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T
he availability of facile methods
for targeted gene knockout and
gene replacement based on
homologous recombination in

bacteria and yeast systems has driven rapid
progress in understanding many of the
complex metabolic and regulatory net-
works in prokaryotic and eukaryotic cells.
The lack of such tools in other organisms
is a major impediment to progress both
in fundamental research and in research
that is directed toward practical economic
and societal outcomes. For example, the
current goal to replace fossil fuels with
renewable energy sources produced by
plants and algae is hampered in both the
short term and the long term by our lim-
ited knowledge of their metabolic systems
and how they can be modified to create
organisms that produce more and better
energy-rich molecules. Thus, the report in
PNAS by Kilian et al. (1) of efficient and
reliable genetic transformation of the
commercially important alga, Nanno-
chloropsis, via homologous recombination
is a significant step forward.
Nannochloropsis species have been used

for several decades to produce nu-
traceuticals and feed supplements (2–5).
Several Nannochloropsis species have re-
ceived attention more recently as oil-rich
organisms with promise as a source of
algal biofuels (6–9). Nonetheless, rela-
tively little is known about the biology of
this algal species, including the genes and
enzymes involved in lipid biosynthesis.
This situation is changing rapidly with the
advent of important new tools, not the
least of which is the ability to perform
targeted gene knockouts and gene replace-
ments using the methods of Kilian et al.
(1). Coupled with the availability of ge-
nome sequences from at least a dozen in-
dependent genome sequencing and tran-
scriptomics projects (www.ncbi.nlm.nih.
gov/bioproject?term=nannochloropsis),
a rapidly growing community of aca-
demic and industrial Nannochloropsis
researchers (over 100 publications and
patents thus far in 2011), and new DNA
delivery methods (10), one or more
Nannochloropsis species may emerge as
significant new model alga systems that
can build on progress made with Chlamy-
domonas reinhardtii, the most thoroughly
studied alga to date (11).
To demonstrate gene replacement by

homologous recombination in Nanno-
chloropsis sp. (strain W2J3B), Kilian et al.

(1) target the nitrate reductase (NR) and
nitrite reductase (NiR) genes. WT cells
can grow using ammonium (NH4

+), ni-
trate (NO3

−), or nitrite (NO2
−) as a nitro-

gen source. Mutants lacking a functional
NR gene grow in the presence of NH4

+

and NO2
− but not with NO3

− as a nitrogen
source. Mutants with a defective NiR gene
can grow in the presence of NH4

+ but
not on media containing NO2

− or NO3
−.

To disrupt the NR gene, the researchers
produced a DNA construct containing
a selectable marker gene (i.e., a zeocin
resistance gene) flanked on either side by
∼1-kbp fragments from the NR gene (Fig.
1). The DNA construct was introduced
into WT cells by electroporation, and
transformants were selected on a zeocin-
containing medium. When replica-plated
onto a medium containing NH4

+ and onto
another medium containing NO3

−, it
was found that between 25% and 94% of
transformants lacked the ability to use
NO3

−. Subsequent analyses by PCR am-
plification of the NR gene region demon-
strated that all cells unable to grow in the
presence of NO3

− contained a NR gene
disrupted by the zeocin resistance gene.

Parallel experiments targeting the NiR
gene confirmed high rates of cell trans-
formation and gene disruption by
homologous recombination.
In addition to demonstrating efficient

homologous recombination in Nanno-
chloropsis sp. (strain W2J3B), the publi-
cation by Kilian et al. (1) reports several
other important findings and advances.
For example, three different selectable
markers (zeocin, hygromycin, and blasti-
cidin resistance genes) were developed
and used to demonstrate high rates of
cotransformation with independent DNA
constructs. The patterns of DNA insertion
into the genome provided strong evidence
that Nannochloropsis sp. (strain W2J3B)
is a haploid organism. This finding implies
that both dominant and recessive gene
mutations caused by gene knockout or
conventional mutagenesis, once created,
will instantly exhibit any resulting

Fig. 1. Targeted gene replacement of the NR gene in Nannochloropsis sp. (strain W2J3B). Trans-
formation of Nannochloropsis cells containing a WT copy of the NR gene with a DNA fragment con-
taining the zeocin resistance gene flanked by ∼1-kbp sections of the NR gene results in highly efficient
replacement of the native NR gene by homologous recombination and the creation of zeocin resistant,
NR-deficient (knockout) mutants. The molecular tools developed by Kilian et al. (1) and other factors
(listed) make Nannochloropsis sp. (strain W2J3B) attractive both as a model algal system and as an or-
ganism for commercial production of algal biofuels and other high-value biomolecules.
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phenotype. Although sexual reproduction
and genetic analyses have not yet been
demonstrated in Nannochloropsis, modern
molecular tools make this issue much less
of a disadvantage than in past times. An
unexpected discovery to those who are
aware that efficient transformation of C.
reinhardtii requires removal of cell walls is
the fact that Nannochloropsis sp. (strain
W2J3B) can be genetically transformed at
reasonably high rates without stripping its
cell walls, albeit using exceptionally high
electroporation voltages. An additional
difference between C. reinhardtii and
Nannochloropsis sp. (strain W2J3B) is that
the latter apparently requires linearized
DNA for efficient genetic transformation,
whereas the former is readily transformed
with either linear or circularized DNA
constructs. Finally, Kilian et al. (1) engi-
neer promoter and UTR regions from two
unlinked genes encoding violaxanthin/
chlorophyll a-binding proteins, VCP1 and
VCP2, to allow expression of coding re-
gions from various genes. The VCP2 gene
construct may prove especially useful be-
cause it contains a single bidirectional
promoter that allows simultaneous ex-
pression of two separate genes. This
situation offers the potential to create
a construct containing a selectable marker
gene driven by one side of the VCP2 pro-

moter region, while the other side remains
available to drive the coding region of
a gene next to which the construct in-
tegrates during an “activation tagging”
protocol.

One or more

Nannochloropsis species

may emerge as

significant new model

alga systems.

Although various Nannochloropsis spe-
cies have been used to produce a number
of commercial biomolecules [e.g., docosa-
hexaenoic acid (22:6n-Ω3), eicosapentae-
noic acid (20:5n-Ω3) (2–5)] for a number
of years, they, along with a few other
“wild” algal species, are only now being
subjected to detailed molecular and bio-
chemical analyses. The present demon-
stration of gene knockout and gene
replacement by homologous recombi-
nation in Nannochloropsis sp. (strain
W2J3B) should stimulate efforts to find
additional algae with this capacity, and the
development of tools, such as TAL effec-

tor nuclease (TALEN) technology (12,
13), that can achieve similar end points.
Intense efforts are underway to improve
the production of desirable oils and lipids
in algae (6–9) and to develop economically
viable facilities for large-scale algal pro-
duction. Initial use of “omics” technolo-
gies already has resulted in laboratory
breakthroughs, such as enhanced pro-
duction of algal lipids without the need to
impose nitrogen starvation on algal cul-
tures (14). Nonetheless, it should be noted
that development and modification of al-
gae for commercial purposes is in its in-
fancy and that just as modern agricultural
crops emerged from primitive prede-
cessors through long-term selection and,
later, advanced breeding methods (e.g.,
modern hybrid corn derived from primor-
dial teosinte), development of algae
for commercially viable biofuel and spe-
cialty chemical production will depend on
extensive expansion of our knowledge base
and on concerted and well-reasoned “crop
improvement” strategies.
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