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Contributed Paper

Species, Functional Groups, and Thresholds
in Ecological Resilience
SHANA M. SUNDSTROM,∗§ CRAIG R. ALLEN,†† AND CHRIS BARICHIEVY‡
∗Faculty of Environmental Design, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
††U.S. Geological Survey, Nebraska Cooperative Fish & Wildlife Research Unit, 423 Hardin Hall, School of Natural Resources,
University of Nebraska, Lincoln, NE 68583-0984, U.S.A.
‡Centre for Water in the Environment, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand,
Johannesburg 2050, South Africa

Abstract: The cross-scale resilience model states that ecological resilience is generated in part from the
distribution of functions within and across scales in a system. Resilience is a measure of a system’s ability
to remain organized around a particular set of mutually reinforcing processes and structures, known as
a regime. We define scale as the geographic extent over which a process operates and the frequency with
which a process occurs. Species can be categorized into functional groups that are a link between ecosystem
processes and structures and ecological resilience. We applied the cross-scale resilience model to avian species
in a grassland ecosystem. A species’ morphology is shaped in part by its interaction with ecological structure
and pattern, so animal body mass reflects the spatial and temporal distribution of resources. We used the log-
transformed rank-ordered body masses of breeding birds associated with grasslands to identify aggregations
and discontinuities in the distribution of those body masses. We assessed cross-scale resilience on the basis
of 3 metrics: overall number of functional groups, number of functional groups within an aggregation, and
the redundancy of functional groups across aggregations. We assessed how the loss of threatened species
would affect cross-scale resilience by removing threatened species from the data set and recalculating values
of the 3 metrics. We also determined whether more function was retained than expected after the loss of
threatened species by comparing observed loss with simulated random loss in a Monte Carlo process. The
observed distribution of function compared with the random simulated loss of function indicated that more
functionality in the observed data set was retained than expected. On the basis of our results, we believe an
ecosystem with a full complement of species can sustain considerable species losses without affecting the
distribution of functions within and across aggregations, although ecological resilience is reduced. We propose
that the mechanisms responsible for shaping discontinuous distributions of body mass and the nonrandom
distribution of functions may also shape species losses such that local extinctions will be nonrandom with
respect to the retention and distribution of functions and that the distribution of function within and across
aggregations will be conserved despite extinctions.

Keywords: biodiversity, cross-scale resilience, endangered species conservation, functional groups, grassland,
regime shifts

Especies, Grupos Funcionales y Umbrales en Resiliencia Ecológica

Resumen: El modelo de resiliencia transescala establece que la resiliencia ecológica se genera en parte por la
distribución de funciones dentro y a través de escalas en el sistema. La resiliencia es una medida de la habilidad
de un sistema para permanecer organizado en torno a un conjunto determinado de procesos y estructuras
mutuamente reforzadoras, conocido como régimen. Definimos escala como la extensión geográfica en la cual
opera un proceso y la frecuencia con que ocurre. Las especies se pueden clasificar en grupos funcionales que
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306 Functional Groups and Resilience

son un v́ınculo entre los procesos del ecosistema y la resiliencia ecológica. Aplicamos el modelo de resiliencia
transescala a especies de aves en un ecosistema de pastizal. La morfoloǵıa de una especies esta determinada
en parte por su interacción con la estructura y patrón ecológico, de tal modo que la masa corporal de un
animal refleja la distribución espacial y temporal de los recursos. Utilizamos la masa corporal, ordenada
por rangos y transformada logaŕıtmicamente, de aves asociadas a pastizales para identificar agregaciones y
discontinuidades en la distribución de esas masas corporales. Evaluamos la resiliencia transescalar con base
en 3 medidas: número total de grupos funcionales, número de grupos funcionales dentro de una agregación,
y la redundancia de grupos funcionales en las agregaciones. Evaluamos el efecto de la pérdida de especies
amenazadas sobre la resiliencia transescalar mediante la remoción de especies amenazadas del conjunto de
datos y el nuevo cálculos de las 3 medidas. También determinamos si se retenı́a más función que lo esperado
después de la pérdida de especies amenazadas mediante la comparación de la pérdida observada con la
pérdida aleatoria simulada en un proceso Monte Carlo. La distribución observada de la función comparada
con la pérdida aleatoria simulada indicó que se retenı́a mas funcionalidad que la esperada en el conjunto
de datos observados. Con base en nuestros resultados, consideramos que un ecosistema con un complemento
completo de especies puede sustentar considerables pérdidas de especies sin que se afecte la distribución
de funciones dentro y entre agregaciones, aunque la resiliencia ecológica se reduce. Proponemos que los
mecanismos responsables de moldear las distribuciones discontinuas de la masa corporal y la distribución
no aleatoria de funciones también puede moldear la pérdida de especies, como extinciones locales, serán no
aleatorios con respecto a la retención y distribución de funciones y que la distribución de la función dentro
y entre agregaciones se conservará no obstante las extinciones.

Palabras Clave: especies, grupos funcionales, umbrales de la resiliencia ecológica

Introduction

Ecological processes and functions are maintained by the
manner in which the functional roles of species are dis-
tributed within an ecosystem and by their differential
responses to disturbances (Nystrom 2006). Primary pro-
ductivity in grasslands and nutrient and energy fluxes in
tropical rainforests may depend more on the functional
role of species than on species richness, and the com-
position of species in functional groups may be more
important to the resilience of ecological processes and
functions than the number of functional groups (Silver
et al. 1996; Hooper & Vitousek 1997).

Functional groups pertain to biological diversity at
the species level, which is useful because species have
been the focus of study for many decades. As a result,
the causes, patterns, and consequences of changes in
species composition are relatively well known compared
with other organizational levels of diversity (Chapin et al.
2000). Ecological functions are performed by vertebrate,
invertebrate, and plant species in an ecosystem, and
the nonrandom pattern of their distribution within and
across the scales of an ecosystem is thought to contribute
to ecological resilience (Peterson et al. 1998; Wardwell
et al. 2008).

