent Personal Genome Machine were used as described by the manufacturer.

The raw data from Ion Torrent Personal Genome Machine was processed through

the quality filter and analysis pipeline developed in Dr. Fernando’s Lab as described by
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Sasso, et al. (2014). The processed data was then used for microbial community analysis.
To identify taxonomic diversity, the resulting reads were classified using the
CLASSIFIER (Wang et al., 2007) algorithm (trained using Greengenes database 12 10)
and BLAST similarity matches to the National Center for Biotechnology Information
(NCBI) non-redundant database. It was expected that a portion of the sequences would
have no genus level similarity to published sequences present in the databases, therefore
we also employed an Operational Taxonomic Unit (OTU) based analysis, by clustering
sequences into OTUs based on sequence similarity (eg. >97 %). The pre-processed reads
were clustered into OTUs using USEARCH (Edgar, 2010; www.drive5.com/usearch/) at
97 % similarity (Castillo-Lopez et al., 2014) to generate Operational Taxonomic Units
(OTUgs) after screening for chimeric sequences using UCHIME (Edgar et al., 2011). To
identify the taxonomic distribution of the OTUs generated, the CLASSIFIER algorithm
described above was used. Following taxonomic identification of the OTUs, clustering
of communities/OTUs based on phenotype was performed using weighted unifrac
analysis. Ordination plots were generated using principal component analysis and non-
metric multi-dimensional scaling. In addition, the OTU distribution among treatments
was used to obtain quantitative insight into the microbial ecology as affected by dietary
treatment and was analyzed using the GLIMMIX procedure of SAS (Version 9.2; SAS
Institute, Inc., Cary, NC).

A statistical tool developed by The Huttenhower Lab (Department of
Biostatistics, Harvard School of Public Health, Boston, MA) entitled “MaAsLin”
(Multivariate Association with Linear Models), was used to find associations between

metadata and microbial community abundance utilizing OTU distribution in samples.
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The metadata used in the analysis included the observed concentrations of rumen
ammonia, VFA, and pH, as well as estimates of nutrient digestibilities, lactation
performance, duodenal flow, and microbial protein flow. For any association with a g-
value < 0.05 (the minimum false discovery rate), the MaAsLin tool generated knotched
box plots for factor data, such as animal or diet type, and scatter grams with a line of best
fit for continuous data, such as MY or rumen ammonia concentration. At the top of the
plots, the coefficient effect size (r) is listed, followed by the standard deviation, P-value,
and g-value. In addition to the knotched box plots or scatter plots, a complementary
partial residual plot was generated. In the partial residual plot, the residuals are plotted
against the independent variable, which is useful in order to detect outliers or assess the
presence or absence of inhomogeneity of variance (Larsen and Mccleary, 1972). The
DNA sequences represented by OTUs that were identified to be associated with the
various metadata were then submitted to the NCBI Standard Nucleotide BLAST tool in
order to identify specific bacterial microorganisms. After submission of sequence data to
the BLAST tool, the user is presented with a listing of potential matches to
microorganisms in the database, along with query cover %, E-value, and maximum
identity %. The query cover % represents the percentage of the sequence that overlaps
with the potentially matching microorganism’s sequence. The E-value represents the
number of expected hits that occur by chance when searching the database; the smaller
the E-value, the more significant the match. The identity % is the percent identity

between the query and the hit in a nucleotide-to-nucleotide alignment (Agostino, 2013a).
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Calculation of Digesta Flow of DM. The use of Cr203 as a marker for the
estimation of digesta flow has been reported elsewhere (Christiansen and Webb, 1990;
Titgemeyer, 1997; Kozloski et al., 1998). The concentration of Cr203 in samples of
TMR, rumen, duodenal, and fecal samples were determined by an external laboratory
(Analab, Fulton, IL) by inductively coupled plasma mass spectrometry (Vista MPX,
Agilent Technologies, Inc., Santa Clara, CA). Fecal output was calculated by dividing
the intake of Cr203 by the concentration of Cr203 in the feces. Duodenal flows were
calculated as described by Erasmus et al. (1992). The flow of DM was calculated by
dividing the amount of daily Cr203 dosed by Cr203 concentration in ground duodenal
samples. Then, DM flow was expressed in g per day. Duodenal flow of CP was
calculated by multiplying DM flow by the concentration of CP (N x 6.25) in duodenal
samples (DM basis).

Furthermore, indigestible acid detergent fiber (1IADF; Ramirez-Ramirez et al.,
2011; Huhtanen et al., 1994) and indigestible NDF (iNDF; Ahvenjirvi et al., 2003) were
determined for use as digesta flow markers. The iADF and iNDF procedures for TMR,
rumen solids, duodenal, and fecal samples were carried out in order to estimate as
additional measures of flow (Huhtanen et al., 1994). Approximately 1.25 g of I-mm
ground subsamples were weighed in triplicate into 5 X 10 cm Dacron nylon bags (Ankom
Inc., Fairport, NY) with a pore size of 50 um. The bags were then heat-sealed using an
Ankom heat sealer (Vanzant et al., 1998). Fifty Dacron bags were placed into larger
nylon mesh bags (36 x 42 cm) that contained two secured 100 g weights. Nylon mesh
bags were incubated for 12 days (Wu 2005) in the ventral sac of the rumen of steers fitted

with ruminal cannulae consuming a 70.5 % grass hay and 29.5 % grain (dried distillers’
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grains, dry-rolled corn, salt, and vitamin and mineral premix) diet. After 12 days, the
Dacron bags were removed and machine washed using five, 3 minute cycles consisting of
a 1 minute wash and a 2 minute spin, rinsed in distilled water, and dried in a 60°C forced
air oven for 12 hours. After drying, NDF and ADF were determined using an Ankom
Fiber Analyzer (Ankom Technology, Fairport, NY). Fecal output was calculated by
determining the intake of iADF or iNDF and dividing by the concentration of iADF or
iNDF in the feces. Duodenal flow was calculated by dividing the amount of iADF or

iNDF intake by the concentration of iADF or iNDF in duodenal samples and expressed in

g per day.

Statistical Analysis

Data collected on the effects of HMB supplementation and MP supplementation
were analyzed using the GLIMMIX procedure of SAS (Version 9.2; SAS Institute, Inc.,
Cary, NC) as a 4 x 4 Latin square. Fixed model effects included treatment and period
with cow as the random effect. Treatments were then partitioned into single degree of
freedom contrasts for MP and inclusion of HMB and interaction as planned a priori.

Data obtained from ruminal fluid were analyzed as repeated measures using the
simple diagonal covariance matrix in SAS. The effects of period, treatment, hour, and
treatment x hour interaction were considered as fixed effects and cow was considered as
the random effect. As above, treatments were then partitioned into single degree of

freedom contrasts for MP and inclusion of HMB and interaction as planned a priori.
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RESULTS
Diet and Ingredient Composition

Ingredient composition of the experimental diets is listed in Table 3.1. By design,
ingredient composition was kept similar across experimental diets except for in the High
MP diet, in which a portion of ground corn was replaced by soybean meal in order to
achieve a concentration of MP accepted as more than sufficient for milk production. The
Low MP diet included more urea than the High MP diet so that an adequate amount of N
was supplied, keeping CP content similar between diets, while lowering MP down to a
concentration considered to be deficient. Assuming 22 kg of DMI, the Dairy NRC
(2001) model estimated that the Low MP diet supplied 2132 g MP/day (94.4 % of
requirement), while the high MP diet supplied 2267 g MP/day (100.4 % of requirement)
(Appendix II).

Table 3.2 lists the chemical composition of the experimental diets. The CP
content of the Low MP and High MP diets were similar with 16.6 + 0.34 % and 16.6 +
0.33 % (DM basis) respectively, however, soluble protein differed as expected with 6.00
+0.35 % and 4.53 = 0.59 %. Particle size distribution is also listed in Table 3.2. The
proportion of material retained on the > 19.0 mm, 19.0 — 8.0 mm, 8.00 -1.18 mm, and <
1.18 mm screens were not different and averaged 5.77 = 1.70 %, 29.4 + 0.07 %, 48.1 +
0.57 %, and 16.8 + 0.99 %, respectively.

The chemical composition of forages, concentrates and top dress is listed in Table
3.3. The CP content of corn silage was 7.80 + 0.40 %, while alfalfa and brome hays
averaged 21.5 £ 0.61 % and 15.5 + 0.48 %. The NDF content of corn silage was 38.0 +

2.43 % and alfalfa and brome hays were 43.8 + 2.28 % and 49.5 + 3.00 %. By design,
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Low and High MP concentrates were similar in all aspects except soluble protein, which
was 8.68 + 0.90 % for Low MP concentrate and 5.55 + 1.46 % for High MP concentrate,
while CP content remained similar at 22.3 + 0.64 % and 22.2 + 1.33 % for Low and High

MP concentrates, respectively.

Dry Matter Intake, Milk Production and Composition

The results of production performance are listed in Table 3.4. The DMI, milk
yield, 3.5 % FCM, milk fat %, milk fat yield, protein yield, and MUN were not affected
by either level of MP or HMB supplementation, nor did we observe an interaction
between the two (P > 0.35), and averaged 23.9 + 1.15 kg/d, 28.2 + 3.18 kg/d, 28.7 £ 2.55
kg/d, 3.7+ 0.33 %, 1.02 + 0.09 kg/d, 0.91 = 0.8 kg/d, and 11.6 = 0.97 mg/DL across
treatments. Milk protein percent tended to be affect by level of MP (P = 0.06) but not
HMB and averaged 3.30 = 0.09 % with the Low MP diet and 3.21 £ 0.0 9% for the High

MP diet.

Nutrient Digestibility

Table 3.5 lists the results of apparent total tract apparent digestibility of nutrients
estimated with the use of Cr203, iNDF, and iADF digesta flow markers. No effects of
HMB supplementation or an interaction between HMB and level of MP on digestibility
were observed (P >0.21). Digestibility estimates obtained using iNDF as a digesta flow
marker suggested that nutrient digestibilities were increased (P < 0.03) in cows
consuming the Low MP diet. In cows consuming the Low MP diet, the DM, N, NDF,

and OM digestibilities averaged 69.4 + 0.40 %, 69.6 + 0.25 %, 54.2 + 1.10 %, and 66.9 +
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0.45 %, respectively, and 67.7 + 0.45 %, 65.5 £ 0.55 %, 50.9 + 0.80 %, and 64.5 + 0.20
% in cows consuming the High MP diet, respectively,

No effects of level of MP on digestiblity were observed (P >0.11) in estimates
obtained using iADF as a digesta flow marker. Nutrient digestibility estimates were
numerically greater in cows consuming Low MP diets. When using Cr203 as a digesta
flow marker, the DM digestibility tended to increase (P = 0.07) from the Low to High
MP diets, averaging 60.3 + 1.45 % and 64.8 + 0.55 %, respectively. Relatedly, OM
digestibility tended to increase (P = 0.08) from Low to High MP diets. The OM
digestibility averaged 57.0 £ 1.60 % and 61.7 = 0.5 % in Low and High MP diets,

respectively.

Rumen pH, Pool Size, Kinetics, Ammonia and VFA

The results of several observed rumen measurements are listed in Table 3.6.
Rumen pH was affected by both level of MP and HMB supplementation. Rumen pH was
lower (P = 0.05) in High MP diets. The average rumen pH of cattle consuming the Low
MP diets was 5.89 = 0.04, while in cattle consuming the High MP diet averaged 5.83 +
0.05. Additionally, rumen pH was lower (P < 0.01) in diets supplemented with HMB;
control diets averaged 5.90 = 0.03, while HMB supplemented diets averaged 5.82 + 0.04.

Rumen pool of DM was not affected by HMB supplementation (P = 0.41),
however, the rumen pool size tended to be greater (P = 0.08) in High MP diets. The
rumen pool of cows consuming Low MP diets averaged 10.4 + 0.25 kg of DM, while
cows consuming High MP diets was increased to 11.9 &+ 0.45 kg of DM. Rumen kinetics

of DM were not affected (P > 0.15) by level of MP, HMB, or an interaction between the
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two. The DM kpaveraged 3.00 + 0.13 %/h while the DM ka averaged 6.46 + 0.38 %/h
across treatments. No effects of HMB, level of MP, or an interaction between the two
were observed for NDF kp and averaged 2.72 & 0.33 %/h across treatments. The NDF kq
was greater (P = 0.04) in cows consuming the Low MP diet than in the High MP diet and
averaged 3.31 £ 0.04 %/h and 2.77 £ 0.16 %/h, respectively.

