


the clusters and unbiased selection of polygons is the
novelty of CPSC and makes it better than other redistricting
algorithms. Finally, another unique feature of CPSC is the
use of the cost function as a part of the heuristic function
that measures the reduction in flexibility of clustering with

every assignment of a polygon to a cluster. Thus, for
redistricting purposes, CPSC gives an optimal starting plan as
opposed to randomized plans produced by other methods.

5.2 Evaluation of Extensions of CPSC

In the next experiment, we used a partial census block data
set from the state of Texas to compare CPSC and CPSC*.
Basically, we first assumed the constraints were hard when
applying CPSC and then assumed that the same constraints
could be relaxed when applying CPSC*. This does not
imply that in the real district formation problem that
constrains could be arbitrarily relaxed. Our goal here was to
highlight the impact that CPSC* could have on the
redistricting problem if constraints were soft.
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TABLE 4
Comparison of Clustering Results for Indiana Data Set (Contd.)

TABLE 5
Runtime Comparison (Minutes) on Intel Pentium Processor

T4300, 4 GB Memory

Fig. 5. Results for the Indiana data set. (a) Graph partitioning, (b) SARA, (c) GA, (d) CPSC, and (e) current districts.

TABLE 3
Comparison of Clustering Results for Indiana Data Set



First, we randomly picked three blocks and designated
them as school polygons, and set k ¼ 3. The data set consists
of 160 polygons (Fig. 6a). The problem statement for the
school district formation problem has been described in
Section 4.2. The expected result is to see k number of school
districts. Each school district should have approximately
equal number of students, and the farthest household in
any district from the school must be within the threshold
distance (the maximum distance allowed between a poly-
gon and the school polygon). To begin with, the desired
student population within each district is 238,452 with a
margin of error of 1 percent, and the desired threshold
distance is 10 miles. When CPSC was applied to this data
set, all the polygons were not assigned to a cluster because
some of the polygons were further away from the school
polygon (Fig. 6b). However, as the problem statement
dictates that the threshold distance may be relaxed, and
thus may be treated as a soft constraint, we applied CPSC*
next to this data set. The threshold distance is increased by
5 miles. The result of CPSC* is presented in Fig. 6c. A visual
inspection of Fig. 6c shows that every polygon has now
been assigned to a cluster. Table 6 lists the population in
each district, the margin of error of the population, and the
compactness of each district formed by CPSC and CPSC*. In
Table 6, none of the districts obtained by CPSC* have a
margin of error more than 1 percent.

For the school district experiment, CPSC does not
provide a solution for the problem, because an optimal
solution does not exist within the data set. That is, all the
constraints cannot be satisfied by all the polygons within
the data set. This is because, some of the big polygons are
farther away from all seed polygons than the maximum
distance allowed within a district. However, if the problem
is allowed to be modified such that the constraints can be
relaxed, i.e., the maximum distance allowed within a
district between the seed polygon and any other polygon
is increased, then CPSC* is able to provide an optimal
solution for the school district problem.

In order to validate CPSC*-PS, we conducted an experi-
ment with a synthetic data set that consists of a set of
20 polygons with 1,000 population each (Fig. 7a). The target

is to divide the data set into three clusters with a total
population of 6,666 each. When CPSC is applied to this data
set, the algorithm does not converge because the target can
never be achieved. Once every cluster has achieved a
population of 6,000 each, the clusters are stuck fighting for
the remaining two polygons. If on the other hand, CPSC* is
applied to this data set, and constraint of equal population is
converted to a soft constraint of population between 6,000
and 7,000, the result obtained is three clusters with total
population 6,000, 7,000, and 7,000, respectively (Fig. 7b).
However, as the initial target of 6,666 is not yet achieved,
CPSC*-PS is applied next to this data set. Each polygon
within the data set is subdivided into two smaller polygons,
with the population divided equally within the two smaller
polygons. CPSC*-PS when applied to this data set results in
three clusters with population 6,500, 6,500, and 7,000,
respectively (Fig. 7c).

From these observations, we see the strengths and
weaknesses of the CPSC family. CPSC is suitable for
situations where the constraints are hard, and a solution
exists within the data set. However, if the constraints are
soft, and can be prioritized, CPSC* is a better choice than
CPSC. CPSC*-PS is the same as CPSC* with the additional
step of splitting polygons in order to optimize the clusters
discovered with CPSC*. Thus, CPSC*-PS is computationally
more expensive than CPSC and CPSC*, and therefore must
be used in situations where the polygons can be split into
two or more smaller polygons such that the smaller
polygons are still meaningful in the context of the
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Fig. 6. (a) School district data set (b) CPSC result (c) CPSC* result.

Fig. 7. Application of CPSC* and CPSC*-PS on a synthetic data set.
(a) The synthetic data set. (b) Result of CPSC*. (c) Result of
CPSC*-PS.

TABLE 6
School Districts Result Statistics



application. For example, a county can be split into census
tracts while forming congressional districts because a
census tract is a more compact polygon with smaller
population. However, in other applications, e.g., clustering
watersheds, splitting a watershed is not meaningful and
hence the result obtained by CPSC*-PS is not valid.

5.3 Seed Selection Analysis

In the section, we further analyze the CPSC suite of
algorithms in terms of their sensitivity to the initial seeding.
One would assume that the seed selection process has an
impact on the final results of the algorithm. We conduct an
experiment with a synthetic data set where polygons are
well defined and uniform, and another with real data
polygons to observe how different seed selection processes
yield different clusters.