We define scale as the geographic extent over which
a process operates and the frequency with which a pro-
cess occurs. Ecological resilience is a measure of a sys-
tem’s ability to remain organized around a particular set
of mutually reinforcing processes and structures (Holling
1973), known as a regime. For example, reefs are main-
tained in a hard-coral regime by the grazing of a few func-
tional groups of herbivorous fishes (Bellwood et al. 2004).
The intensive harvest of herbivorous fishes in Caribbean

reefs led to increases in the abundance of sea urchins,
which became the primary grazers. When extensive hur-
ricane damage in 1980 was followed by a disease out-
break that greatly reduced the number of sea urchins, the
reefs shifted to a macroalgae-dominated regime, which
largely persists today (Hughes 1994; Mumby et al. 2007).

Alternative stable states, also known as regimes, have
been documented in a wide variety of ecosystems (Folke
et al. 2004), and a given regime may be less desirable if
it provides fewer goods and services to humans. Coral
reefs dominated by fleshy brown macroalgae have lower
species richness and support lower levels of fishing and
tourism than systems dominated by hard coral (Moberg
& Folke 1999). Intensive livestock grazing in Patago-
nia led to a transition from grasslands to shrublands,
which increased evaporation and loss of water through
deep drainage and decreased transpiration (Aguiar et
al. 1996). Hysteresis can make it difficult for a sys-
tem to shift back to its more desirable state (Scheffer
et al. 1993). Hysteresis occurs when the restoration of
the environmental conditions present before the regime
shift is insufficient to restore the system to its previous
state.

The variability of responses to environmental changes
by species within a functional group (i.e., functional-
response diversity) is thought necessary for resilience
(Elmqvist et al. 2003; Chillo et al. 2011) because in
ecosystems changing as a result of natural and human
disturbance, ecological functions can be maintained de-
spite the loss or decline of dominant species by function-
ally equivalent species that are less abundant (Walker
et al. 1999; Chillo et al. 2011). However, as species
within an ecosystem are extirpated or their abundances
are greatly reduced, the diversity of ecological functions
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and of functional responses to disturbance is likely to
decrease.

In addition to the diversity of functional responses, the
distribution of functions within and across the scales of
an ecosystem is thought to be a critical component of
resilience (Peterson et al. 1998; Allen et al. 2005). If this
is the case, then an assessment of resilience via the cross-
scale distribution of function may affect prioritization of
species for conservation. Species that are charismatic,
rare, or at greatest risk of extirpation or extinction may
not contribute the most to ecological resilience. Allen
et al. (2005) proposed measures of resilience at multiple
scales that are an extension of the cross-scale resilience
model (Peterson et al. 1998). To use these measures in
an assessment of resilience, one must identify the aggre-
gations and discontinuities in the distribution of body
masses and quantify the functions provided by those
species.

Ecological systems are structured by a few key pro-
cesses that occur at distinct spatial extents and temporal
frequencies, and these processes generate discontinuities
in the spatial and temporal structure of landscapes and
in the distribution of morphological features of species
(Holling 1992). Ecological structure and resources are not
distributed along continuous gradients; rather, they are
characterized by domains of scale over which their dis-
tributions either do not change or change monotonically
(Wiens 1989). Scale domains are separated by relatively
nonlinear transitions from one set of dominant processes
to another. Species interact with the environment as a
function of their size (Woodward et al. 2005), so the pat-
tern of scale domains and discontinuities in the physical
environment ought to be reflected in animal body-mass
distributions. Animal body-mass distributions consist of
aggregations of similarly sized species that reflect a scale
domain and gaps, or discontinuities, that reflect a transi-
tion to a new set of structuring processes (Holling 1992;
Allen 2006; Fischer et al. 2008) (Table 1). It is possi-
ble that mechanisms of community assembly result in
the partitioning of functions across scale domains to re-
duce competition among species and allow the coexis-
tence of species that use similar resources (Peterson et al.
1998; Leyequien et al. 2007). If this is the case, a diversity
of functions within an aggregation and a redundancy of
functions across aggregations would increase ecological
resilience because the loss of function in one aggrega-
tion would be compensated by one or more species from
the same functional group that occurs within a different
aggregation (Wardwell et al. 2008).

We analyzed the cross-scale resilience of a grassland
avian community. We used 3 measures of cross-scale re-
silience, overall number of functional groups, number of
functional groups within a body-size aggregation, and the
redundancy of functional groups across aggregations, and
tested the hypothesis that the local extinction of species
is nonrandom with respect to the retention of functions.

Birds are clearly not the only taxonomic group that con-
tributes to the resilience of grassland ecosystems, but
they are useful subjects of analyses because data sets on
birds are large and the information available regarding
their presence and absence, diet, and foraging habits is
of high quality.

Methods

The dry mixed grassland of southeastern Alberta (Canada)
is one of the largest and most intact native grass-
lands remaining in the United States and Canada, where
grasslands are one of the most threatened ecosystems
(Samson & Knopf 1994). Declines in grassland bird pop-
ulations have been steeper and more widespread than
those of any other avian guild in any other ecosystem
in the United States and Canada (Vickery et al. 1999;
Blancher 2003; Sauer et al. 2007). Eight-five percent of the
species of birds designated as threatened by the govern-
ment of Alberta occur in The Grassland Natural Region,
of which the dry mixed grassland is 1 of 4 ecologically dis-
tinct subregions (Alberta Environment 2010) of Alberta.
Of the roughly 5 million ha of dry mixed grassland, 54%
is native grassland (defined as quarter sections [approxi-
mately 65 ha] with ≥75% native vegetation) (Prairie Con-
servation Forum 2008).

Over 90% of the dry mixed grassland in Alberta is man-
aged for livestock grazing and extensive agriculture. Graz-
ing occurs on about 55% of the area, dry-land crops on
about 35%, and irrigated crops on about 10% (Downing
& Pettapiece 2006). Hay is the primary dry-land crop,
and it provides habitat for some grassland bird species.
Grazing maintains the dry mixed grassland, and its posi-
tive and negative effects are more a function of grazing
location, timing, and intensity than herbivory itself. Oil
and gas exploration and extraction are manifest in ex-
tensive roads, well heads, and pipelines throughout the
region. The number of natural gas wells drilled annu-
ally in Alberta increased 8-fold between 1990 and 2005,
and the linear distance of natural gas pipeline increased
roughly 4-fold (Canadian Association of Petroleum Pro-
ducers 2008). The bulk of this development has occurred
within the dry mixed grassland. In the future, the area
of intensive agriculture may increase on lands currently
used for extensive agriculture and oil, gas, and urban de-
velopment may increase.