There was a trend for the concentration of ammonia in the rumen to be greater (P
=0.06) in cows receiving HMB. On average, rumen ammonia concentration in cows
receiving the control top dress was 16.5 £ 0.52 mg/dl, while cows consuming HMB
averaged 17.2 +£0.09 mg/dl. The total VFA concentration for cows receiving HMB was
greater (P = 0.02) than those receiving the control. The total VFA concentration for cows
consuming the control top dress was 119 &+ 1.02 mM, while cows consuming HMB
averaged 126 = 0.22 mM. The concentration of acetate in the rumen was greater (P <
0.01) in cows consuming the control diet, averaging 63.0 = 0.05 mM, while cows
receiving HMB averaged 61.8 + 0.41 mM. Rumen propionate concentration was greater
(P <0.01) in cows receiving HMB than those that did not. The average propionate
concentration in cows receiving the control top dress was 23.2 + 0.24 mM, while cows
receiving HMB averaged 24.8 + 0.31 mM. Consequently, the ratio of acetate to
propionate (A:P) was greater (P < 0.01) in cows receiving the control than those
receiving HMB. Furthermore, an interaction (P = 0.04) of HMB and diet type was
observed for A:P, which seemed to be less affected by HMB in cows receiving the High
MP diet. In cows receiving the control top dress, the A:P averaged 2.78 + 0.03, while
cows receiving HMB averaged 2.58 + 0.06. Butyrate concentration was greater (P =

0.05) in cows consuming the control than those consuming HMB. In cows consuming
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the control, butyrate concentration averaged 11.0 = 0.08 mM, while cows consuming
HMB averaged 10.7 + 0.07 mM. Rumen isovalerate concentration was greater in cows
consuming HMB than in those consuming the control (P = 0.03). The rumen isovalerate
concentration in cows receiving the control averaged 0.99 + 0.04 mM, while those
consuming HMB averaged 1.13 £ 0.07. No rumen VFA concentrations were affected by
level of MP except for valerate; cows consuming the High MP diet had greater (P < 0.01)

valerate concentrations than those consuming the Low MP diet.

Duodenal Flow of Dry Matter, Nitrogen, and Bacterial Nitrogen

Table 3.7 lists estimates of duodenal flow of DM, nitrogen, and bacterial nitrogen,
which were measured using purines and Cr203, iNDF, and iADF as digesta flow markers.
No effects of HMB supplementation, level of MP, or an interaction between the two were
observed (P > 0.15) on duodenal flow of DM, N, and bacterial N in estimates attained
using any of the digesta flow markers. The concentration of purines in isolated microbial
samples averaged 17.7 + 4.36 mg/g DM.

Using Cr203 as a digesta flow marker, duodenal flow, duodenal N flow, bacterial
N flow, and bacterial N flow as a % of total N flow averaged 17.7 £ 1.91 kg DM/d, 770 +
48.3 g DM/d, 353 + 55.4 g DM/d, and 44.7 + 5.27 % across treatments, respectively.
Using iNDF as a digesta flow marker, duodenal flow, duodenal N flow, bacterial N flow,
and bacterial N flow as a % of total N flow averaged 15.8 + 1.18 kg DM/d, 708 g + 62.5
DM/d, 315 +44.3 g DM/d, and 45.6 + 7.06 % across treatments, respectively. Using

1ADF as a digesta flow marker, duodenal flow, duodenal N flow, bacterial N flow, and
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bacterial N flow as a % of total N flow averaged 20.5 + 1.88 kg DM/d, 921 + 91 g DM/d,
403 +£ 65.2 g DM/d, and 45.6 + 6.11 % across treatments, respectively.

Table 3.8 lists estimates of the abundance of target bacterial and protozoal DNA
in duodenal fluid. No effects of HMB, level of MP, or an interaction between the two
were observed (P > 0.22) on bacterial Ct or abundance of target DNA in duodenal fluid,
and averaged 40.4 £ 0.29 cycles and 1.07E-02 £ 0.02 abundance/g DM across treatments.
No effect of HMB, level of MP or and interaction between the two was observed for
abundance of target protozoal DNA in duodenal fluid, and averaged 3.01 + 3.93
abundance/g DM across treatments. An effect of HMB on protozoal Ct was observed (P
= 0.05) and averaged 25.3 + 0.05 cycles for the control, while those of HMB averaged

26.1 + 0.25 cycles.

Community Composition of Bacteria in the Rumen

Proportions of bacterial phyla relative to total number of reads recovered from
rumen digesta are listed in Table 3.9. The results from the bioinformatic analysis of total
OTUs are listed along with those from the analysis of core OTUs, which was defined as
95 % of OTUs being present in each treatment. In the total analysis of OTUs, proportion
of bacterial phyla did not differ (P > 0.11) between concentration of MP or HMB
supplementation. There was a trend (P = 0.11) for cows consuming HMB to have
increased proportions of Fibrobacteres present. The proportion of Fibrobacteres in cows
consuming the control top dress was 0.35 + 0.06 %, while cows receiving HMB averaged
0.45 £ 0.06 %. In the analysis of core OTUs, the proportion of Fibrobacteres present

was greater (P = 0.04) in cows consuming HMB versus those consuming the control.
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Cows consuming the control averaged 0.29 + 0.04 % Fibrobacteres, while cows
consuming HMB averaged 0.41 £+ 0.04 %. There was a tendency for proportion of
Verrucomicrobia to be decreased in cows consuming HMB. Verrucomicrobia were
present in cows offered the control averaging 0.09 + 0.02 %, while they averaged 0.07 +

0.02 % in cows offered HMB.

Associations of OTUs and Metadata

Results generated by the MaAsLin analysis identified significant (P < 0.05)
associations between OTUs and HMB, level of dietary MP, DMI, microbial N flow, %
microbial N flow of total N flow, MY, % milk fat, % milk lactose, % milk protein, milk
fat yield, ammonia, N digestibility, and NDF digestibility. The association scatter grams
and complementary partial residual plots, along with the top 3 microorganism identified
by NCBI Single Nucleotide BLAST (Bethesda, MD) analysis of OTUs, are represented
in Figures 3.1—3.18. A total of 94 OTUs were identified to be associated with difference
in experimental animal. Of these OTUs, the relative abundance of 86 were found to be
different (P < 0.05) in one experimental cow than in the other three, which were similar

in every case.
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DISCUSSION

Metabolizable protein is protein that reaches the small intestine and is available
for absorption and utilization by the cow. In the formulation of dairy diets, MP is an
important consideration as it delivers the AA required for the synthesis of protein
necessary for lactation (NRC, 2001). Diets deficient in MP reduce milk and milk protein
yield (Cabrita et al., 2011), while those in excess decrease efficiency of N utilization and
contribute to higher concentrations of N in feces and ultimately excretion of N into the
environment (St-Pierre and Thraen, 1999). The HMB molecule is an analog of
methionine and has been supplemented in dairy diets because of its apparent
contributions to MP resulting from increased MCP yield (Vazquez-Andn et al., 2001). In
addition to increased MCP yield, HMB has been observed to positively affect other facets
of rumen microbial activity, including fiber digestibility and VFA production (Rosser et
al., 1971; Bull and Vandersall, 1973; Gil et al., 1973; Lundquist et al., 1983; Vazquez-
Andn et al., 2001). Many of these effects on rumen microbial activity have been
observed utilizing in vitro techniques, which do not account for rumen absorption of
HMB or N recycling. Furthermore, the effectiveness of HMB fed with diets deficient or
in excess of MP required for lactation is not readily available in literature. We
hypothesized that in an in vivo experiment, rumen microbial activity would be increased
by HMB supplementation with the High MP diet, and that the responses would be lower
or nonexistent when fed with the Low MP diet. Additionally, we hypothesized that the
rumen microbial community structure would be altered by diet type and HMB
supplementation. In order to test this, rations were formulated to be either deficient or in

excess of MP, were top dressed with HMB or a control, and were fed to lactating,
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ruminally and duodenally cannulated cows. The effects to be observed were intake and
digestibility, lactation performance, ruminal pH, VFAs, and ammonia, and MCP flow to
the duodenum using purines and DNA as microbial markers. In addition, microbial
community structure was assessed using high throughput sequencing of rumen microbial
DNA.

This study employed the use of a replicated 4 x 4 Latin square design (Kononoff
and Hanford, 2006). Because ruminal and duodenal digesta sampling as performed in
this study is laborious, a 4 x 4 Latin square design was logistically beneficial, as only
four cows were required. However, several assumptions are made with this type of
design. First, we assumed there is no carryover of treatment effects into subsequent
periods, and that the length of the adaptation was sufficient. Using a single 4 x 4 Latin
square, Castillo-Lopez et al. (2014) were successful in observing differences in rumen
characteristics similar to those observed in this study. Second, the 4 x 4 Latin square
may have limited statistical power, in that the chance of type II errors are increased with
fewer observations. This becomes especially relevant to this experiment in terms of
estimating responses in milk production and components, as this study was underpowered
to determine these differences; rather, our focus was directed to the ruminal effects of
HMB supplementation, where this type of experimental design is more appropriate.
Larger studies may be required in order to determine differences in milk production
variables. Using sixty-one Holstein cows, St-Pierre and Sylvester (2005) determined that
significant responses in milk protein yield as an effect of feeding different methionine

sources (including HMB) were not observed until after 5 weeks of supplementation.
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In every measurement of the experiment, no interactions were observed between
HMB and level of MP in the diet (with the exception of the ruminal acetate to propionate
ratio). This is noteworthy in terms of our hypothesis, in that the effects of HMB were
seemingly unaltered under conditions in which dietary MP was adequate or deficient.

Supplementation of HMB did not affect nutrient digestibility, however an effect
of the level of dietary MP was observed. The digestibilities of DM, OM, N, and NDF
were all increased in cows receiving diets which were low in MP. The rate of NDF
digestion was decreased in cows receiving the High MP diet, which may have been a
consequence of decreased ruminal pH in cows consuming this diet, as a reduction in pH
hinders rate of NDF digestion (Grant and Mertens, 1992). We observed an average rate
of NDF digestion of 3.04 %/h, which was similar to observations by Ramirez (2013)
which averaged 2.81 %/h. In order to attain a concentration of MP that was deficient in
the Low MP diet, soybean meal was reduced by 3.20 % of the diet DM and replaced
with 2.60 % corn grain and 0.60 % urea (relative to the high MP diet). Consequently, it
is not a surprise that nutrient digestibility estimates were greater for the Low MP diet, as
corn grain tends to be more digestible than soybean meal, being lower in fiber and higher
in starch (Macgregor, 2000). This was reflected in the fiber analyses of the TMR, as the
low MP diet is higher in starch and lower in NDF and ADF. Additionally, the increase of
urea in the Low MP diet contributed to a 1.47 % increase in soluble protein relative to the
High MP diet, which may explain elevated estimates of N digestibility in cows
consuming the Low MP diet, as urea is a highly digestible source of N (Griswold et al.,
2003). In order to estimate digestibility, three different digesta flow markers were used

to calculate fecal output; this included one external marker, Cr203, and two internal
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markers, iNDF and iADF. Digestibility estimates attained by using Cr203 and iADF did
not yield significant results. As suggested by Ipharraguerre et al. (2007) estimations of
digesta flow attained from the Cr203 markers may be less sensitive to contributions of
digesta phases in duodenal contents, as Cr203 does not associate with any phase as it
flows through the digestive system (Merchen, 1988). Huhtanen et al. (1994) suggested
that digesta flow estimates may be variable when using iNDF or iADF as markers, as
there is a potential for the loss of particles of feed and fecal samples from the nylon bags
during ruminal incubation. Due to our observed differences in nutrient digestibility
estimates, which are potentially explained by dietary differences discussed above, we
decided to rely heavily on iNDF as a marker for digesta flow.

Several unexpected effects of HMB supplementation were observed in rumen
measurements. Firstly, acetate concentration was decreased while propionate
concentration was increased. This is contrary to what Rosser et al. (1971) and Lundquist
et al. (1973) observed in vivo. In two more recent studies (Vazquez-Aidn et al., 2001;
Noftsger et al., 2005), an effect of HMB on VFA production was not observed. The only
interaction of HMB and diet type observed in this study was the acetate to propionate
ratio, which decreased when HMB was supplemented with the Low MP diet, but less so
than with the High MP diet. The interaction was likely driven by the increase in the
concentration of propionate we observed when HMB was supplemented with the Low
MP diet. As no others have observed an increase in the concentration of propionate in
response to HMB, we have no explanation for this interaction. Secondly, rumen pH was
decreased with HMB supplementation, while no effect on rumen pH was observed in

work by Vazquez-Anodn et al. (2001) and Noftsger et al. (2005). Our observations of
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increased rumen VFA concentration were the likely driver of the reduction in pH.
Thirdly, a trend for increased ammonia concentration was observed. This observation
was contrary to previous research (Vazquez-Afion et al., 2001) where a decrease in
ammonia concentration was observed, however, Blake et al. (1986) suggested that HMB
supplementation may stimulate protein digestion, releasing more ammonia in the rumen.
With mixed results, the effects of HMB on VFA concentration, ammonia, and pH in the
rumen remains unclear and warrants further investigation.

An effect of HMB supplementation on MCP yield was not observed in this study,
similar to work by Noftsger et al. (2005). This may have been partially due to the large
amount of variability in estimates of duodenal MCP concentration we observed using
purines as markers. Variation of observations in MCP flow using purines as markers is
not uncommon due to the apparent variability in the concentration of purines in bacteria;
Obispo and Dehority (1999) observed a variation of the concentration of purines as a
percent of DM ranging from 0.69 to 5.57 % in 10 pure cultures. A meta-analysis of
studies involving purines (Clark et al., 1992) found a range of estimates of purine
concentration in mixed ruminal bacteria from 2.40 to 13.02 %. Furthermore, our
methodology did not account for the contributions of endogenous protein to duodenal
purine concentration, which may account for 1 to 7 % of duodenal protein flow (Rulquin
et al., 1998). These limitations may be overcome experimentally by increasing sample
size, replication, and therefore, statistical power. In addition, variation of duodenal
digesta flow estimates and may ultimately contribute to variation in MCP flow
observations. For example, using iADF as a digesta flow marker, Castillo-Lopez et al.

