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Figure 22. Example 5: Contour plots for the evolution of peridynamic temperature. The thermal diffusion is larger (1.14 cm?/s) for
results in the left column, and is 0.114 cm?/s for results in the right column.

constant velocity 0.2 cm/s chosen so that at the end of the simulation a symmetric X-like crack is obtained. The ini-
tial temperature in the plate is 0 °C. The left and right boundaries are insulated and temperatures of +100 °C are im-
posed on the top and bottom boundaries, respectively (see Figure 21). We solve two cases: a higher thermal diffusivity
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Figure 23. Example 6: The problem setup for heat flow in a thermally heterogeneous material.

of 1.14 cm?/s, and a lower one of 0.114 cm?/s. We use the same horizon § = 13L/240 and the same m = 6.5.

The solutions are shown in Figure 22. In the higher conductivity case, the steady-state solution for a plate without
cracks is reached before the cracks grow much. As the cracks grow and close down the gap between them, the temper-
ature rises in the V area and drops below it. The temperature values near the center of the plate, just above and below
of the intersecting point of the two cracks, jump from one another once the cracks intersect and continue to grow. The
shielding effect induced by connecting the insulating cracks is correctly captured by the peridynamic solution.

5.4. Example 6: Transient heat flow in a fiber-reinforced composite
To demonstrate the ability of the proposed peridynamic model in solving problems set in thermally heterogeneous
materials we consider the transient heat-flow problem in a periodic cell of the microstructure in a hypothetical fi-

ber-reinforced composite (FRC) material. Here we explicitly model the material microstructure. Homogenization ap-
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Figure 24. Example 6: Time-evolution (from 0.2 to 2 s) of the temperature field (m = 6.5, § = 13L/240).
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Figure 25. Example 6: Time-evolution (from 3 to 7 s) of the temperature field (m = 6.5, § = 13L/240).

proaches can be developed. For homogenization in the mechanical model of peridynamics for FRCs see, for example,
[32, 20].

We consider a sample cut from a the continuous fiber-reinforced composite as shown in Figure 23. The initial tem-
perature is 0 °C and the left and right boundaries are insulated to simulate periodic boundary conditions. We impose
temperatures of £ 100 °C on the top and bottom boundaries, respectively. The two “fiber inclusions” have a thermal
diffusivity of 1.14 cm?/s, while the “matrix” has a diffusivity 100 times smaller: 0.014 cm?/s (see Figure 23). We solve
the problem using a horizon size § = 13L/240 and m = 6.5.

Note that in the case of a thermally heterogenous material, one has to assign special microconductivity values for
t-bonds that connect nodes from regions with different conductivities. In such instances, we have observed (see [31])
that choosing the microconductivity corresponding to the material with the lower conductivity works well in modeling
peridynamic heat transfer in a composite bar. We use the same strategy here.

Figures 24 and 25 show the heat flow in the body at different times. Temperatures rise faster in the high diffusiv-
ity material (the “fibers”), as the heat “deflects” from the low conductivity regions to flow through the high conduc-
tivity regions. The model goes into steady-state at about 5 s. The steady-state approaches, but does not coincide with
the solution for a homogeneous material in which the isotherms are horizontal lines. Notice the sharp thermal gradi-
ents near the interfaces between the “fibers” and the “matrix” material, especially at the early times. Such steep ther-
mal gradients induce differences in the thermal expansion of the component materials and can lead to delamination
between the fibers and the matrix in a FRC under thermal fatigue. Reports in the literature indicate (see e.g., [33, 34])
that intra and interlaminar cracks due to thermal fatigue can form significantly sooner than when the composite is
subjected to purely mechanical fatigue.

6. Conclusion and future work

We introduced a peridynamic formulation for modeling transient heat transfer in multi-dimensional domains. The
formulation, which does not contain spatial derivatives of the temperature field, is suitable for modeling heat transfer
in bodies with complexly evolving discontinuities such as growing cracks that interact in any arbitrary way. We intro-
duced the peridynamic heat flux to match the classical heat flux for problems in which the temperature profile is lin-
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ear. In general, the peridynamic heat flux converges to the classical heat flux in the limit of the nonlocal region (the
horizon) going to zero. The peridynamic heat flux is more general than the classical one and it exists even when iso-
therms are not smooth surfaces, or at corners of the domain.

We showed that the results from the peridynamic model for heat flow problems in 2D converge to the analytical so-
lutions of the corresponding classical (local) models, in the limit of the peridynamic horizon going to zero, while the
number of nodes inside the horizon is kept constant. This convergence does not preclude the situation in which the
numerical approximation of the nonlocal model obtained with a larger horizon and a small number of nodes inside the
horizon is closer to the classical result than an approximation obtained with a smaller horizon and a larger number of
nodes inside the horizon. We employed the peridynamic formulation for solving transient heat conduction problems
in bodies with discontinuities such as insulated cracks. For static, nonintersecting cracks we verified the formulation
of damage in thermal peridynamic bonds against finite element solutions. The new model allowed us to solve, without
extra difficulties, heat flow problems in a body in which insulated cracks dynamically grow, intersect, and thus alter
the heat flow patterns. We also solved a problem of heat transfer in a thermally heterogeneous material, like a fiber-re-
inforced composite. The particular heat flow along the fiber direction induced by temperature differences between the
boundaries and the interior led to the formation of steep thermal gradients at the fiber/matrix interface. Such thermal
gradients can determine premature failure of the composite via intralaminar delamination (splitting failure at the fi-
ber/matrix interface).

The formulation can be used in the future to, for example, evaluate effective thermal (or even electroelastic) con-
ductivities in materials with an arbitrary distribution of insulating or permeable, possibly intersecting cracks of arbi-
trary shapes. Some analytical solutions exist for the case with straight non-intersecting cracks (see [35]).

Coupling between the mechanical and thermal peridynamic models are planned for the future.
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