Historic drivers that shaped the dry mixed grassland
were drought, grazing, and fire. Drought, rather than fire,
is the primary driver maintaining the dry mixed grassland
because it occurs more frequently than fire, inhibits ex-
pansion of woody shrubs, and prevents an accumulation
of fuel that would maintain a frequent fire regime (Sala
et al. 1996; Madden et al. 1999). Historical records sug-
gest fire frequency in dry mixed grassland was 5–30 years,
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Table 1. Breeding birds associated with dry mixed grassland in Alberta (Canada), their status, functional-group membership, aggregation (cluster
of similarly sized species) membership, and body mass.

Scientific Functional Body mass
Common name name Status groupa Aggregation (log10)b

Yellow Warbler Dendroica petechia secure arboreal invertivore 1 0.983
Common Yellowthroat Geothlypis trichasc threatened terrestrial herbivore 1 1.006
House Wren Troglodytes aedon secure arboreal invertivore 1 1.020
Least Flycatcher Empidonax minimusc threatened aerial invertivore 1 1.025
Marsh Wren Cistothorus palustris secure aquatic invertivore 1 1.036
Brewer’s Sparrow Spizella breweri secure arboreal omnivore 1 1.050
Black-capped Chickadee Poecile atricapillus secure bark invertivore 1 1.050
Clay-colored Sparrow Spizella pallidac threatened terrestrial herbivore 1 1.058
Warbling Vireo Vireo gilvus secure terrestrial herbivore 1 1.082
Chipping Sparrow Spizella passerina secure terrestrial omnivore 1 1.094
Western Wood-Pewee Contopus sordidulusc threatened aerial invertivore 1 1.121
Bank Swallow Riparia riparia secure aerial invertivore 1 1.139
Violet-green Swallow Tachycineta thalassina secure aerial invertivore 1 1.156
American Goldfinch Carduelis tristis secure arboreal herbivore 1 1.169
Lazuli Bunting Passerina amoena secure arboreal omnivore 1 1.177
N. Rough-winged

Swallow
Stelgidopteryx

serripennis
secure aerial invertivore 1 1.191

Rock Wren Salpinctes obsoletus secure terrestrial invertivore 2 1.223
Grasshopper Sparrow Ammodramus

savannarum
secure terrestrial omnivore 2 1.235

Red-eyed Vireo Vireo olivaceus secure arboreal invertivore 2 1.236
Savannah Sparrow Passerculus wichensis secure terrestrial invertivore 2 1.248
Barn Swallow Hirundo rusticac threatened aerial invertivore 2 1.252
Baird’s Sparrow Ammodramus bairdii secure terrestrial omnivore 2 1.279
Chestnut-collared L

Ongspur
Calcarius ornatus secure terrestrial omnivore 2 1.288

Tree Swallow Tachycineta bicolor secure aerial invertivore 2 1.326
Song Sparrow Melospiza melodiac threatened terrestrial omnivore 2 1.334
House Finch Carpodacus mexicanus secure terrestrial herbivore 2 1.336
Cliff Swallow Petrochelidon

pyrrhonota
secure aerial invertivore 2 1.364

Sprague’s Pipit Anthus spragueiid threatened terrestrial invertivore 2 1.372
Say’s Phoebe Sayornis saya secure aerial invertivore 2 1.382
Vesper Sparrow Pooecetes gramineus secure terrestrial omnivore 2 1.408
Yellow-breasted Chat Icteria virens secure arboreal invertivore 2 1.411
McCown’s Longspur Calcarius mccownii secure terrestrial omnivore 2 1.412
Downy Woodpecker Picoides pubescens secure bark invertivore 2 1.434
Lark Sparrow Chondestes grammacus secure terrestrial omnivore 2 1.459
Mountain Bluebird Sialia currucoides secure aerial invertivore 2 1.465
Veery Catharus fuscescens secure terrestrial omnivore 3 1.506
Bobolink Dolichonyx oryzivorus secure arboreal omnivore 3 1.517
Horned Lark Eremophila alpestris secure terrestrial herbivore 3 1.524
Cedar Waxwing Bombycilla cedrorum secure arboreal omnivore 3 1.530
Baltimore Oriole Icterus galbulac threatened aerial invertivore 3 1.545
Gray Catbird Dumetella carolinensis secure terrestrial omnivore 3 1.563
Bullock’s Oriole Icterus bullockii secure arboreal invertivore 3 1.574
Lark Bunting Calamospiza

melanocorys
secure terrestrial omnivore 3 1.578

Spotted Towhee Pipilo maculatus secure terrestrial omnivore 3 1.585
Western Kingbird Tyrannus verticalis secure aerial invertivore 3 1.611
Eastern Kingbird Tyrannus tyrannus secure aerial invertivorel 3 1.620
Sage Thrasher Oreoscoptes montanus threatened terrestrial invertivore 3 1.636
Brown-headed Cowbird Molothrus aterc threatened terrestrial omnivore 3 1.661
Spotted Sandpiper Actitis macularius secure aquatic invertivore 3 1.662
Black-headed Grosbeak Pheucticus

melanocephalus
secure arboreal omnivore 3 1.667

Yellow-bellied Sapsucker Sphyrapicus varius secure bark omnivore 3 1.673
Loggerhead Shrike Lanius ludovicianusd threatened aerial carnivore 3 1.678
Northern Mockingbird Mimus polyglottos secure terrestrial invertivore 3 1.691
Piping Plover Charadrius melodusd threatened aquatic invertivore 3 1.734

continued
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Table 1. (continued).