(2014) observed an average of 15.2 kg duodenal DM flow, while our observations
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averaged 20.5 kg duodenal DM flow using iADF; differences in duodenal flow estimates
will largely impact calculated MCP flow.

Unfortunately, microbial protein flow using DNA markers was not calculated, as
the initial mass of samples used for DNA extraction were not recorded. Rather, equal
volumes of samples were used, and mass was assumed to be the same. Due to the
analytical precision needed to attain reasonable estimates of MCP, especially in light of
the exponential amplification of PCR, we found that small variations in initial sample
mass largely impacted final estimates of MCP, therefore MCP flow estimates were not
reported. Alternatively, results were expressed as Ct values derived from RT-PCR
targeting either bacterial or protozoal DNA in equal volumes of duodenal fluid, and as
abundance of target DNA per g of duodenal fluid DM. No effects of HMB, level of MP,
or an interaction between the two on abundance of target DNA or Ct were observed for
bacteria, supporting our observations of MCP flow made using purines as microbial
markers, where no differences were observed. The Ct values which we observed when
targeting bacterial DNA were higher than expected and need to be revisited. The
supplementation of HMB appeared to increase Ct when targeting protozoal DNA in
duodenal fluid, suggesting that, because more thermal cycles were required to reach the
amplification threshold, less protozoal DNA was present in the duodenal fluid of cows
receiving HMB than those receiving the control.

A plethora of data were generated as a result of bioinformatics analysis of rumen
microbial DNA. At the phylum level, the rumen microbiome was largely unaffected by
treatment (Table 3.8), however, HMB supplementation seemed to increase the proportion

of Fibrobacteres. Ramirez et al. (2012) observed that proportion of Fibrobacteres
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relative to the total bacterial population tended to be sensitive to dietary changes.
Increased proportions of Fibrobacteres may contribute to the enhanced fiber
digestibilities others have observed in response to HMB supplementation (Gil et al.,
1973; Bull and Vandersall, 1973; Noftsger et al., 2005), although we did not observe
increased fiber digestibility in this study. Community structure was not affected by Low
or High MP diets; while minor adjustments in RDP and available carbohydrates were
made in order to alter concentration of dietary MP between diets, these did not result in
changes in the microbial community structure. A number of associations were drawn
between OTUs and metadata resulting from the MaAsLin analysis, suggesting specific
microorganisms were related to metadata. Only one OTU was found to be associated
with HMB supplementation and was identified by the BLAST analysis as
Anoxynatronum sibricum. When HMB was supplemented, the relative abundance of
Anoxynatronum sibricum decreased. As Anoxynatronum sibricum is a true alkaliphile
(Garnova, et al., 2003), our observations of decreased ruminal pH with HMB
supplementation may explain the decrease in the relative abundance of this OTU. One of
the strongest associations discovered by the analysis was with rumen ammonia
concentration and OTU 738, which the BLAST analysis identified as Eubacterium
coprostanoligenes, or two strains of Clostridium clariflavum, DSM 19732 and EBR45.
Eubacterium coprostanoligenes may not be the proper microorganism represented by this
OTU, as ruminal pH is too low to support its growth (Vos et al., 2009). A more likely
candidate, Clostridium clariflavumn DSM 19732 contains the gene encoding for aspartate-
ammonia ligase (Izquierdo et al., 2012), which catalyzes the conversion of L-asparate to

L-asparagine in the presence of ATP and ammonia (Hinchman et al., 1992). Asparagine
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plays an important role in the synthesis of ammonia (Bishop et al., 2013). Another
association drawn by the analysis was between OTU 451, which the BLAST analysis
identified as Butyrvibrio crossotus, and g microbial N flow per day as well as microbial
N flow as a % of the total N flow. This association, albeit weaker than others observed
within this study, could be explored in future studies for use as a marker for microbial N
flow. The MaAsLin analysis also revealed associations of a total of 94 OTUs related to
specific experimental animals, 86 of which were found to be unique to a single animal,
cow number 3069; the difference in the rumen microbial community structure of this cow
is illustrated in a principal coordinate analysis in Figure 3.19. The difference in this
cow’s rumen microbial community structure may be explained by the fact that she was a
relatively new animal to the research facility, being purchased from a commercial farm
several weeks prior to the commencement of the experiment. Additionally, the cow
underwent rumen and duodenal cannulation surgery several weeks prior to collection.
Further research needs to be conducted in order to determine if environment, cannulation
surgery, or drugs administered during and after surgery played a role in differing
community structures. Sequencing technology is an emerging science and application of
this information is not completely developed, however, it presents vast opportunities for
discoveries related to host-bacterial interactions, opening the door for advances in animal
health, productivity, and food safety (Krause et al., 2014).

In conclusion, continued inclusion of HMB in dairy diets is advisable due to its
enhancing effects on milk production and milk fat yield (Zanton et al., 2014). However,

a better understanding of its effects in the rumen, including potential influences on the



87

microbial community structure, would help nutritionists know how to best utilize it as a

supplement in dairy rations.
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TABLES AND FIGURES

Table 3.1 Ingredient and chemical composition of TMR fed during the
experiment formulated to supply concentrations of metabolizable protein
either deficient or in excess of requirements for lactating dairy cows!

Level of Metabolizable Protein

Ingredient, % DM Low MP High MP
Corn silage 35.0 35.1
Corn grain 16.5 13.3
Alfalfa hay 13.7 13.7
Grass hay 9.10 9.12
Soybean hulls 7.96 7.98
Reduced fat DDGS? 5.69 5.70
Molasses cane 4.09 4.10
Soybean meal 3.64 7.30
Limestone 1.09 1.09
Urea 0.75 0.15
Sodium bicarbonate 0.64 0.64
Dicalcium phosphate 0.58 0.58
Blood meal 0.45 0.46
Magnesium oxide 0.23 0.23
Salt 0.21 0.21
Calcium salts® 0.17 0.17
Mineral premix* 0.10 0.10
Vitamin premix’ 0.10 0.10
Chemical composition
DM, % 59.5 59.4
CP, % 15.4 15.4
RUP, % CP 333 37.1
RDP, % CP 66.7 62.9
NDF, % 33.7 33.8
ADF, % 22.1 22.2
Starch, % 27.1 24.9
Ether extract, % 2.71 2.62
MP, kg® 2.13 2.27
NE., Mcal® 33.2 33.5

'According to the CPM Dairy Ration Analyzer (v3.0.8.1; Boston et
al., 2000).

2Dried distillers grains with solubles.

3Megalac (Church & Dwight Co. Inc., Princeton, NJ).

“Formulated to contain 1.0 % Ca, 0.50 % P, 0.36 % Mg, and 1.3 % K.
*Formulated to supply approximately 120,000 IU of vitamin A/d,
24,000 IU of vitamin D/d, and 800 IU of vitamin E/d in the total ration.
®According to the dairy NRC (2001) model.
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Table 3.2 Chemical composition and particle size of Low and High MP TMR fed during the
experiment!

Level of Metabolizable Protein

Low MP High MP
Mean SD Mean SD
Chemical, % DM
DM 61.3 1.80 61.9 1.82
CP 16.6 0.34 16.6 0.33
Soluble protein 6.00 0.35 4.53 0.59
ADICP? 1.15 0.04 1.23 0.10
NDICP? 2.54 0.25 2.71 0.24
ADF 22.2 1.02 22.7 0.13
NDF 34.7 1.10 35.1 1.60
Lignin 3.30 0.81 3.47 0.92
Lignin, % NDF 9.46 2.04 9.89 2.66
NFC* 38.2 1.18 37.0 2.42
Starch 254 1.08 22.6 0.88
Sugar 4.00 0.40 4.70 1.41
Ether extract 2.32 0.55 2.88 0.27
Ash 8.13 0.23 8.43 0.76
Ca, % 1.09 0.05 1.12 0.08
P, % 0.45 0.01 0.46 0.03
Mg, % 0.29 0.02 0.30 0.01
K, % 1.73 0.08 1.84 0.13
S, % 0.23 0.01 0.25 0.01
Na, % 0.36 0.02 0.36 0.01
Cl, % 0.40 0.03 0.40 0.02
Fe, ppm 370 24.8 383 20.3
Zn, ppm 95.8 5.56 103 5.94
Cu, ppm 27.3 1.71 28.8 0.96
Mn, ppm 87.5 5.80 93.0 2.58
Particle Size, %’
>19.0 mm 4.56 2.55 6.97 4.57

19.0 - 8.0 mm 294 3.39 29.3 3.28
8.0-1.18 mm 48.5 3.61 47.7 2.83
<1.18 mm 17.5 2.30 16.1 497

'Values determined by Cumberland Valley Analytical Services, Hagerstown, MD.

2Acid detergent insoluble crude protein.

’Neutral detergent insoluble crude protein.

*NFC = Nonfiber carbohydrate calculated by difference 100 - (% NDF + % CP + % Fat + % Ash).
Determined using the Penn State Particle Separator on wet basis (Heinrichs and Kononoff, 2002).



Table 3.3 Chemical composition of corn silage, alfalfa hay, brome hay, Low and High MP concentrates, and control and 2-hydroxy-4-methylthio-butanoic
acid (HMB) top dress fed during the experiment! (n = 4)

Low MP High MP Control Top HMB Top
Corn Silage Alfalfa Hay Brome Hay Concentrate Concentrate Dress Dress
Chemical, % DM Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

DM 40.6 434  87.1 221 86.8 1.76 909 0.87 91.0 130  89.0 057 912 0.69
CP 7.80 040 215 0.61 155 048 223 0.64 222 1.33 10.0 0.31 8.75 0.72
Soluble protein 4.20 0.54 4.35 0.25 3.83 0.93 8.68 090 555 1.46 1.50 0.22 1.00  0.73
ADICP? 0.95 0.06 2.69 1.17 1.26 0.11 1.03 052  0.78 0.07 0.65 0.04  0.51 0.09
NDICP? 1.31 0.12 7.20 227  5.09 0.42 1.67 0.42 1.58 0.23 0.97 037 0.67 0.06
RDP 5.98 0.45 12.9 034 9.70 0.56 -- - -- - - -- - --
ADF 25.6 1.94 310 0.74 357 1.18 13.4 191 132 1.10 2.53 057 253 0.78
NDF 38.0 243 4338 228 495 3.00 23.0 201 228 1.83 8.90 0.98 8.88 1.12
Lignin 3.20 0.27 7.10 0.80  4.28 0.26 1.73 0.84 1.78 0.81 1.06 0.68 1.77 050
Lignin, % NDF 8.43 0.73 16.2 1.31 6.67 0.47 7.58 3.71 7.64 2.96 11.9 7.81 204 6.64
NFC* 453 208 227 482 237 293 42.6 1.55 429 127 772 1.66 76.0 0.75
Starch 35.2 2.11 2.90 0.72 095 025 295 224 257 098 693 1.77  60.2 1.42
Sugar 1.00 0.27 5.70 1.07 433 0.44 7.50 0.80  8.23 1.13 2.58 0.43 2.75 0.85
Ether extract 3.59 0.08 1.92 0.10 234 0.16 241 0.70  2.29 0.49 2.44 0.60  4.81 0.93
Ash 5.37 0.23 11.2 0.16 10.1 0.53 9.71 0.66  9.85 0.82 1.50 0.50 1.61 0.71
Ca, % 0.30 0.04 1.45 0.14 043 0.07 2.00 0.21 1.95 0.28 0.03 0.01 0.02  0.01
P, % 0.26 0.04 0.35 0.04 036 0.01 0.71 0.11 0.72 0.05 0.30 0.01 0.25 0.02
Mg, % 0.13 0.01 0.23 0.02  0.15 0.01 0.50 0.05 0.53 0.04 0.11 0.01 0.10  0.01
K, % 1.06 0.12 3.69 0.25 3.60 0.17 1.23 0.06 1.45 0.05 0.41 0.03 036  0.02
S, % 0.13 0.00 0.27 0.01 0.20 0.01 0.29 0.01 0.32 0.01 0.14 0.00 1.21 0.14
Na, % 0.02 0.01 0.02 0.01 0.02 0.01 0.86 0.10 090 0.14 0.01 0.00 0.01 0.00
ClL % 0.17 0.01 0.34 0.03 1.30 0.11 0.42 0.05 0.41 0.06 0.07 0.01 0.17  0.03
Fe, ppm® 310 195 252 51.6 192 29.0 595 85.7 600 60.6 66.8 10.1 98.8 12.2
Zn, ppm 29.5 1.91 31.5 1.91 295 1.73 186 258 214 22.9 36.3 2.87 315 1.73
Cu, ppm 6.50 0.58 12.3 7.85 145 10.3 52.3 3.40 55.0 5.89 3.00 0.82 3.00 0.00
Mn, ppm 24.8 1.89 315 173 26.8 12.7 170 40.1 173 40.3 10.5 1.29 8.75 0.96

'Values determined by Cumberland Valley Analytical Services, Hagerstown, MD.

2Acid detergent insoluble crude protein.

3Neutral detergent insoluble crude protein.

