Winter 1-10-2017

Evaluation of Thin Asphalt Overlay Pavement Preservation in Nebraska: Laboratory Tests, MEPDG, and LCCA (17-2624)

S. Im
Texas A&M Transportation Institute

University of Nebraska-Lincoln

Y. Kim
University of Nebraska-Lincoln

G. Nsengiyumva
University of Nebraska-Lincoln

R. Rea
Nebraska Department of Roads

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/civilengdiss

Part of the Civil and Environmental Engineering Commons

http://digitalcommons.unl.edu/civilengdiss/101

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
S. Im, University of Nebraska-Lincoln, Y. Kim, G. Nsengiyumva, R. Rea, and Hamzeh Haghshenas
Evaluation of Thin Asphalt Overlay Pavement Preservation in Nebraska: Laboratory Tests, MEPDG, and LCCA (17-2624)

Soohyok Im¹, Taesun You², Yong-Rak Kim², Gabriel Nsengiyumva², Robert Rea¹, and Hamzeh Haghshenas²
¹Texas A&M Transportation Institute, ²University of Nebraska-Lincoln ³Nebraska Department of Roads

MOTIVATION
- Thin asphalt overlays offer an economical resurfacing, preservation, and renewal paving solution for roads that require safety and smoothness improvements.
- Recently, thin asphalt overlays have been used in Nebraska as a promising pavement preservation technique that needs evaluations.

OBJECTIVE
- To evaluate the thin asphalt overlay practice recently implemented in Nebraska:
 - SPH (2-inch conventional practice) vs. SLX (1-inch thin-lift) practice

RESEARCH METHOD
- Step 1: Collecting Mixes from Field Project
- Step 2: Performing Laboratory Tests
- Step 3: Conducting MEPDG and LCCA Analyses

LABORATORY TEST RESULTS

CONCLUSION
- Test results indicated that the two mixtures are similar in stiffness characteristics and cracking resistance.
- It was shown that the SLX mixture was more susceptible to moisture-induced damage than the SPH mixture.
- Based on the laboratory test results, MEPDG predictions, and LCCA results, the thin-lift overlay pavements that replace 1-inch thick old asphalt with a new SLX mix are expected to perform satisfactorily.
- The thin-lift overlay practice is expected to provide several benefits, including quickly opening highways to the public due to faster paving and a safer driving surface.