Scientific Functional Body mass
Common name name Status groupa Aggregation (log10)b

Wilson’s Phalarope Phalaropus tricolor secure aquatic invertivore 4 1.782
Red-winged Blackbird Agelaius phoeniceusc threatened terrestrial omnivore 4 1.812
Northern Shrike Lanius excubitor secure aerial carnivore 4 1.815
Brewer’s Blackbird Euphagus

cyanocephalus
secure terrestrial invertivore 4 1.837

Brown Thrasher Toxostoma rufumc threatened terrestrial omnivore 4 1.840
Hairy Woodpecker Picoides villosus secure bark invertivore 4 1.857
Common Nighthawk Chordeiles minord threatened aerial invertivore 4 1.881
Sora Porzana carolinac threatened aquatic herbivore 4 1.885
American Robin Turdus migratorius secure arboreal omnivore 4 1.894
Yellow-headed Blackbird Xanthocephalus

xanthocephalusb
threatened terrestrial omnivore 4 1.928

Killdeer Charadrius vociferusc threatened terrestrial invertivore 4 1.959
Mountain Plover Charadrius montanusd threatened terrestrial invertivore 4 1.980
American Kestrel Falco sparverius secure aerial carnivore 4 1.987
Wilson’s Snipe Gallinago delicata secure terrestrial invertivore 4 1.994
Western Meadowlark Sturnella neglecta secure terrestrial invertivore 5 2.040
Common Grackle Quiscalus quisculac threatened terrestrial omnivore 5 2.067
Mourning Dove Zenaida macroura secure terrestrial herbivore 5 2.090
Northern Flicker Colaptes auratus secure terrestrial invertivore 5 2.166
Belted Kingfisher Megaceryle alcyon secure aquatic carnivore 5 2.167
Burrowing Owl Athene cuniculariad threatened aerial carnivore 5 2.173
Merlin Falco columbarius secure aerial carnivore 5 2.191
Upland Sandpiper Bartramia longicauda secure terrestrial invertivore 5 2.200
Black-necked Stilt Himantopus mexicanus secure aquatic invertivore 5 2.229
Black-billed Magpie Pica hudsonia secure terrestrial omnivore 5 2.281
Long-eared Owl Asio otus secure aerial carnivore 6 2.350
Willet Tringa semipalmata secure aquatic carnivore 6 2.433
Pileated Woodpecker Dryocopus pileatus secure bark invertivore 6 2.474
Short-eared Owl Asio flammeusd threatened aerial carnivore 6 2.480
American Avocet Recurvirostra

americana
secure aquatic omnivore 6 2.505

Marbled Godwit Limosa fedoa secure aquatic omnivore 6 2.548
Cooper’s Hawk Accipiter cooperii secure aerial carnivore 6 2.585
Northern Harrier Circus cyaneus secure aerial carnivore 6 2.656
American Crow Corvus brachyrhynchos secure terrestrial omnivore 7 2.703
White-faced Ibis Plegadis chihi secure aquatic carnivore 7 2.784
Long-billed Curlew Numenius americanus secure terrestrial carnivore 7 2.812
American Bittern Botaurus lentiginosusc threatened aquatic carnivore 7 2.862
Sharp-tailed Grouse Tympanuchus

phasianellus
secure terrestrial herbivore 7 2.907

Swainson’s Hawk Buteo swainsoni secure aerial carnivore 7 2.921
Black-crowned

Night-Heron
Nycticorax nycticorax secure aquatic carnivore 7 2.929

Prairie Falcon Falco mexicanus secure aerial carnivore 7 2.955
Red-tailed Hawk Buteo jamaicensis secure aerial carnivore 7 2.962
Great Horned Owl Bubo virginianus secure aerial carnivore 8 3.122
Ferruginous Hawk Buteo regalisd threatened aerial carnivore 8 3.177
Turkey Vulture Cathartes aura secure aerial carnivore 8 3.296
Great Blue Heron Ardea herodias secure aquatic carnivore 8 3.329
Greater Sage-Grouse Centrocercus

urophasianusa
threatened terrestrial herbivore 8 3.385

Golden Eagle Aquila chrysaetos secure aerial carnivore 8 3.602

aFunctional groups are a combination of dietary and foraging strategy.
bAverage adult male and female masses.
cSpecies classified as threatened on the basis of significant (p < 0.05) decline in abundance in Breeding Bird Survey data from 1966–2007 (Sauer
et al. 2007).
dSpecies classified as threatened by the government of Alberta or government of Canada.

Conservation Biology
Volume 26, No. 2, 2012



310 Functional Groups and Resilience

whereas it was 5–10 years in mixed-grass land (Madden
et al. 1999; Truett 2003). In the past, bison (Bison bi-
son) and other ungulates, such as pronghorn (Antilo-
capra americana), grazed the region, and to a certain
extent bison grazing has been replaced by cattle grazing.
Because there are substantial differences in the ecological
roles of bison and cattle, the ability of cattle to function-
ally replace bison remains uncertain.

We compiled a list of breeding birds that occur in
the dry mixed-grass land from Alberta government data
(Banasch & Samuel 1998; Dale et al. 1999; Knapton
et al. 2005; Gutsell et al. 2005a, 2005b), the North
American Breeding Bird Survey (BBS) (Sauer et al.
2007), the Audubon Christmas Bird Count (National
Audubon Society 1983–2005), the Royal Alberta Museum,
and the Federation of Alberta Naturalists (Penner, per-
sonal communication). We assigned each species to a
functional group (Table 1) on the basis of its dietary
strategy and foraging strategy (Poole 2006). We defined
dietary strategies-–carnivore, herbivore, invertivore, and
omnivore—on the basis of the type of food items eaten
during the breeding season. A species was considered
an omnivore if its diet included a minimum of 30% of
both plants and animals. Foraging strategies were aerial;
arboreal or foliage; aquatic; bark; and terrestrial. Our cat-
egories are coarse, but match the generality of the eco-
logical questions we addressed.

We identified the scale domains at which species
are distributed by rank ordering species by their log
body mass and analyzing whether body-mass distribu-
tions were discontinuous. We calculated body mass by
averaging adult male and female body-mass data from the
Royal Alberta Museum specimen database. If the sam-
ple size from the museum was <30, we used data from
published studies conducted in similar ecosystems in the
United States and Canada. It is recommended that several
statistical methods be used to identify discontinuities in
body-mass distributions and then that one assess whether
the results converge (Stow et al. 2007). We used the an-
alytical methods of Bayesian classification and regression
tree (BCART) (Breiman et al. 1984) and the gap rarity
index (Restrepo et al. 1997).

We used 3 measures of cross-scale resilience: number
of functional groups; number of functional groups within
each body-mass aggregation; and number of body-mass
aggregations in which each functional group is present
(Allen et al. 2005). We calculated values for all 3 measures
for the complete data set (101 species). Then we removed
all threatened species (25) from the data set to simulate
their extirpation from the system and recalculated values
for the 3 measures.