“NFC = Nonfiber carbohydrate calculated by difference 100 - (% NDF + % CP + % Fat + % Ash).
SParts per million.
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Table 3.4 Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with Low and High MP diets on milk
production and composition

Treatment
Low MP High MP P-value'
Control HMB Control HMB SEM? MP HMB MP x HMB
DM, kg/d 23.5 23.7 24.1 24.1 1.15 0.48 0.96 0.89
Milk yield, kg/d 27.9 27.1 29.1 28.6 3.18 0.53 0.78 0.92
ECM? 28.6 27.8 29.8 29.4 2.55 0.48 0.77 0.93
Fat, % 3.66 3.75 3.67 3.70 0.33 0.76 0.47 0.67
Fat yield, kg/d 1.00 0.97 1.06 1.04 0.09 0.35 0.79 0.97
Protein, % 3.26 3.33 3.19 3.22 0.09 0.06 0.27 0.67
Protein yield, kg/d 0.91 0.88 0.92 0.91 0.08 0.74 0.78 0.85
MUN*, mg/DL 11.6 12.0 11.0 11.8 0.97 0.41 0.21 0.66

!P-values for contrasts of level of metabolizable protein and HMB supplementation.

’The highest standard error of treatment means is shown.
3Energy corrected milk = 0.327 x milk yield [kg] + 12.95 x fat [kg] + 7.20 x protein [kg] adjusted for 3.5 % fat and 3.2 %
total protein (DHI Glossary, 2014).

*Milk Urea Nitrogen.
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Table 3.5 Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with high or low MP diets on
nutrient digestibility estimated using chromium oxide, iNDF or iADF as digesta flow markers

Treatment
Low MP High MP P-value?

Control HMB Control HMB SEM! MP HMB MP x HMB

Cr203 marker

DM, % 58.8 61.7 64.2 65.3 245  0.07 0.37 0.66
N, % 58.8 62.0 61.7 64.0 239 025 0.21 0.83
NDF, % 38.8 42.2 45.7 47.9 380  0.11 0.44 0.87
OM, % 55.4 58.6 61.1 62.2 266  0.08 0.37 0.66
iNDF marker
DM, % 69.8 69.0 67.2 68.1 1.80  0.03 0.94 0.21
N, % 69.8 69.3 64.9 66.0 1.99  0.01 0.80 0.50
NDE, % 55.3 53.1 50.1 51.7 245 001 0.77 0.08
OM, % 67.3 66.4 64.3 64.7 197  0.02 0.80 0.44
1ADF marker
DM, % 62.6 61.5 57.4 62.1 3.18  0.45 0.56 0.34
N, % 63.0 61.8 54.4 60.9 293 0.11 0.33 0.18
NDF, % 44.2 41.4 34.9 42.8 517 044 0.62 0.32
OM, % 59.5 58.3 53.7 58.7 344 041 0.56 0.34

IThe highest standard error of treatment means is shown.
2P-values for contrasts of level of metabolizable protein and HMB supplementation.
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Table 3.6 Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with Low or High MP diets on rumen pH, pool,
kinetics, and concentration of ammonia and volatile fatty acids

Treatment
Low MP High MP P-value!
Control HMB Control HMB SEM? MP HMB MP x HMB

pH 5.93 5.85 5.87 5.78 0.15 0.05 <0.01 0.90
Pool, kg DM 10.6 10.1 12.3 11.4 1.28 0.08 0.41 0.83
Rates?, %/h

DM kp 2.89 3.17 2.87 3.07 0.36 0.72 0.19 0.82

DM kd 6.60 6.95 591 6.39 0.57 0.15 0.31 0.86

NDF kp 2.72 2.93 2.58 2.64 0.33 0.34 0.53 0.71

NDF k4 3.34 3.27 2.61 2.92 0.31 0.04 0.57 0.39
Ammonia, mg/dl 17.0 17.3 16.0 17.2 0.88 0.14 0.06 0.30
Total VFA, (mM
VFA mol/lO(O mo)l 120 126 118 126 6.36 0.77 0.02 0.65

Acetate 63.1 61.4 63.0 62.2 1.34 0.33 <0.01 0.21

Propionate 23.0 25.1 234 24.5 1.23 0.83 <0.01 0.08

Isobutyrate 0.32 0.52 0.43 0.40 0.07 0.90 0.23 0.12

Butyrate 11.1 10.6 11.0 10.8 0.40 0.97 0.05 0.40

Isovalerate 0.95 1.07 1.04 1.20 0.13 0.09 0.03 0.71

Valarate 1.45 1.45 1.59 1.67 0.09 <0.01 0.33 0.33

A:P* 2.82 2.52 275 2.64 020 060  <0.01 0.04

! P-values for contrasts of level of metabolizable protein and HMB supplementation.

2The highest standard error of treatment means is shown.

3Rate of passage (kp); rate of digestion (ka).

“Ratio of acetate to propionate.
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Table 3.7 Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with Low and High MP diets on duodenal digesta and N
flows estimated using purines and either chromium oxide, iNDF or iADF as digesta flow markers

Treatment
Low MP High MP P-value!
Control HMB Control HMB SEM? MP HMB MP x HMB

Cr203 marker

Duodenal Flow, kg DM/d 17.8 17.5 17.7 17.7 1.91 0.97 0.90 0.92

Duodenal N Flow, g DM/d 766 772 787 755 48.3 0.94 0.66 0.51

Microbial N Flow, g DM/d 367 303 385 355 55.4 0.35 0.23 0.65

Microbial N of total N Flow, %  48.5 39.7 47.3 43.2 527 0.78 0.15 0.57
INDF marker

Duodenal Flow, kg DM/d 15.7 15.7 15.0 16.9 1.18 0.79 0.38 0.39

Duodenal N Flow, g DM/d 687 703 670 773 62.5 0.60 0.27 0.41

Microbial N Flow, g DM/d 343 270 319 328 443 0.71 0.47 0.37

Microbial N of total N Flow, %  49.8 39.7 49.2 43.8 7.06 0.72 0.15 0.64
1ADF marker

Duodenal Flow, kg DM/d 20.8 21.4 18.4 21.5 1.88 0.56 0.36 0.53

Duodenal N Flow, g DM/d 911 964 825 982 91.0 0.72 0.29 0.59

Microbial N Flow, g DM/d 469 345 390 406 65.2 0.89 0.43 0.32

Microbial N of total N Flow, % 49.8 39.7 49.2 43.8 6.11 0.72 0.15 0.64

! P-values for contrasts of level of metabolizable protein and HMB supplementation.
2The highest standard error of treatment means is shown.
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Table 3.8. Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with Low or High MP diets on bacterial and
protozoal DNA abundance in duodenal fluid as estimated by real-time PCR

Treatment
Low MP High MP P-Value?
Control HMB Control HMB SEM! MP HMB MP x HMB

Bacteria

Ct’ 39.9 40.6 40.5 40.4 0.29 0.46 0.30 0.22

Abundance/g DM 228E-03 7.66E-03 3.26E-02 1.18E-04  0.02 0.48 0.41 0.26
Protozoa

Ctd 253 25.8 25 26.3 054 053 0.05 0.46

Abundance/g DM 2.00 0.20 0.61 9.24 3.93 0.37 0.42 0.23

"Highest standard error of treatment means is shown.

2P-values for contrasts of level of MP and HMB supplementation.

3Cycle thresholds resulting from RT-PCR targeting DNA encoding part of the bacterial 16S rRNA gene.

“Abundance of targeted DNA per gram of duodenal fluid DM; Abundance = (1/Efficency”Ct) (Castillo-Lopez et al., 2010).
>Cycle threshold resulting from RT-PCR targeting DNA encoding part of the protozoal 18S rRNA gene.
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Table 3.9 Effects of feeding 2-hydroxy-4-methylthio-butanoic acid (HMB) with Low and High MP diets on proportion on
proportion of phyla of rumen bacterial populations relative to total number of reads recovered from ruminal digesta attained from
bioinformatics analysis of total and core OTUs

Treatment
Low MP High MP P-Value'
Control HMB Control HMB SEM? MP HMB MP x HMB
Total Analysis
Firmicutes 59.4 56.8 56 57.1 2.92 0.51 0.74 0.43
Bacteroidetes 27.7 29.8 29.8 29.9 2.33 0.61 0.59 0.62
Other 4.38 4.58 4.20 3.60 0.74 0.92 0.38 0.90
Proteobacteria 1.63 2.73 2.83 2.15 0.75 0.63 0.74 0.20
™7 1.68 1.90 1.85 1.98 0.35 0.35 0.21 0.70
Tenericutes 1.10 1.03 1.25 1.18 0.14 0.34 0.62 1.00
Actinobacteria 0.68 0.05 0.45 0.08 0.36 0.79 0.22 0.74
SR1 0.70 0.73 0.73 0.98 0.22 0.43 0.43 0.51
Spirochaetes 0.50 0.58 0.60 0.68 0.13 0.20 0.33 1.00
Fibrobacteres 0.31 0.46 0.39 0.44 0.06 1.00 0.11 0.21
Verrucomicrobia 0.10 0.05 0.15 0.10 0.03 0.17 0.17 0.62
Core Analysis
Firmicutes 61.4 593 58.2 58.9 2.76 0.43 0.77 0.54
Bacteroidetes 27.0 28.3 29.7 29.0 2.23 0.34 0.86 0.58
Other 3.70 3.15 2.68 3.18 0.39 0.25 0.95 0.23
Proteobacteria 1.53 2.70 2.73 2.03 0.65 0.67 0.70 0.17
™7 1.80 2.00 1.98 2.10 0.37 0.34 0.26 0.78
Tenericutes 1.00 0.90 1.10 1.08 0.13 0.32 0.64 0.78
Actinobacteria 0.60 0.05 0.45 0.08 0.36 0.87 0.24 0.81
SR1 0.75 0.73 0.78 1.03 0.24 0.40 0.56 0.47
Spirochaetes 0.38 0.38 0.38 0.43 0.07 0.62 0.62 0.62
Fibrobacteres 0.25 0.43 0.33 0.38 0.04 0.79 0.04 0.21
Verrucomicrobia 0.08 0.08 0.10 0.05 0.02 1.00 0.13 0.13

!P-values for contrasts of level of metabolizable protein and HMB supplementation.
’The highest standard error of treatment means is shown.
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Figure 3.1 The association of the relative abundance of OTU 408 and the control or 2-
hydroxy-4-methylthio-butanoic acid (HMB) top dress, along with the complementary
partial residual plot. The r (sd) coefficient effect size, and P and g value tests for
significance, are shown above the figure. Below the figure, the top three microorganisms
matching the OTU as identified by NCBI Standard Nucleotide BLAST (Bethesda, MD)

are listed.
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Figure 3.2 The association of the relative abundance of OTU 783 and Low or High MP
diets, along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and ¢ value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.3 The association of the relative abundance of OTU 819 and Low or High MP
diets, along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and ¢ value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.



108

-0.00234 sd 2.56e-05, p < 0.01, q = 0.04 Partial Residual Plot

.

0022 0024 0.026
L |
B*DMi+e
24,430 24.435
1 1

0OTU451
0.020

0.018

24.425
1

©
I I I I I I I I g . I T I I I I I |
21 2 23 24 25 26 27 28 21 2 23 24 25 26 27 28
DMI, kg DM/d DMI, kg DM/d

OTU 451 Strain Query cover, %  Evalue Identity, %
Butyrivibrio crossotus DSM 2876 100 5E-71 98
Colstridium hathewayi 1313 100 2E-69 97
Eubacterium rectale ATCC 33656 100 1E-67 97

Figure 3.4 The association of the relative abundance of OTU 451 and DMI (kg DM/d),
along with the complementary partial residual plot. The r (sd) coefficient effect size, and
P and g value tests for significance, are shown above the figure. Below the figure, the
top three microorganisms matching the OTU as identified by NCBI Standard Nucleotide
BLAST (Bethesda, MD) are listed.
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Figure 3.5 The association of the relative abundance of OTU 451 and g microbial N
flow per day, along with the complementary partial residual plot. The r (sd) coefficient
effect size, and P and ¢ value tests for significance, are shown above the figure. Below
the figure, the top three microorganisms matching the OTU as identified by NCBI
Standard Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.6 The association of the relative abundance of OTU 451 and percent microbial
N of total N flow per day, along with the complementary partial residual plot. The r (sd)
coefficient effect size, and P and g value tests for significance, are shown above the
figure. Below the figure, the top three microorganisms matching the OTU as identified
by NCBI Standard Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.7 The association of the relative abundance of OTU 451 and milk yield (kg/d),
along with the complementary partial residual plot. The r (sd) coefficient effect size, and
P and ¢ value tests for significance, are shown above the figure. Below the figure, the
top three microorganisms matching the OTU as identified by NCBI Standard Nucleotide
BLAST (Bethesda, MD) are listed.
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Figure 3.8 The association of the relative abundance of OTU 451 and percent milk fat,
along with the complementary partial residual plot. The r (sd) coefficient effect size, and
P and ¢ value tests for significance, are shown above the figure. Below the figure, the
top three microorganisms matching the OTU as identified by NCBI Standard Nucleotide