Experiment with synthetic data set. The data set
consists of a set of 27 polygons with 1,000 population
each, and uniform shape and size. The target is to divide
the data set into three clusters with total population of
9,000 each and that each cluster is spatially contiguous and
compact. The results with the use of different seed
selection functions are presented in Figs. 8a, 8b, and 8c.
CPSC produces the same result irrespective of the initial
seeds selected. Fig. 8c further demonstrates that CPSC is
robust enough to migrate the seeds from their original
location such that the clusters satisfy all the user-defined
constraints when there is only one optimal solution within
the data set. The migration takes place when two or more
neighboring clusters compete for polygons. A cluster that
has no free neighbor polygons will grab the already-
assigned polygons from neighboring clusters in order to
continue to grow to meet the target population, while a
cluster that has free neighbor polygons will grab the free
polygons until it meets the target. Thus, this allows the
cluster centers to move apart, as indicated in Fig. 8c.

Experiment with real data set. While the above experi-
ment demonstrates the ability of these clusters migrating
through space to find the optimal solution, it is very possible
that if different clusters have different neighborhoods of free
polygons to grow with, it is likely to have multiple clustering
solutions. Thus, we experiment with the real-world con-
gressional redistricting data set for the state of Indiana. We
modify the criteria for the selection of seeds as specified
previously in Section 4.1.1. The different seed selections, and
the respective congressional districts produced as per the
seeds selected are shown in Fig. 9. In Fig. 9a, the seeds are
selected by first sorting the census tracts in ascending order
of their population and picking the top k ¼ 9 polygons that
are at least certain distance apart (see (7) in Section 4.1.1)
whereas in Fig. 9b the seeds are selected by sorting the seeds
in descending order of their population. In Fig. 9c, the seeds
are selected by sorting the seeds in descending order of their

population and with a smaller distance requirement (i.e., the
seeds are allowed to be closer). Briefly, the first strategy is to
be conservative when growing clusters by selecting the
smallest polygons first, as growing from the smallest
polygons first would give each cluster the most flexibility
in selecting the next polygons to grow. The second strategy
is to grab the largest polygons as seeds and grow them
accordingly, with the expectation that each large polygon
will serve as the core of a cluster by grabbing neighboring,
smaller polygons. The third strategy is similar, but with a
reduced requirement allowing seeds to be closer. While all
the three seed selection strategies meet the equal population
criteria with 1 percent margin of error, we can see that the
three results are not the same. This is indicative of the
presence of multiple solutions within the data set. Further-
more, we can see that the districts in Fig. 9a are the most
compact, followed by the districts in Fig. 9b and then those
in Fig. 9c. In Fig. 9c, in particular, the reduced distance
between the initial seeds causes additional competition for
polygons when the clusters grow. Thus, the resulting
clusters are more elongated. We thus conclude that

1. the three strategies work as expected,
2. the initial seed selection strategy has an impact on the

clustering outcome—as our algorithms are after all
order dependent,

3. conservative strategies will yield more compact
clusters, and,

4. finally, using initial seeds that are too close together
could crowd the growth and cause elongated clusters.

6 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new spatial clustering
approach for polygon data sets instead of point data sets.
This approach makes use of the available domain knowl-
edge in the form of constraints that guide the clustering
process. Our algorithm, called constrained polygonal spatial
clustering, views clustering as a search process, with seeds
as the start states, and the desired clusters satisfying or
optimizing the constraints as the goal states. Thus, it can
employ an A� search-like mechanism that allows CPSC to
embed the constraints into the heuristic function that guides
the “search” process. Specifically, CPSC strategically uses
constraints to select initial seeds, to compute the distance
and cost functions to select the best cluster to grow next, and
to select the best polygon to add to the best cluster. While
CPSC works with hard constraints, we have developed two
extensions of CPSC—namely, CPSC* and CPSC*-PS that
work with both hard and soft constraints. We have
successfully applied the CPSC algorithm family to two
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Fig. 8. Application of CPSC on a synthetic data set. Three initial seeds are
color coded as blue, pink, and green. CPSC results with different seeds.

Fig. 9. (a) CPSC results with minimum population seeds. (b) CPSC
results with maximum population seeds. (c) CPSC results with
maximum population seeds but with smaller distance.



challenging problems: congressional redistricting and
school district formation. We have shown that CPSC
outperforms other approaches proposed in literature such
as simulated annealing and genetic algorithms. In terms of
future work, our immediate next step is to apply CPSC*-PS
to a real application data set, and perform further evalua-
tions of the algorithm, along with developing a parameter-
ized heuristic function that allows the user the flexibility to
define a set of constraints, and define the constraints as hard
or soft. We will then comprehensively evaluate the differ-
ences within the algorithms in the CPSC suite, by applying
them to solve a real-world problem other than the ones
mentioned in this paper. We will also be implementing the
congressional redistricting problem more comprehensively
by considering additional constraints such as the must-link
constraint for minority-population areas, and test the
scalability of our algorithm. In addition, we plan to consider
other measures for compactness and testing with different
cost functions, and see the difference in the clustering
results. CPSC may further be benefitted by the use of the
spatial characteristics such as topological relationships of the
polygons.
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