We categorized species as secure or threatened.
Species were categorized as threatened if either the
provincial or federal government listed a species as en-
dangered or threatened or if BBS data for Alberta showed
a significant (p < 0.05) (Sauer et al. 2007), decline in

abundance from (1966–2007) (15 species). A threatened
categorization reflected probability of regional extirpa-
tion, not global extinction. We also used BBS trend data
to categorize species as threatened because governmen-
tal endangered species listings can be controversial and
affected by political considerations. The BBS data alone
were not considered adequate for categorization because
surveys are conducted along roadsides and likely under-
detect wary and wetland birds, birds with small popu-
lations, or birds with habitats that occur primarily away
from roads (Sauer et al. 2007).

We compared the observed loss of threatened species
with simulated random loss to determine whether
species extinctions were nonrandom with respect to the
retention of function. Random loss of species was simu-
lated in a Monte Carlo process in Matlab (5000 iterations).
We fixed the number of aggregations and the number of
species in each aggregation to be equivalent to the num-
ber of aggregations and species in the observed data, but
the selection of which 25 species were removed was
randomized. We calculated values of the 3 measures for
each iteration and then created a distribution of values
for each measure. We ranked our observed results within
the random distributions generated by the Monte Carlo
simulations. The ranking of the observed data within
the distributions generated by the simulation provided
a probability that the observed results were the result of
a random process. We further used this probability to de-
termine whether each observed result was in the lower
or upper half of the random distribution. We applied a
binomial test to determine whether the preponderance
of our within- and across-aggregation functional-group
observations were randomly or nonrandomly distributed
within the Monte Carlo simulations.

Results

The breeding bird community of the dry mixed grass-
land consisted of 101 species from 15 functional groups
and included wetland songbirds and waders. We did not
include 33 deepwater species in our analyses because
they have different body-mass distributions than terres-
trial species and the mechanisms driving aquatic body
masses are not well understood (Holling 1992). There
were 8 body-mass aggregations (Table 1). The number of
functional groups represented within each aggregation
ranged from 3 to 9. The aggregations of smaller-bodied
birds included more species and functional groups. The
aggregations of larger-bodied species had substantially
fewer species and fewer functional groups.

The redundancy of function across aggregations was
phylogenetically constrained. For example, there were
no small aerial carnivores or aquatic carnivores, and there
were no large aerial invertivores or arboreal invertivores.
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Of the 15 functional groups, 3 occurred in 6 aggregations,
5 functional groups had one representative and occurred
in only one aggregation, and the remaining 7 functional
groups occurred in 3–4 aggregations.

The distribution of functions after removing the 25
threatened species from the data set suggested that the
distribution of function within and across aggregations
was highly conserved despite the high number of po-
tential extinctions because the 3 measures of resilience
were relatively unchanged. Overall number of functional
groups was reduced from 15 to 14 due to the extinc-
tion of the Sora (Porzana carolina), the sole aquatic
herbivore. The loss of functional diversity within ag-
gregations was minimal. Aggregation 4 lost the most
species (Brown Thrasher [Toxostoma rufum], Common
Nighthawk [Chordeiles minor], Killdeer [Charadrius
vociferous], Mountain Plover [Charadrius montanus],
Red-winged Blackbird [Agelaius phoeniceus], Sora, and
Yellow-headed Blackbird [Xanthocephalus xanthoce-
phus]), but despite the loss of 7 species, 5 of the 8 func-
tional groups in the aggregation remained.

The redundancy of functional groups across aggrega-
tions was also strongly retained, despite the extinction of
25% of species. Only 1 functional group (aquatic her-
bivore) was extirpated entirely, although 5 functional
groups had only 1 representative initially. The functional
group terrestrial herbivores had the greatest reduction
in representation across aggregations, from 6 to 3.

Values of the 3 measures of function did not change
substantially in response to extinctions of 25% of the
species. For example, 7 of 8 functional groups remained
in aggregation 1, aggregation 2 retained 6 of 6 functional
groups, and 8 of 9 functional groups remained in aggre-
gation 3. Although the overall distribution of function
within and across the aggregations did not change sub-
stantially, despite the extinctions, resilience was reduced
because the number of species that represented a func-
tional group within an aggregation was greatly reduced.
For example, when we counted the number of species
per functional group per aggregation, 58% of the time a
functional group within an aggregation was represented
by one species. Aggregation 5 had 6 functional groups
before and after the threatened species were removed.
However, 5 of those functional groups were represented
by only one species following extinctions. Further losses
in that aggregation would result in reduced functional di-
versity at that aggregation and in a reduced redundancy
of function across aggregations.

Given the uncertainty associated with response diver-
sity within functional groups, we suggest a particular
body-mass aggregation may not be resilient to distur-
bances when there are ≤2 species per functional group.
Disturbances are often scale specific, and although func-
tionally similar species in different aggregations can theo-
retically compensate for the loss of function in another ag-
gregation, morphologically imposed foraging constraints

can prevent true replacement. Therefore, we once again
counted the number of species per functional group per
aggregation, but this time calculated the number of times
1 or 2 species remained as the sole representatives of
a functional group within that aggregation. Seventy-four
percent of the time a functional group within an aggre-
gation was represented by only 1 or 2 species following
extinctions, and 80% of the time the redundancy of func-
tion across aggregations was reduced to 1 or 2 species.
The fact that any additional bird extinctions have a high
probability of eliminating a functional group within a par-
ticular scale domain indicates the resilience of the grass-
land, as represented by the distribution pattern of the
breeding birds, may have been reduced. Of the 3 mea-
sures, number of functional groups was the least affected
by future extinctions. Ten of the 15 functional groups
had 3 or more species remaining, so future extinctions
would initially have a smaller effect on number of func-
tional groups than they would on the other 2 measures
of resilience.

We also compared the observed distribution of func-
tion remaining after the extinction of the threatened
species with the 5000 simulations of the null model of ran-
dom species removals. The comparison of observed and
expected results for the within-aggregation functional di-
versity showed that 5 of 8 aggregations retained a greater
number of functional groups than expected (binomial p
= 0.22). Ten of the 15 functional groups were repre-
sented in more aggregations than expected (binomial p
= 0.09) (Table 2). The probability of the observed results
for all 3 measures of functionality was 0.08. The distribu-
tion of function within and across scales was retained at
higher than expected values and was consistent with the
hypothesis that species extinctions are nonrandom.