BLAST (Bethesda, MD) are listed.
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Figure 3.9 The association of the relative abundance of OTU 451 and percent milk
lactose, along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and g value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.10 The association of the relative abundance of OTU 451 and percent milk
protein, along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and g value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.11 The association of the relative abundance of OTU 451 and milk fat yield
(kg/d), along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and g value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.12 The association of the relative abundance of OTU 738 and rumen ammonia
(mg/dl), along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and g value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.13 The association of the relative abundance of OTU 1477 and rumen
ammonia (mg/dl), along with the complementary partial residual plot. The r (sd)
coefficient effect size, and P and ¢ value tests for significance, are shown above the
figure. Below the figure, the top three microorganisms matching the OTU as identified
by NCBI Standard Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.14 The association of the relative abundance of OTU 85 and rumen ammonia
(mg/dl), along with the complementary partial residual plot. The r (sd) coefficient effect
size, and P and ¢ value tests for significance, are shown above the figure. Below the
figure, the top three microorganisms matching the OTU as identified by NCBI Standard
Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.15 The association of the relative abundance of OTU 1910 and percent N
digestibility, along with the complementary partial residual plot. The r (sd) coefficient
effect size, and P and ¢ value tests for significance, are shown above the figure. Below
the figure, the top three microorganisms matching the OTU as identified by NCBI
Standard Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.16 The association of the relative abundance of OTU 316 and percent N
digestibility, along with the complementary partial residual plot. The r (sd) coefficient
effect size, and P and ¢ value tests for significance, are shown above the figure. Below
the figure, the top three microorganisms matching the OTU as identified by NCBI
Standard Nucleotide BLAST (Bethesda, MD) are listed.
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OTU 574 Strain Query cover, %  Evalue Identity, %
Intestinimonas butyriciproducens ~ SRB-521-5-1 100 2E-59 93
Pseudoflavonifractor capillosus ATCC 29799 100 2E-59 93
Ruminiclostridium thermocellum  ATCC 27405 100 1E-57 92

Figure 3.17 The association of the relative abundance of OTU 574 and percent N
digestibility, along with the complementary partial residual plot. The r (sd) coefficient
effect size, and P and ¢ value tests for significance, are shown above the figure. Below
the figure, the top three microorganisms matching the OTU as identified by NCBI
Standard Nucleotide BLAST (Bethesda, MD) are listed.
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OTU 411 Strain Query cover, %  Evalue Identity, %
Bacteroides coprosuis PC139 100 1E-58 90
Prevotella amnii JCM 14753 100 1E-58 90
Paraprevotella clara JCM 14859 100 1E-58 90

Figure 3.18 The association of the relative abundance of OTU 411 and percent NDF
digestibility, along with the complementary partial residual plot. The r (sd) coefficient
effect size, and P and ¢ value tests for significance, are shown above the figure. Below
the figure, the top three microorganisms matching the OTU as identified by NCBI
Standard Nucleotide BLAST (Bethesda, MD) are listed.
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Figure 3.19 Principal coordinate analysis generated by bioinformatic
analysis of microbial DNA extracted from rumen digesta. Each cow is
represented by a different symbol, four for each day of collection.
Distance between symbols represents dissimilarity of microbial
community structure.
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GENERAL SUMMARY AND CONCLUSIONS

Research into factors affecting the microbial community is a challenging yet
exciting frontier in ruminant nutrition. As feed additives such as HMB may have the
potential to influence microbiome structure and function, our understanding of these
microorganisms and their interactions must become increasingly comprehensive in order
to reap the desired results in animal productivity and health.

The use of microbial markers is an essential tool for estimating MCP yield at the
duodenum. Real-time PCR allows for the targeting specific groups of microorganisms,
quantifying them in terms of relative abundance based on their level of amplification. A
recently developed approach, DNA markers have the potential to accurately estimated
abundance of MCP, however the technique demands careful and precise lab work; for
example, small errors in pipetting can be compounded exponentially during
amplification. Several recommendations for future research using DNA as microbial
markers have surfaced over the course of the study. First, it is necessary to accurately
attain the initial mass of sample that is used for DNA extraction. In this study, the
volume of initial sample was errantly recorded instead of mass, leading to complications
in the calculations. Having an initial mass allows one to calculate exactly how much
DNA was harvested from extraction. It may be beneficial to use the same mass for each
sample going into the DNA extraction step for consistency. Second, the DNA extraction
method used in this technique should be standardized, as some extraction kit protocols,
such as the one used in this study (PowerMag Soil DNA Isolation Kit, Mo Bio, Carlsbad,
CA), call for the transfer of an aliquot of the sample after centrifugation. This step results

in a reduction of total DNA yielded from the original mass of the sample, and therefore
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must be accounted for in the calculations. Consequently, it may be advisable to adopt a
DNA extraction protocol in which the total DNA yielded is representative of the original
mass of sample used in order to reduce the possibility of experimental error introduced by
these transferring steps. Third, the current technique utilizes Ct values in order to
calculate abundance. It may be possible to revise this equation, quantifying amplification
in terms of number of copies rather than Ct. This could allow for more accurate
estimates of abundance, given that Ct is an indirect measure of amplification. Fourth, a
liquid handling machine such as the epMotion M5073 (Eppendorf, Hamburg, Germany,
Appendix Figure 5.10) should be incorporated into the DNA extraction process and RT-
PCR procedures whenever possible. These types of instruments can be accurate
(Spaulding et al., 2007) in the pipetting and transferring of samples and reagents, and
therefore would reduce human error introduced which can compound the variability in
observations, especially after amplification. Fourth, targeting the 16s rRNA gene to
quantify abundance of bacterial DNA could hinder the accuracy of the technique, as some
species of bacteria contain multiple copes if the 16s gene (Dahllof et al., 2000). Dahllof
et al. (2000) suggested the gene encoding for the RNA polymerase beta subunit (rpoB) as
an alternative, as it is believed that the gene exists as a single copy in bacteria. Fifth, as
the technique targets bacteria and protozoa only in isolated pellets, a portion microbial
nitrogen may be misrepresented as the contributions of archaea and fungi are ignored.
This limitation could be overcome by developing additional primers and probes to target
archaea and fungi in either pellet.

Integral to estimating MCP flow is the isolation of a microbial pellet from rumen

digesta. One important consideration is the dislodging of particle associated bacteria
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from the solid portion of rumen digesta prior to isolation via differential centrifugation,
which was demonstrated in Experiment 1. In order to achieve this, Experiment 2 used a
common method where strained rumen solids were combined with MacDougal’s buffer,
shaken in a capped jar, and were then strained through cheesecloth. In future studies, it
may be useful to blend rumen solids with buffer in a commercial blender prior to the
second straining, as was described in Experiment 1. It is apparent that the blender is
more efficient in violently agitating the feed particles than shaking by hand, however,
there is a concern that microbial cells may become prematurely lysed before isolation and
DNA extraction, potentially leading to degradation of the microbial DNA prior to further
analyses. A comparative study of the two techniques measuring the abundance of
microbial DNA isolated using either method would be beneficial to future research, so
that the rumen bacterial community is most accurately represented. In addition, it is
imperative to ensure that enough microbial sample is isolated in this step, especially
when multiple microbial markers will be used to estimate MCP. In Experiment 2, 250
mL centrifuge bottles were used to strain and shake the solid portion of rumen digesta to
dislodge particle associated bacteria. In future research, if the hand shaking method is
utilized, it would be advisable to use a larger screw capped container, such as a mason
jar. Although microbial pellets were successfully harvested from the 250 mL bottles, we
had to be very conservative with the amount of sample used in each analysis, especially
after lyophilization, as rumen bacterial and protozoal isolates are inherently low in DM.
Using a larger container for the shaking step would allow for a greater volume of digesta

to be processed, resulting in larger microbial pellets after differential centrifugation.
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Bioinformatics, the interpretation of high throughput sequencing data, is an
emerging science which is not yet completely understood, especially through the lens of
ruminant nutrition. Bioinformatics attempts to make sense of voluminous amounts of
data generated and present the information in a useful way—Ieaps and bounds in this
technology have been made in the last several years, especially with the continual
technological advances in processing power and analytical tools. One of those tools used
in Experiment 2, the MaAsLin (Multivariate Association with Linear Models) analysis,
was able to draw associations of nutritional metadata with OTUs, of which were
subsequently identified as several specific microorganisms. This information provides a
solid foundation for future research, especially in those instances where associations of
microorganisms were made with useful nutritional measurements, such as rumen
ammonia concentration or fiber digestibility. In future research, there may be the
potential for these microorganisms to be isolated and cultured, allowing for more in depth
analysis of their role in the rumen. From an applied perspective, these microorganisms
could potentially be incorporated into probiotics or targeted with prebiotics, perhaps
enhancing their effects in the rumen. Another result of the MaAsLin analysis revealed
huge differences in the rumen microbiome of one of our experimental cows, which was
further confirmed by principal coordinate analysis generated by QIIME. We
hypothesized that this may have either been due to her recent introduction into our
research herd, and/or the result of cannulation surgery and subsequent drugs administered
shortly before the commencement of the experiment. In order to explore these questions,
future research could analyze and compare the rumen microbiome of animals from

differing farms. If rumen microbiomes were significantly different between farms, it
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would also beg the question as to whether or not a cow’s community structure would
conform similarly to those animals on a different farm should she be moved.
Additionally, the microbiome of animals undergoing cannulation surgery could be
analyzed before and shortly after the procedure. This would be extremely useful to
planning experiments involving the microbiome where cows must be cannulated prior to
experimentation, as there may be a certain period in which the microbial community must
re-stabalize.

The effects of HMB on rumen microbial activity and milk production and
composition we observed were mixed relative to what has been observed previously in
literature. This work contributes to the fact that HMB does have a stimulatory effect on
the rumen microbial community, however the mechanism and extent of these effects has
yet to be determined. As HMB has been shown to increase milk fat yield (Patton et al.,
1970; Holter et al., 1972; Huber et al., 1984; Zanton et al., 2014), its continued inclusion
in dairy diets is advisable, however further investigation into its effects in the rumen is
warranted in order to optimize its utilization as a supplement. It may be possible to
enhance the effects of HMB in the rumen by feeding it alongside probiotics or prebiotics;
perhaps certain genera of bacteria, such as nitrate reducers (Moreno-Vivian et al., 1999),
may be able to replace they hydroxyl group of HMB with an amino group, rendering
methionine.

In conclusion, there are many opportunities to advance research in the area of the
role of the microbial community in ruminant nutrition. With increasing availability of

access to improved technology, techniques, and tools, our understanding of these
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symbiotes will undoubtedly improve, making way for myriads of advancements in ration

formulation, productivity, animal health, and much more.
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EXPERIMENT 1 DIET ACCORDING TO THE CPM DAIRY RATION

ANALYZER (2000)

CPM-Dairy
CNCPS Evaluation
Farm: UNL Dairy Research Unit BW: 1500 Ib DIM: 100
Ration: Experiment 1 Ration BCS: 3.00 Milk: 80.00 Ib
Ration By: Kononoff & Ramirez Growth: 0.62 Ib/d Fat: 3.50 %
Organization: University of Nebraska-Lincoln Lact#: 3 TP: 3.10 %
DM
Cost ($) 0.10|10F (%) -0.10 Ingredient (Ib/d)
DMI (Ib/d) 50.4 Model 49.8 % Model 101.2| Corn Silage 15.854
ME Bal (mCal) 2.2|CP (%) 17.9|NDF (%) 29.2| CornGrainGrndMed 11.567
MP Bal (g) 94.7|RUP (% CP) 35.7|ForageNDF (% NDF) 67.3| Alfalfa Hay 9.283
NP / MP (%) 61.6|LCFA (%) 2.1|ForageNDF (% DM) 19.7| SoybeanML47.5Solv 7.453
BactMP (% MP) 54.2 |EE (%) 2.7|peNDF (%) 19.4| SoybeanHullsGrnd 4.000
Rumen N Balance Lignin (%) 3.1| Soy Pass 1.014
Pept (g) 90 |Pept & NH3 (qg) 98|NFC (%) 44.0| CalciumCarbonate 0.450
% rad 141|% rqd 125/Sil Acids (%) 2.7 | SodiumBicarbonate 0.330
Amino Acid Balance Sugar (%) 4.4| CalciumPhosDi 0.150
Met (g) 6.7|Lys (9) 32.2|Starch (%) 20.3| SaltNacl 0.110
Met (% rqd) 114|Lys (% rqd) 121|Sol Fiber (%) 16.6| MagOx 0.090
Met (% mp) 2.00|Lys (% mp) 6.89|Lys:Met 3.45:1| Trace Premix 0.060
Possible production due to ME and MP Vitamin Premix 0,060
Milk(lb) Fat (%) TP (%)| Milk(lb) Fat (%) TP (%)| Total 50.421
Trg: 80.0 3.50 3.10 80.0 3.50 3.10
Yield Constant Composition Constant
ME: 80.0 n/a na 84.5 3.50 n/a
MP: 80.0 n/a 3.27 84.4 3.50 3.10
Adjustments based on Rulquin AA Ratios:
80.0 n/a 0.3 -0.7 350 3.10
n/a - Equations not available
Ration DM (%) 60.91 Forage (% DM) 49.85
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AF DM Macro Nutrients Minerals and Vitamins

Inq'ec_ient Ib/d Ib/d % AF % DM Nutrient DM AF| Nutrient DM AF
Corn Silage 4398 1585 53.13 31.44| Dry Matter (%) 100,00  60.91| Dry Matter (%) 100.00  60.91
ComGrainGmdMed | 13.14 1157 15.88 22.94| Forage (%) 49.85  29.90| Calcium (%) 037 053
Alfalfa Hay 10.60 028 12.80 18.41| Crude Prot (%) 17.91 10.91 | Phosphorus (%) 0.40 0.24
SoybeanML47.550lv | 828 745 10.00 14.78| RUP (%CP) 3566  35.66| Magnesium (%) 029 017
SoybeanHullsGrnd 440 400 531 7.93| RDP (%CP) 6434  64.34| Potassium (%) 161 098
Soy Pass 1.12 1.01 1.36 2.01| RDP (%) 11.52 7.02| Sulfur (%) 0.22 0.13
CalciumCarbonate 0.45 0.45 0.55 0.89| Sol Prot (%CP) 26.16 26.16 | Sodium (%) 0.28 0.17
SodiumBicarbonate 0.33 0.33 0.40 0.65| ME (mCal/lb) 121 0.74| Chlorine (%) 0.36 0.22
CalciumPhosDi 015 015 0.18 0.30| Nel (mCal/lb) 0.78 0.47| Iron (ppm) 20645 125.74
SaltNacl 011 011 0.3 0.22| Nem (mCallb) 0.78 0.47| Zinc (ppm) 7506 45.72
MagOx 009 009 0.11 0.8 NEg(mCal/lb) 051 0.31| Copper (ppm) 2232 13.60
Trace Premix 006 006 0.08 0.12| ADF (%) 19.97 12.16| Manganese (ppm) 5592 34.06
Vitamin Premix 0.06 006 0.8 0.12| NDF (%) 2923 17.80| Selenium (ppm) 034 o021
Total 82.78 5042 For NDF (%NDF) 67.31  41.00| Cobalt (ppm) 064 039

Forage NDF (%) 19.67 11.98| Iodine (ppm) 1.04 0.63

peNDF (%) 19.37 11.80| Vitamin A (KIU/Ib) 3.11 1.90

Lignin (%) 3.08 1.88| Vitamin D (KIU/Ib) 079 048

NFC (%) 44,01 26.80| Vitamin E (IU/Ib) 25.04 15.25

sil Acids (%) 272 165 DCAD1 (meq/100g) 2071  18.09

Sugar (%) 443 2.70| pcap2 (meq/100g) 3340 2035

Starch (%) 20.29 12.36| Cost ($/d) 0.10 0.10

Sol Fiber (%)  16.58 10.10| Cost ($T) 393 239

EE Total (%) 2.66 1.62

EE 1 (%) 2.66 1.62

EE 2 (%) 0.00 0.00

EE 3 (%) 0.00 0.00

LCFA Total (%) 2.08 1.26

Ash (%) 8.10 4.93

Cost ($/d) 0.10 0.10

Cost ($T) 3.93 2.39
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LOW AND HIGH MP DIETS ACCORDING TO THE DAIRY NRC (2001)

MODEL
Low MP:
Summary Report
Animal Inputs
Animal Type : Lactating Cow
Age: 60 months
Body Weight : 624 kg
Milk Fat: 3.50%
Days In Milk: 100
Diet Nutrient Balances
NEI1 NP
Requirements  (Mcal/day) (g/day)
Maintenance 10.0 787
Pregnancy 0.0 0
Lactation 22.2 1471
Growth 0.0 0
Total Required 322 2259
Total Supplied 33.2 2132
Balance 1.1 -127

* Note that these mineral supplied values are total absorbable supplied.

Animal Performance

DMI - Actual : 22.0 (kg/day)
DMI - Predicted : 22.0 (kg/day)

NEI Allowable Milk : 33.3 (kg/day)
MP Allowable Milk : 29.1 (kg/day)

Milk Production : 31.8 (kg/day)
Days to gain one condition score : > 305

Daily Weight Change due to Reserves: 0.2 (kg/day)

Ca

(g/day)

20
0
39
0
59

118%

59

Milk Production: 31.8 (kg/day)
Days Pregnant: 0

Breed : Holstein

Milk True Protein : 3.10%

P K
(g/day) (g/day)
23 158
0 0
29 48
0 0
52 206
59* 312*

8 106

Protein Values

RDP Required : 2123 (2/d)
RDP Supplied : 2276 (2/d)
RDP Balance : 152 (g/d)

RUP Required : 1278 (g/d)
RUP Supplied : 1115 (g/d)
RUP Balance : -163 (¢/d)

MP - Bacterial : 1155 (g/d)
MP - RUP: 873 (g/d)
MP - Endogenous : 104 (g/d)

CP - Diet: 15.4 (%DM)
CP-RDP: 10.3 (%DM)
CP-RUP: 5.1 (%DM)



Diet Concentrations

NDF: 33.6 (%DM)
Forage NDF : 25.2 (%DM)
ADE: 22.0 (%DM)
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Target Diet Concentrations

NEIl : 1.46 (Mcal/kg)
MP: 103 (g/kg)

NFC: 42.2 (%DM) Ca: 3(gkg)
Undiscounted TDN : 68 (%DM) P: 2(g/kg)
ME: 240 (Mcal/kg DM)
NEl: 1.51 (Mcal'kg DM)
NEg: 1.00 (Mcal/kg DM)
Ca: 0.9 (%DM)
P: 0.4 (%DM)
Ether-Extract : 2.7 (%9DM)
DCAD: 273 (mEQ/kg)
kg/day kg/day %
Feed Name (Dry Matter) (As-Fed) (Dry Matter)
Corn Silage, HMP 7.70 20.93 35.01
Alfalfa Hay 3.00 3.42 13.64
Brome Hay 2.00 2.37 9.09
Corn Grain, ground, dry 3.63 4.12 16.50
Soybean, Hulls 1.3 1.93 7.95
SBM 0.80 0.89 3.64
RF DDGS 1.25 1.39 5.68
Molasses, Sugarcane 0.90 1.21 4.09
Blood Meal, ring dried 0.10 0.11 0.45
Soypass 0.00 0.00 0.00
Limestone 0.20 0.20 0.92
Calcium Phosphate (Di-) 0.09 0.09 0.41
Megalac 0.04 0.04 0.16
Urea 0.16 0.16 0.75
Salt 0.14 0.14 0.64
Sodium Bicarbonate 0.14 0.14 0.64
Magnesium Oxide 0.05 0.05 0.23
UNL mineral PMX 0.02 0.02 0.10
UNL Vit PMX 0.02 0.02 0.10
Canola Meal, mech. Extract 0.00 0.00 0.00




Energy and Protein Supply

Feed Name DMI TDN ME NEI NEg CP RUP RDP NDFE MCP
(kg/day) (g/day) (Mcal/day) | (Mcal/day) | (Mcal/day) (g/day) (g/day) (g/day) (kg/day) (g/day)
Com Silage. HMP 73 5158 17.6 10.9 7.0 562 196 366 3.0 -
Alfalfa Hay 3.0 1718 6.2 3.8 22 597 111 486 1.2 -
Brome Hay 2.0 1122 38 2.3 1.2 216 92 124 1.4 =
Com Grain, ground, dry 3.6 3220 11.5 7.4 54 330 152 178 0.3 -
Soybean, Hulls 1.7 1177 4.2 2.6 1.7 243 105 138 1.1 -
SBM 0.8 651 2.8 1.8 1.3 430 177 254 0.1 -
RF DDGS 1.3 960 37 24 13 400 199 201 0.4 -
Molasses, Sugarcane 0.9 728 25 1.6 3.1 52 9 43 0.0 s
Blood Meal. ring dried 0.1 76 0.4 0.2 0.2 95 73 22 0.0 -
Soypass 0.0 0 0.0 0.0 0.0 0 0 0 0.0 -
Limestone 0.2 0 0.0 0.0 0.0 0 0 0 0.0 -
Calcium Phosphate (Di-) 0.1 0 0.0 0.0 0.0 0 0 0 0.0 -
Megalac 0.0 59 0.2 0.2 0.1 0 0 0 0.0 -
Urea 0.2 0 0.0 0.0 0.0 464 0 464 0.0 -
Salt 0.1 0 0.0 0.0 0.0 0 0 0 0.0 -
Sodium Bicarbonate 0.1 0 0.0 0.0 0.0 0 0 0 0.0 :
Magnesium Oxide 0.1 0 0.0 0.0 0.0 0 0 0 0.0 -
UNL mineral PMX 0.0 0 0.0 0.0 0.0 0 0 0 0.0 -
UNL Vit PMX 0.0 0 0.0 0.0 0.0 0 0 0 0.0 -
Canola Meal, mech. Extract 0.0 0 0.0 0.0 0.0 0 0 0 0.0 -
Totals : 22.0 14870 529 33.2 220 3391 1115 2276 7.4 1805
Feed Name ME NE! NEg Kp
(Mcalkg) | (Mcalkg) | (Mcal/kg) (%/hr)
Com Silage, HMP 2.28 1.41 0.90 5.22
Alfalfa Hay 2.05 1.25 0.74 4.69
Brome Hay 1.89 1.14 0.62 4.17
Com Grain, ground, dry 3.18 2.05 1.48 6.91
Soybean, Hulls 2.39 1.49 0.98 6.91
SBM 347 2.25 1.65 6.91
RF DDGS 299 1.93 1.36 6.91
Molasses, Sugarcane 2.83 1.80 1.27 6.91
Blood Meal, ring dried 3.65 2.38 1.76 6.91

vel



Soypass 3.48 2.26 1.66 6.91
Limestone 0.00 0.00 0.00 6.91
Calcium Phosphate (Di-) 0.00 0.00 0.00 6.91
Megalac 6.38 5.10 3.51 6.91

Urea 0.00 0.00 0.00 6.91

Salt 0.00 0.00 0.00 6.91

Sodium Bicarbonate 0.00 0.00 0.00 6.91
Magnesium Oxide 0.00 0.00 0.00 6.91
UNL mineral PMX 0.00 0.00 0.00 6.91
UNL Vit PMX 0.00 0.00 0.00 6.91
Canola Meal, mech. Extract 2.81 1.80 1.25 6.91

Increment over Maintenance: 3.4 X
Energy/Protein Discount Factor : 6.6%
Undiscounted TDN in Diet: 67.6%

Diet RUP Digestibility : 78.2%

Gel



Duodenal Amino Acid Supply

Total Dry Matter Intake : 22.0 kg

Total RUP: 1115 g/day
Total MCP : 1805 g/day

Amino Acid Flow (g/day) DIGAA Flow (g/day) Percent of MP
Arginine 121 97 4.56%
Histidine 61 49 2.30%
Isoleucine 128 102 4.78%
Leucine 241 192 9.01%

Lysine 173 138 6.48%
Methionine 50 40 1.87%
Phenylalanine 134 107 5.01%
Threonine 131 104 4.88%
Valine 149 119 5.56%
Totals 1189 948 44.46%

Total Essential Amino Acids : 1192 (g/day)

9¢l



High MP:
Summary Report
Animal Inputs
Animal Type : Lactating Cow
Age : 60 months
Body Weight : 624 kg
Milk Fat : 3.50%
Days In Milk: 100
Diet Nutrient Balances
NEI MP Ca
Requirements  (Mcal/day) (g/day) (g/day)
Maintenance 10.0 785 20
Pregnancy 0.0 0 0
Lactation 222 1471 39
Growth 0.0 0 0
Total Required 32.2 2257 59
Total Supplied 33.5 2267 120*
Balance 1:3 11 61

* Note that these mineral supplied values are total absorbable supplied.