Discussion

Our results are consistent with the hypothesis that func-
tions are distributed in a manner expected to contribute
to resilience and that this distribution pattern is main-
tained even with the extinction of species. This distribu-
tion pattern is explained in part by phylogeny. Macroevo-
lutionary processes affect which species are available to
colonize a particular ecosystem, but mesoscale processes
of niche exploitation and competition drive the observed
pattern of functional distribution within and across the
scales in an ecosystem (Allen et al. 2006). The observed
pattern of extinction of 25 species compared with the
random removal of 25 species also suggests that species’
extinctions are nonrandom because the cross-scale dis-
tribution of function remained intact, especially com-
pared with the distribution of function following random
extinction. Although the results of a variety of studies
show species extinctions are nonrandom with respect to
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Table 2. Ranking (i.e., upper or lower half of the distribution
resulting from the output of 5000 iterations of a Monte Carlo
simulation) of observed number of functional groups, number of
functional groups within each body-mass aggregation, and number of
body-mass aggregations in which a functional group is present for
birds associated with the dry mixed grassland in Alberta (Canada).

Resilience metric Rankinga

Number of functional groups upper
Number of functional groups within each

body-mass aggregrationb,c

aggregation 1 upper
aggregation 2 upper
aggregation 3 upper
aggregation 4 lower
aggregation 5 upper
aggregation 6 lower
aggregation 7 lower
aggregation 8 lower

Number of body-mass aggregationsb in
which a functional group is presentd

aerial carnivore lower
aquatic carnivore lower
arboreal carnivore upper
bark carnivore upper
terrestrial carnivore lower
aquatic herbivore lower
arboreal herbivore upper
terrestrial herbivore lower
aerial invertivore lower
aquatic invertivore upper
arboreal invertivore upper
bark invertivore upper
terrestrial invertivore upper
arboreal omnivore upper
bark omnivore upper
terrestrial omnivore lower

aObserved data ranked within the 5000 simulations of a null model
of random species extinctions.
bAn aggregation is a group of species with similar body size that
interact with the environment at similar spatial extents and temporal
frequencies. Aggregations are detected with a Bayesian classification
and regression tree.
cBinomial probablity of n rankings falling in the upper half of the
distribution (i.e., probability of observed versus random result of
retaining more functionality than expected), p = 0.27.
dBinomial probability, p = 0.17.

phylogeny (von Euler 2001; Rezende et al. 2007), com-
munities with and without compensatory mechanisms
(Kremen 2005), and the order of extinctions (Larsen
et al. 2005), we are the first to demonstrate that the
distribution of functions within and across scales may
contribute to a nonrandom extinction process.

We hypothesized that the extinction of one species
within a functional group may reduce competition
among other species with similar diets and foraging strate-
gies and increase their ability to survive future distur-
bances. Results of studies of food-web networks suggest
that nonrandom extinctions can allow communities to re-
tain resilience to disturbances because surviving species
will have greater average resilience as the number of their
competitors decreases (Ives & Cardinale 2004).

In our study, threatened species accounted for 25%
of the number of bird species, yet even with their hy-
pothetical loss the ecosystem retained almost complete
functionality on the basis of the 3 cross-scale resilience
measures. However, the loss of species decreases di-
versity of responses to disturbance, cross-scale redun-
dancy of function, and within-scale diversity of function
and may compromise resilience. Should the threatened
species become extinct, the grassland would be at a
threshold at which the loss of virtually any additional
species would result in a reduction in functional diver-
sity within scales and in functional redundancy across
scales.

Peterson et al. (1998) suggest that functions will be
more diverse within a body-size aggregation and more
evenly distributed across aggregations as a result of com-
munity assembly mechanisms that partition species that
forage on similar resources (analogous here to providing
similar functions). The consequence of this distribution
is a more stable provision of functions in the face of
disturbances and losses of species within particular ag-
gregations. Relatively intact systems, such as our study
area, can support high levels of losses without a substan-
tial reduction in function. However, the loss of entire
functional groups can decrease grassland resilience to
colonization by non-native species (Zavaleta & Hulvey
2004).

The dry mixed-grass land is considered relatively intact
in part because there has been little outright loss due
to urbanization. Although the spatial and temporal pat-
tern of disturbance processes has changed over the last
century, ranchers are encouraged to graze their cattle
in a heterogeneous pattern to mimic bison grazing pat-
terns, and fires, although infrequent, are not always eas-
ily suppressed despite fire suppression being standard
practice (T. Kupchenko, personal communication). In-
sofar as extinctions and successful colonization by non-
native species reflect the degree of habitat change in a
landscape, among avian species only the Greater Prairie-
Chicken (Tympanuchus cupido pinnatus) and Passen-
ger Pigeon (Ectopistes migratorius) have become ex-
tinct since precolonial times, and only 5 species have es-
tablished breeding populations: House Sparrow (Passer
domesticus), European Starling (Sturnus vulgaris), Rock
Pigeon (Columbia livia), Gray Partridge (Perdix perdix),
and Ring-necked Pheasant (Phasianus colchicus). Most
agriculture is extensive, so gross grassland characteris-
tics remain, despite the loss of some native species to
non-native grasses.

In the dry mixed grassland, the extinction of avian
species would directly reduce the distribution of func-
tion within and across aggregations, and insofar as birds
play a functional role in maintaining the dominance of
grasses, the loss of further species could increase the
probability of a regime shift. This is analogous to food-
web studies in which stability decreases as the number of
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links (species) decreases (Dunne et al. 2002). Food webs
have thresholds of node loss beyond which the network
can collapse (Dunne et al. 2002). Although bison and
other species may have historically been stronger drivers
of plant structure and composition in the dry mixed grass-
land than birds, the fact that the grassland has persisted
despite the extinction or decreased abundance of some
species suggests that other species have compensated
functionally.