Animal Performance

DMI - Actual : 21.9 (kg/day)
DMI - Predicted : 22.0 (kg/day)

NEIl Allowable Milk : 33.7 (kg/day)
MP Allowable Milk : 32.0 (kg/day)

Milk Production : 31.8 (kg/day)
Days to gain one condition score : > 305

Daily Weight Change due to Reserves: 0.3 (kg/day)
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Milk Production: 31.8 (kg/day)
Days Pregnant: 0

Breed : Holstein

Milk True Protein : 3.10%

p K
(g/day) (g/day)

23 158

0 0
29 48

0 0
52 205
62* 326*
10 121

Protein Values

RDP Required : 2122 (g/d)
RDP Supplied: 2123 (g/d)
RDP Balance : 1 (¢/d)

RUP Required : 1248 (g/d)
RUP Supplied : 1261 (g/d)
RUP Balance : 13 (g/d)

MP - Bacterial : 1155 (g/d)
MP - RUP: 1009 (¢/d)
MP - Endogenous : 104 (g/d)

CP - Diet: 15.4 (%DM)
CP-RDP: 9.7 (%DM)
CP -RUP: 5.7 (%DM)



Diet Concentrations

NDF: 33.8 (%DM)
Forage NDF : 25.2 (%DM)
ADF: 222 (%DM)

Target Diet Concentrations

NEIl : 1.46 (Mcal/kg)
MP: 103 (g/kg)

138

NFC: 41.9 (%DM) Ca: 3 (g/kg)
Undiscounted TDN : 68 (%DM) P: 2(g/kg)
ME: 2.43 (Mcal/kg DM)
NEl : 1.53 (Mcal’kg DM)
NEg: 1.01 (Mcal’/kg DM)
Ca: 0.9 (%DM)
P: 04 (%DM)
Ether-Extract : 2.6 (%DM)
DCAD: 286 (mEQ/kg)
kg/day kg/day %
Feed Name (Dry Matter) (As-Fed) (Dry Matter)
Corn Silage, HMP 7.70 20.93 35.09
Alfalfa Hay 3.00 3.42 13.67
Brome Hay 2.00 2.37 9.11
Corn Grain, ground, dry 2.91 3.30 13.26
Soybean, Hulls 1.75 1.93 1.97
SBM 1.60 1.79 7.29
RF DDGS 1.25 1.39 5.70
Molasses, Sugarcane 0.90 1.21 4.10
Blood Meal, ring dried 0.10 0.11 0.45
Soypass 0.00 0.00 0.00
Limestone 0.20 0.20 0.92
Calcium Phosphate (Di-) 0.09 0.09 0.41
Megalac 0.04 0.04 0.17
Urea 0.03 0.03 0.15
Salt 0.14 0.14 0.64
Sodium Bicarbonate 0.14 0.14 0.64
Magnesium Oxide 0.05 0.05 0.23
UNL mineral PMX 0.02 0.02 0.10
UNL Vit PMX 0.02 0.02 0.10
Canola Meal, mech. Extract 0.00 0.00 0.00




Energy and Protein Supply

Feed Name DMI TDN ME NEI NEg CP RUP NDF
(kg/day) (g/day) (Mcal/day) | (Mcal/day) | (Mcal/day) (g/day) (g/day) (kg/day)
Com Silage. HMP 7.7 5158 17.5 10.9 7.0 562 196 3.0
Alfalfa Hay 3.0 1718 6.1 37 22 597 111 1.2
Brome Hay 2.0 1122 3.8 2.3 1.2 216 92 1.4
Com Grain, ground, dry 2.9 2581 9.2 6.0 4.3 265 122 0.3
Soybean, Hulls 1.7 1177 4.2 2.6 13 243 105 1.1
SBM 1.6 1302 5.6 3.6 2.6 861 353 0.2
RF DDGS 13 960 37 24 1:7 400 199 0.4
Molasses, Sugarcane 0.9 728 2.5 1.6 11 52 9 43 0.0
Blood Meal, ring dried 0.1 76 0.4 0.2 0.2 95 13 ) 0.0
Soypass 0.0 0 0.0 0.0 0.0 0 0 0 0.0
Limestone 0.2 0 0.0 0.0 0.0 0 0 0 0.0
Calcium Phosphate (Di-) 0.1 0 0.0 0.0 0.0 0 0 0 0.0
Megalac 0.0 59 0.2 0.2 0.1 0 0 0 0.0
Urea 0.0 0 0.0 0.0 0.0 93 0 93 0.0
Salt 0.1 0 0.0 0.0 0.0 0 0 0 0.0
Sodium Bicarbonate 0.1 0 0.0 0.0 0.0 0 0 0 0.0
Magnesium Oxide 0.1 0 0.0 0.0 0.0 0 0 0 0.0
UNL mineral PMX 0.0 0 0.0 0.0 0.0 0 0 0 0.0
UNL Vit PMX 0.0 0 0.0 0.0 0.0 0 0 0 0.0
Canola Meal, mech. Extract 0.0 0 0.0 0.0 0.0 0 0 0 0.0
Totals : 21.9 14881 53.3 335 222 3385 1261 2123 7.4
Feed Name ME NEI NEg Kp
(Mcalkg) | (Mcalkg) | (Mcal/kg) (%o/hr)
Com Silage, HMP 2.28 1.41 0.90 5.21
Alfalfa Hay 2.05 1.25 0.74 4.68
Brome Hay 1.89 1.14 0.62 4.17
Com Grain, ground, dry 3.18 2.05 1.48 6.90
Soybean, Hulls 2.38 1.48 0.98 6.90
SBM 347 2.25 1.65 6.90
RF DDGS 2.99 1.92 1.36 6.90
Molasses, Sugarcane 2.82 1.79 1.27 6.90
Blood Meal, ring dried 3.65 2.37 1.76 6.90

6¢l



Soypass 3.48 2.26 1.66 6.90
Limestone 0.00 0.00 0.00 6.90
Calcium Phosphate (Di-) 0.00 0.00 0.00 6.90
Megalac 6.37 5.10 3.50 6.90

Urea 0.00 0.00 0.00 6.90

Salt 0.00 0.00 0.00 6.90

Sodium Bicarbonate 0.00 0.00 0.00 6.90
Magnesium Oxide 0.00 0.00 0.00 6.90
UNL mineral PMX 0.00 0.00 0.00 6.90
UNL Vit PMX 0.00 0.00 0.00 6.90
Canola Meal, mech. Extract 2.80 1.79 1.25 6.90

Increment over Maintenance: 3.4 X
Energy/Protein Discount Factor: 6.8%
Undiscounted TDN in Diet: 67.8%

Diet RUP Digestibility : 80.0%

ovl
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APPENDIX 111

CALCULATION OF MCP FLOW USING DNA MARKERS

Calculation of “R” (ratio of abundance of target DNA per g of microbial protein) in

isolated microbial pellets from rumen digesta:

1.) mg of DNA per g of dry microbial pellet is calculated:

The concentration of DNA in ng/ul is multiplied by the volume of the sample
resulting from DNA extraction (from microbial pellets) in order to attain total
mass of DNA recovered in ng.

The mass of DNA recovered is divided by the initial wet pellet sample weight
used for DNA extraction in order to attain ng of DNA per g of wet pellet.

ng of DNA/g of wet pellet is divided by 1,000,000 to attain mg of DNA per gram
of wet pellet.

The original pellet sample weight used for DNA extraction is multiplied by the %
DM of the sample in order to attain the dry sample weight in g.

The total DNA recovered in ng is divided by the sample dry weight in g in order
to attain ng of DNA per g of dry pellet.

ng DNA/g dry pellet is divided by 1,000,000 to attain mg of DNA/g of dry

microbial pellet.
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2.) The abundance of target DNA/ng of DNA is calculated:

Resulting from three, 10-fold serial dilutions, the slope of the standard curve is
calculated using the ng of DNA from the serial dilutions vs. their CTs resulting
from RT-PCR.

The efficiency of RT-PCR is calculated by 10°(-1/slope).

The abundance of target DNA/ng of DNA is calculated by (1/efficiency*CT)/ng

DNA.

3.) The abundance of target DNA/g of dry microbial pellet is calculated:

The abundance of target DNA/ng of DNA is multiplied by 1,000,000 to attain the
abundance of DNA/mg of DNA.
The abundance of DNA/mg of DNA is multiplied by the mg of DNA/g of dry

pellet to attain the abundance of target DNA/g of dry pellet.

4.) “R”is calculated (the ratio of the abundance of target DNA per g of microbial

protein):

The abundance of target DNA/g of dry pellet is divided by the percent crude
protein in the microbial pellet in order to attain the abundance of target DNA/g of
microbial protein.

1 is divided by the abundance of target DNA/g of microbial protein, so that 1

abundance equals “x” g of MCP.



143

Calculation of MCP flow in duodenal contents:

1.) The mg of DNA/g of duodenal dry matter is calculated:

The concentration of DNA in ng/ul is multiplied by the volume of the sample
resulting from DNA extraction (from duodenal contents) in order to attain total
mass of DNA recovered in ng.

The dry sample weight in g is calculated by multiplying the mass of the duodenal
content sample by the percent dry matter of the sample.

The total mass of DNA recovered is divided by the dry sample weight in order to
attain ng of DNA/g of dry matter.

The ng of DNA/g of DM is divided by 1,000,000 to attain the mg of DNA/g of

DM.

2.) The abundance of target DNA per g of DM is calculated:

The abundance of target DNA/ng of DNA is calculated by (1/(efficiency”CT)/ng
of DNA used in RT-PCR (the efficiency is that which was calculated by serial
dilutions of DNA from microbial pellets, while the CT is the result of RT-PCR
performed on DNA from duodenal contents).

The abundance of target DNA/ng of DNA is multiplied by 1,000,000 to attain the
abundance of target DNA/mg of DNA.

The abundance of target DNA per g of DM is calculated by multiplying the

abundance of target DNA/mg of DNA by the mg of DNA/g of DM.



144

3.) The mg of MCP/g of duodenal DM is calculated:
e The abundance of target DNA/g of DM is multiplied by “R”, where 1 abundance
equals “x”’g of MCP, in order to attain the g of MCP/g of duodenal content DM.
e ¢ of MCP/g of duodenal fluid DM is multiplied by 1,000 to attain mg of MCP/g

of duodenal content DM.

4.) The flow of g MCP/day is calculated:
e An estimate of duodenal DM flow in g/d is multiplied by the mg of MCP/g of
duodenal content DM to attain the mg of MCP flow/d.

e mg of MCP flow/d is divided by 1,000 to attain the g of MCP/d.
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APPENDIX IV
PROTOCOL FOR BIOINFORMATIC ANALYSIS OF SEQUENCING DATA
This protocol assumes bioinformatics are being conducted on a Mac computer with
QIIME, Mothur, and Perl installed (this work can be conducted on PC as well, but
requires slightly different commands/programs) with access to the necessary scripts.
Some basic knowledge of navigating in Terminal is required for these analyses. Here is a
good resource with some commands you will likely use:

http://guides.macrumors.com/Terminal

1.) Acquire sequencing data in a format ready for UPARSE

o First, raw sequencing data must be “quality controlled” to the standards of Dr.
Fernando’s lab. Typically, this will be done before the sequencing data is
returned to you.

e After quality control, samples must be demultiplexed in QIIME. Basically, reads
are organized according to what samples they came from. Therefore, this step
requires a “mapping file”, which is a text document made in excel detailing which
sample belongs to which cow, period, treatment, etc. (You will want to work
from an example when creating this file, as some extraneous data is required for
the program to run).

o Start QIIME my typing “macqiime” in the terminal and hitting enter.
Navigate to the directory from which you will be working (the folder
which contains your files).

0 Demultiplex using the command:
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split_libraries.py —f test.fna —b variable_length

—1 O —-L 1000 -x —M 1 —o split_library master/ -m

mappingfile.txt

0 Remember, whatever you type after “-f” is your file containing your
sequencing data. Whatever you type after the part of the command
with a “-0” is what the resulting file will be called and/or where it will
be saved. If no subfolder is indicated before a ““/”, the file will be
created in whatever directory you are currently working from. The “-
m” requires you to indicate your mapping—make sure it is in the same
directory you are working from.

e Next, reads must be trimmed in Perl
0 Launch Perl by typing “perl” in the terminal and hitting enter.

O Trim reads:

-/min_max_length_pl —min=80 —max=177
-fasta=test.split.fna

0 In this case, “-fasta” indicates which file will be trimmed, i.e. the file
resulting from the demultiplexing step (make sure you have the
“min_max_length.pl” Perl script in your directory).

e Finally, reverse compliment your reads using Mothur

0 Launch Mothur by typing “mothur” and hitting enter (mothur.exe must be

in your directory).

reverse.segs(fasta=test.trimmed. fasta)
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2.) Submit your file with the batch script to TUSKER for analysis in UPARSE

The next steps require access to TUSKER, one of the University of Nebraska’s
super computers housed in the Holland Computing Center. Access to TUSKER
requires permission from a professor with an account (Dr. Samodha Fernando) in
order to register a new user. Additionally, a physical, USB “YubiKey” is required
to logon and can be purchased from the Computing Center.

Login to TUSKER:

ssh <username>@tusker.unl._edu
<password>

Copy the USEARCH batch script into your user account “work” directory on
TUSKER. The batch script is a series of commands designed to sort sequences,
remove singletons, cluster OTUs, remove chimeras, align OTUs, and convert the
file into a usable format for downstream analysis. The batch script is located on
TUSKER at:
/home/samodha/shared/Programs/usearch _batch master.pbs
Copy the batch script to your work directory on TUSKER at:
/work/samodha/<username>
0 The batch script can be copied and pasted into your work directory using
terminal commands, or alternatively, you can download free software like
“Fetch” to help you navigate and transfer files on TUSKER graphically

(recommended).



148

e Rename your file which resulted from reverse complementing to
“test.trim.rc.fasta”. This way, you will not have to change the commands in the
batch script.

e Upload your file to your work directory in TUSKER:

scp —r ./<your local directory>

/test.trim.rc.fasta <username>

@tusker.unl .edu:work/

samodha/<username>

(Or alternatively, drag and drop the file into your work directory in Fetch.)
e Submit the job to TUSKER from your work directory:

qsub usearch_batch_master.pbs

0 Once the script is done running, all of the files you need for downstream

analysis in QIIME will appear in your work directory.

3.) Analyze OTU data using QIIME pipeline

e Launch QIIME in the terminal by typing “macqiime” and hitting enter.

e Assign taxonomy to the OTUs:
assign_taxonomy.py —i test.otus2.fa -t
/macqgiime/greengenes/gg_12 10 otus/taxonomy/97 ot
u_taxonomy.txt —-r
/macqgiime/greengenes/gg_12 10 otus/rep_set/97 otu
s.fasta —o0 test.otus2.fa.assign_gg taxa/

0 This step will add names of specific taxonomic classifications to your

OTUs.

e Open the resulting file in Excel, along with the “test.otu_table.txt” that came from

the USEARCH batch script.
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O Add the taxa outputted to the OTU table by first sorting by the ID
number—you should have the same number of OTUs as you do taxa
names.