There are some weaknesses to our methods. Current
strategies for categorizing species into functional groups
are unsatisfactory because it would be difficult to ex-
plicitly link a functional group to ecosystem processes.
It is challenging to develop functional categories appro-
priate to the scale and goals of a study. We included
within our study assemblage all native breeding birds in
the grassland, including grassland obligates and species
that breed in riparian shrubs and trees, cliffs, sand dunes,
and other features common to the ecosystem. Thus, al-
though species may belong to the same functional group
and be in different body-mass aggregations, the degree
to which one species can functionally compensate for
another may be restricted by the ecological niche it oc-
cupies within the grassland. Also, the grassland breeding
birds are only part of the plant and animal assemblage
that contributes to the processes and functions of the
grassland, and the extinction of a bird species will affect
and be affected by the other biotic and abiotic elements
with which it interacts.

Maintaining within-scale functional diversity and cross-
scale functional redundancy is a hedge against the uncer-
tainty and unpredictability inherent in nonlinear com-
plex systems with multiple alternative regimes (Scheffer
& Carpenter 2003; Kinzig et al. 2006). Resilience, as quan-
tified by the distribution of functions, could be a tool
for objectively assessing species’ ecological importance if
the focus is system behavior and persistence. We believe
stronger empirical links need to be made between func-
tional classifications and ecosystem processes. However,
until the complex dynamics governing nonlinear shifts
in ecosystem structure and processes are better under-
stood, maintaining functional diversity within and across
scales may prevent transitions to alternative regimes.

Acknowledgments

S. M.S. was supported by a National Sciences and Engi-
neering Research Council Canada Graduate Scholarship
grant. C.R.A. was supported by a 21st Century Research
Award–Studying Complex Systems from the James S.
McDonnell Foundation. The Nebraska Cooperative Fish
and Wildlife Research Unit is jointly supported by a co-
operative agreement between the U.S. Geological Survey,
the Nebraska Game and Parks Commission, the University
of Nebraska−Lincoln, the U.S. Fish and Wildlife Service,

and the Wildlife Management Institute. Any use of trade
names is for descriptive purposes only and does not imply
endorsement by the U.S. Government. C.B. was funded
by the Andrew W. Mellon Foundation.

Literature Cited

Aguiar, M. R., J. M. Paruclo, O. E. Sala, and W. K. Lauenroth. 1996.
Ecosystem responses to changes in plant functional type composi-
tion: an example from the Patagonian Steppe. Journal of Vegetation
Science 7:381–390.

Alberta Environment. 2010. The general status of Alberta wild species.
Alberta Sustainable Resource Development, Edmonton.

Allen, C. R., A. S. Garmestani, T. D. Havlicek, P. A. Marquet, G. D.
Peterson, C. Restrepo, C. A. Stow, and B. E. Weeks. 2006. Patterns
in body mass distributions: sifting among alternative hypotheses.
Ecology Letters 9:630–643.

Allen, C. R. 2006. Discontinuities in ecological data. Proceedings of the
National Academy of Sciences 103:6083–6084.

Allen, C. R., L. Gunderson, and A. R. Johnson. 2005. The use of dis-
continuities and functional groups to assess relative resilience in
complex systems. Ecosystems 8:958–966.

Banasch, U., and B. Samuel. 1998. Raptor component report. Canadian
Wildlife Service, Alberta, Edmonton.

Bellwood, D. R., T. P. Hughes, C. Folke, and M. Nystrom. 2004. Con-
fronting the coral reef crisis. Nature 429:827–833.

Blancher, P. 2003. Importance of North America’s grasslands to birds.
Commission for Environmental Cooperation, Montreal.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classi-
fication and regression trees. Wadsworth International Group, Bel-
mont, California.

Canadian Association of Petroleum Producers (CAPP). 2008.
CAPP statistical handbook. CAPPCalgary, Alberta. Available from
http://www.capp.ca/library/statistics/handbook (accessed 2008).

Chapin, F. S. et al. 2000. Consequences of changing biodiversity. Nature
405:234–242.

Chillo, V., M. Ananad, and R. A. Ojeda. 2011. Assessing the use of
functional diversity as a measure of ecological resilience in arid
rangelands. Ecosystems 14:1168–1177.

Dale, B., P. Taylor, and J. P. Goossen. 1999. Avifauna component report.
Canadian Wildlife Service, Alberta, Edmonton.

Downing, D. J., and W. W. Pettapiece. 2006. Natural regions and
subregions of Alberta. Publication T/852. Government of Alberta,
Edmonton.

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. Network struc-
ture and biodiversity loss in food webs: robustness increases with
connectance. Ecology Letters 5:558–567.

Elmqvist, T., C. Folke, M. Nystrom, G. Peterson, J. Bengtsson, B. Walker,
and J. Norberg. 2003. Response diversity, ecosystem change, and
resilience. Frontiers in Ecology 1:488–494.

Fischer, J., D. B. Lindenmayer, and R. Montague-Drake. 2008. The
role of landscape texture in conservation biology: a case study on
birds in south-eastern Australia. Diversity and Distributions 14:38–
46.

Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gun-
derson, and C. S. Holling. 2004. Regime shifts, resilience, and
biodiversity in ecosystem management. Annual Review of Ecology,
Evolution and Systematics 35:557–581.

Gutsell, R., S. Cotterill, and C. Platt. 2005a. Preliminary status evaluation
of the birds: passerines. Alberta Sustainable Resource Development,
Edmonton.

Gutsell, R., S. Feser, S. Cotterill, and C. Platt. 2005b. Preliminary status
evaluation of the birds: non-passerines. Alberta Sustainable Resource
Development, Edmonton.

Holling, C. S. 1973. Resilience and stability of ecological systems. Annual
Review of Ecology and Systematics 4:1–23.

Conservation Biology
Volume 26, No. 2, 2012



314 Functional Groups and Resilience

Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics
of ecosystems. Ecological Monographs 62:447–502.

Hooper, D. and P. M. Vitousek. 1997. The effects of plant composition
and diversity on ecosystem processes. Science 277:1302–1305..

Hughes, T. 1994. Catastrophes, phase shifts, and large-scale degradation
of a Caribbean coral reef. Science 265:1547–1551.

Ives, A. R., and B. J. Cardinale. 2004. Food-web interactions govern
the resistance of communities after non-random extinctions. Nature
429:174–177.