0 Label the column “taxonomy”.

Convert the OTU table to the BIOM file format
convert_biom.py —1 test.otu_table.txt —o
test.otu_table.biom --biom_table_type="out
table” --process_obs metadata taxonomy
Remove Cyanobacteria from your OTU table: these data may have actually
originated from plant material in your samples, therefore should not be included:
filter_taxa from_otu_table.py —i
test.otu_table.biom —o
test.otu_table.taxa filter.biom —n Cyanobacteria
Sort your OTU table—note that the mapping file comes back into play here and
that the output file is renamed to “rumen.sort.biom":
sort_otu_table.py —1 test.otu_table_biom —m

mappingfile.txt —s Diet —0 rumen.sort.biom

Make an OTU heatmap:

make_otu_heatmap_html_.py —1 rumen.sort.biom —o0
total_analysis/total .heatmap

Make an OTU network (a network image can be created using the files generated
in the free software “Cytoscape”. There are QIIME-specific tutorials for this
online):

make_otu_network.py —i rumen.sort_.biom —m

mappingfile.txt —o
total_analysis/total .summarize_taxa

Create bar, area, and pie charts summarizing taxa information (two commands):
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summarize_taxa.py —1 rumen.sort.biom —L
2,3,4,5,6,7 -0
total _analysis/total .summarize_taxa

plot_taxa summary.py —i

total_analysis/total .summarize_taxa/rumen.sort L2
.txt,total_analysis/total .summarize_taxa/rumen.so
rt_L3.txt,total _analysis/total .summarize_taxa/rum
en.sort_L4._txt,total_analysis/total .summarize_tax
a/rumen.sort_L5.txt,total_analysis/total .summariz
e_taxa/rumen.sort L6.txt,total analysis/total .sum
marize_taxa/rumen.sort_L7.txt,total_analysis/tota
I _.summarize_taxa/rumen.sort_L2.txt —I
Phylum,Class,Order,Family,Genus,Species —C
bar,area,pie —o0 total _analysis/total .taxa plots

Tables generated in this step representing relative percentages of taxa can
be analyzed statistically in SAS—you can copy and paste using the

“transpose” option into an Excel file to set up your SAS infile.

e The final commands require some additional files to be generated:

(0]

(0]

First, sequences must be aligned by submitting your original file from
UPARSE (test.otus2.fa) to the RDP aligner at http://pyro.cme.msu.edu.
After completion of alignment, download your aligned file from RDP.
Some changes must be made to the file in a text editing program like
“Text Wrangler” in order to make the file compatible with Mothur:
= In Text Wrangler, select all (command + a), find (command + f),
find “.”, and replace all with “-*,
= Remove the last line of data (series of x) at the bottom of the file.
= Add 10 letter “A”s after the ”>" sign. This can be accomplished
by find “>”, and replace all with “>AAAAAAAAAA”.

Change the filename to something like “test.otus2.aligned.fasta”
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0 The commands are run in Mothur:

dist.segs(fasta=test.otus2.aligned.fasta,
processors=10, cutoff=.10)

* This command generates a “.dist” file, a distance matrix of OTUs.
clearcut(phylip=test.otus2.aligned.dist)
= This command generates a “.tre” file, a phylogenic tree which can
be viewed in software like “FigTree”. The “.tre” file is needed for
the next series of commands.
Launch QIIME in the terminal.
0 We need to see some stats on your “.biom” file for the next step using this
command:
print_biom_table summary.py —i rumen.sort.biom
= Look for the part of the readout “Min:” followed by a number.
This is the lowest of number of sequences in a sample. Make a
note of this number, as you will need it as an input in the next
command. For example, we will say 1437.
0 Generate plots of beta diversity:
beta diversity through plots.py —i
rumen.sort.biom —e 1437 —m mappingfile.txt —p
qiime_parameters_working.txt —t
test.otus2.aligned.tre —c Diet -0
total_analysis/total .beta_diversity
= Note that this command required a “-e” parameter input; this is the
minimum number sequences from the previous step. Also note a

“-p” (parameter) input was required. This is a file which can be

located on the Mac computer in Samodha’s lab office. You will
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need to copy this file into the directory you are working from in
order for this command to work. Additionally, “-t” for “.tre” was
required; this is your “.tre” file you generated using the clearcut
command in Mothur.
0 Generate jackknifed plots of beta diversity:
Jjackknifed _beta diversity.py —1 rumen.sort.biom —
e 1437 —m mappingfile_txt —p
giime_parameters_working.txt —t
test.otus2.aligned.tre —o
total_analysis/total.jackknifed beta _diversity
= The previous two commands will generate a series of files which
can be very helpful in visualizing your sequencing data. Of these,
there are principal coordinate analysis plots that can be viewed in
either 2d or 3d. The 3d plots generated will include a Java applet
called “KiNG” (Jar). “Jar” can be launched from within these
files, and the PCoA “.jar” files can be loaded and viewed from
there.
The previous analyses was conducted on what we refer to as the “total” biom. In
the next steps, we will define the “core” biom. The core biom refers to OTUs that
are present in a certain proportion of samples (which you define). For example,
say that [ had 4 cows consuming each of 4 diets, resulting in 16 samples per diet,
for a total of 64 total samples. If I wanted to define my core at around 94 % by
diet type, I would first split by OTU table by diet type. In the next command, I

would indicate “15”, for 15/16 samples, or around 94 %. This means that to be

considered a part of the core, a particular OTU must be present in 15 out of the 16
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samples I have from cows consuming that particular diet. This makes the
analysis more strict, which can be helpful in reducing extraneous
information/noise from the analysis.
0 In QIME, split the OTU table based on which category in your mapping
file that you want to define the core—in our case, this will be diet type:

split_otu _table.py —i rumen.sort.biom —m
mappingfile.txt —Ff Diet —o0 rumen.sort.split

= In our example, this will have created 4 different files, one for each
diet type, in the folder “rumen.sort.split”. They will be named
based on your diet names in the mapping file.

0 The next commands will filter the OTUs from each diet type based on
whether they are present in 15/16 samples, and create a new file for each
in the folder “rumen.core.split™:
filter_otus_from_otu_table.py —i
rumen.sort.split/rumen.sort_Dietl_biom —s 15 -0
rumen.core.split/Dietl.core.biom
filter_otus_from_otu_table.py -1
rumen.sort.split/rumen.sort Diet2.biom —s 15 -0
rumen.core.split/Diet2.core.biom
filter_otus_from_otu_table.py —i
rumen.sort.split/rumen.sort_Diet3.biom —s 15 -0
rumen.core.split/Diet3.core.biom
filter_otus_from_otu_table.py -1

rumen.sort.split/rumen.sort _Diet4.biom —s 15 -0
rumen.core.split/Diet4._core.biom
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0 Next, merge the filtered OTU tables back together:
merge_otu_tables.py —i
rumen.core.split/Dietl.core.biom,rumen.core.split
/Diet2._core.biom,rumen.core.split/Diet3.core.biom
,rumen.core.split/Diet4.core.biom —o
rumen.core.biom

0 Now that we have the core biom defined, we need to filter the OTUs from
our OTU table that we do not want to include. First we need to convert

our new core biom file to a text file:

convert_biom.py —1 rumen.core.biom —o0
rumen.core.txt —b

0 Now, open the new “rumen.core.txt” file in Excel. Copy the first column
(OTU IDs) and paste into a word file. Save the file as “core_keep.txt”.
0 The next command will filer the OTUs that we do not want to be a part of
the core:
filter_otus_from_otu_table.py —1 rumen.sort.biom
--negate_ids_to_exclude —e core_keep.txt —o
rumen.core.biom
*= Now that you have a “.biom” file to work from in which your core
is defined. You may want to run the
“print_biom_table summary.py” command again on your new file
to see how many sequences are left in the core compared to your
“total” file.
e With the core defined, using the new “rumen.core.biom” file, you can now go

back and create new heatmaps, OTU networks, bar, area, and pie charts, and

PCoA plots with the commands described above.
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4.) Analyze OTU data using multivariate association with linear models (MaAsL.in)

and nucleotide BLAST (Basic Local Alignment Search Tool)

MaAsLin is a statistical tool which was designed by the Huttenhower Lab

(Harvard School of Public Health, Boston, MA) to identify associations between

the relative abundance of OTUs in sample and metadata. Along with BLAST, it

can be useful in identifying specific microorganisms which may be associated

with other meaningful observations in a study, such as milk yield or rumen

ammonia.

The MaAsLin tool can be used in an online interface at huttenhower.org/galaxy/

In order to use MaAsLin, you must create a file in a format that it can read (an

example file can be located on the website):

(0]

(0}

Open your OTU table in Excel.

Because MaAsLin reads OTUs in terms of relative abundance, you must
total up each column of reads, then divide each cell (in the same column)
by the total number of reads.

Rename the first row from “OTUid” to “sample”

For each sample number in the first row, rename to “samplel, sample2,
sample 3, etc.”.

The next rows should contain your metadata—the first cell in the row is
the title (ex. “Rumen Ammonia” or “Animal ID”’), while the next cells in
the row contain data corresponding to the particular sample. Data can

either be numerical or qualitative (ex. “143.7” or “Cow881”).
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Your OTU table (in relative abundance) should begin below the metadata,
with each column of the first row being the taxonomy name (ex.
“Bacteria|Firmicutes|Clostridia|Clostridiales|Leahspiraceae™)

Save the file as “.txt”, TAB delimited.

e Upload your file to the Huttenhower Lab website for analysis:

o

o

o

Visit the Huttenhower Lab website (huttenhower.org/galaxy/), and click
on “Get Data” and “Upload File” in the left hand column.

From the “File Format:” drop-down menu, select “maaslin”.

Click “Choose File” and select your “.txt” file you created.

Click “Execute”.

e Run the MaAsLin analysis:

(0]

Navigate to the MaAsLin page by clicking “MaAsLin” in the left hand
column.

From the first drop-down menu, you should be able to select the file that
you just uploaded.

On the second drop-down menu, select the title of the last row of metadata
in your file.

The next three text fields allow you to fine tune the statistical parameters
of the analysis. Leave in the default values for now.

In the last drop-down menu, select “Two Files: Complete zipped results +
Summary”.

Click “Execute”.
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You should now see the analysis running in the right hand column of the
page. After completion, you will be able to download the results. For any
associations that were drawn with a g-value less than or equal to what was
defined (0.05), a scattergram will be generated for numerical metadata, or
a notched box plot for qualitative metadata, along with a tab-delimited

file.

e BLAST OTUs that were significantly associated with metadata to give you a

better idea of which specific microorganism may be involved:

o

o

Locate the “.fasta” file that resulted from the UPARSE batch script.
Open the “.fasta” file in a text-editing program.
Find (command+f) an OTU ID that was significantly associated with
metadata.
Copy the sequence of the particular OTU.
Search “Nucleotide BLAST” on Google and click the first result.
Paste the sequence into the first text field (“Enter accession number(s),
gi(s), or FASTA sequence(s)”).
Under the “Choose Search Set” box, on the first “Database” drop-down
menu, select “16s ribosomal RNA sequences (Bacteria and Archaea)”.
Click “BLAST”.
= After searching the database, BLAST will present you with a list of
the top matches for specific microorganisms along with a max
score, total score, query cover %, E-value, and maximum identity

%. The max score is a score of the best aligned sequence, while
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the total score is the sum of scores of all aligned sequences. The
query cover % represents the percentage of the sequence that
overlaps with the potentially matching microorganism’s sequence.
The E-value represents the number of expected hits that occur by
chance when searching the database; the smaller the E-value, the
more significant the match. The identity % is the percent identity
between the query and the hit in a nucleotide-to-nucleotide

alignment (Agostino, 2013).
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APPENDIX V

.%\

Appendix Fgue 5.1 A 360° panoramic view of the UNL Dairy research barn wre the trials |
were conducted.

Appendix Figure 5.2 A load of green chop corn is dumped at the UNL Animal Science
Complex in preparation for ensiling and eventual inclusion in experimental rations.



Appendix Figure 5.3 One of the rumen cannulae (Bar Diamond, Parma, ID) shortly
after ruminal cannulation surgery in preparation for the experiment.

.

Appendix Figure 5.4 One of the duodenal cannulae (Bar Diamond, Parma, ID) shortl
after duodenal cannulation surgery in preparation for the experiment.
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Appendix Figure 5.5 Rumen digesta is
strained for microbial isolation.

Appendix Figure 5.7 Microbial cells
are physically lysed via bead beating
during DNA extraction.
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Appendix Figure 5.6 A microbial
pellet is isolated from differential
centrifugation of rumen fluid.

Appendix Figure 5.8 The Leco
Nitrogen Analyzer (LECO
Corporation, St. Joseph, MI)
used for N quantification.



Appendix Figure 5.9 The MagMAX Express-96 Deep Well
Magnetic Particle Processor (Applied Biosystems, Foster City,
CA) used for DNA extraction in Experiment 2.

Appendix Figure 5.10 The epMotion M5073 (Eppendorf, Hamburg,
Germany) liquid handling machine used in preparation for RT-PCR.

Appendix Figure 5.11 The Ion Torrent Personal Genome

Machine (Life Technologies; Carlsbad, CA) used for sequencing
of microbial DNA.
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APPENDIX VI
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