Kinzig, A. P., P. R. Ryan, M. Etienne, H. Allison, T. Elmqvist, and B.
H. Walker. 2006. Resilience and regime shifts: assessing cascading
effects. Ecology and Society 11:363–385.

Knapton, R. W., G. L. Holroyd, and H. E. Trefry. 2005. Vertebrate species
at risk at Onefour research sub-station. Environment Canada, Al-
berta, Edmonton.

Kremen, C. 2005. Managing ecosystem services: What do we need to
know about their ecology? Ecology Letters 8:468–479.

Larsen, T. H., N. M. Williams, and C. Kremen. 2005. Extinction order and
altered community structure rapidly disrupt ecosystem functioning.
Ecology Letters 8:538–547.

Leyequien, E., W. F. de Boer, and A. Cleef. 2007. Influence of body size
on coexistence of bird species. Ecological Research 22:735–741.

Madden, E. M., A. J. Hansen, and R. K. Murphy. 1999. Influence of
prescribed fire history on habitat and abundance of passersine
birds in northern mixed-grass prairie. The Canadian Field-Naturalist
113:627–640.

Moberg, F., and C. Folke. 1999. Ecological goods and services of coral
reef systems. Ecological Economics 29:215–233.

Mumby, P. J., A. Hastings, and H. J. Edwards. 2007. Thresholds and the
resilience of Caribbean coral reefs. Nature 450:98–101.

National Audubon Society. 1983–2005. The Christmas Bird Count his-
torical results. National Audubon Society, New York. Available from
http://www.audubon.org/bird/cbc (accessed June 2006).

Nystrom, M. 2006. Redundancy and response diversity of functional
groups: implications for the resilience of coral reefs. Ambio
35:30–35.

Peterson, G., C. R. Allen, and C. S. Holling. 1998. Ecological resilience,
biodiversity, and scale. Ecosystems 1:6–18.

Poole, A. editor. 2006. The birds of North America online. Cor-
nell Laboratory of Ornithology, Ithaca, New York. Available from
http://bna.birds.cornell.edu/BNA (accessed 2006).

Prairie Conservation Forum. 2008. Native prairie vegetation base-
line inventory for the Grassland Natural Region of Alberta.
Prairie Conservation Forum, Lethbridge, Alberta. Available from
http://www.albertapfc.org (accessed August 2008).

Restrepo, C., L. M. Renjifo, and P. Marples. 1997. Frugivorous birds
in fragmented Neotropical montane forests: landscape pattern and
body mass distribution. Pages 171–189 in W. F. Laurance, R. O. Bier-
regaard, and C. Moritz, editors. Tropical forest remnants: ecology,
management and conservation of fragmented communities. Univer-
sity of Chicago Press, Chicago.

Rezende, E. L., J. E. Lavabre, P. R. Guimaraes Jr., P. Jordano, and J.
Bascompte. 2007. Non-random coextinctions in phylogenetically
structured mutualistic networks. Nature 448:925–928.

Sala, O. E., W. K. Lauenroth, S. J. McNaughton, G. Rusch, and X. Shang.
1996. Biodiversity and ecosystem functioning in grasslands. Pages
129–149 in H. A. Mooney, J. H. Cushman, E. Medina, O. E. Sala,
and E. D. Schulze, editors. Functional roles of biodiversity: a global
perspective. John Wiley & Sons, Chichester.

Samson, F. B., and F. L. Knopf. 1994. Prairie conservation in North
America. BioScience 44:418–421.

Sauer, J. R., J. E. Hines, and J. Fallon. 2007. North American Breeding
Bird Survey, results and analysis 1966–2006. U.S. Geological Survey,
Patuxent Wildlife Research Center, Patuxent, Maryland. Available
from http://www.pwrc.usgs.gov/bbs (accessed 2007).

Scheffer, M., S. H. Hosper, M. L. Meijer, and B. Moss. 1993. Alter-
native equilibria in shallow lakes. Trends in Ecology & Evolution
8:275–279.

Scheffer, M., and S. R. Carpenter. 2003. Catastrophic regime shifts in
ecosystems: Linking theory to observation. Trends in Ecology &
Evolution 18:648–656.

Silver, W. L., S. Brown, and A. E. Lugo. 1996. Effects of changes in biodi-
versity on ecosystem function in tropical rainforests. Conservation
Biology 10:17–24.

Stow, C., C. R. Allen, and A. S. Garmestani. 2007. Evaluating discontinu-
ities in complex systems: toward quantitative measures of resilience.
Ecology and Society 12:26.

Truett, J. C. 2003. Migrations of grassland communities and grazing
philosophies in the Great Plains: a review and implications for man-
agement. Great Plains Research 13:3–26.

Vickery, P. D., P. L. Tubaro, J. M. C. DaSilva, B. G. Peterjohn, J. R.
Herkert, and R. B. Cavalcanti. 1999. Ecology and conservation of
grassland birds in the Western Hemisphere. Studies in avian biology.
Number 19. Cooper Ornithological Society, Waco, Texas.

von Euler, F. 2001. Selective extinction and rapid loss of evolutionary
history in the bird fauna. Proceedings of the Royal Society of London
B 268:127–130.

Walker, B., A. Kinzig, and J. Langridge. 1999. Plant attribute diversity,
resilience, and ecosystem function: the nature and significance of
dominant and minor species. Ecosystems 2:95–113.

Wardwell, D. A., C. R. Allen, G. D. Peterson, and A. J. Tyre.
2008. A test of the cross-scale resilience model: functional rich-
ness in Mediterreanean-climate ecosystems. Ecological Complexity
5:165–182.

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology
4:385–397.

Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya, J. M. Olesen,
A. Valido, and P. H. Warren. 2005. Body size in ecological networks.
Trends in Ecology & Evolution 20:402–409.

Zavaleta, E. S., and K. B. Hulvey. 2004. Realistic species losses dispropor-
tionately reduce grassland resistance to biological invaders. Science
306:1175–1177.

Conservation Biology
Volume 26, No. 2, 2012


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2012

	Species, Functional Groups, and Thresholds in Ecological Resilience
	Shana M. Sundstrom
	Craig R. Allen
	Chris Barichievy

	Species, Functional Groups, and Thresholds in Ecological Resilience

	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


