
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Management Department Faculty Publications Management Department 

9-2013 

Managing Capital Market and Longevity Risks in a Defined Benefit Managing Capital Market and Longevity Risks in a Defined Benefit 

Pension Plan Pension Plan 

Samuel H. Cox 
University of Manitoba, sam.cox@ad.umanitoba.ca 

Yijia Lin 
University of Nebraska–Lincoln, yijialin@unl.edu 

Ruilin Tian 
North Dakota State University, ruilin.tian@ndsu.edu 

Jifeng Yu 
University of Nebraska–Lincoln, jifeng.yu@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/managementfacpub 

Cox, Samuel H.; Lin, Yijia; Tian, Ruilin; and Yu, Jifeng, "Managing Capital Market and Longevity Risks in a 
Defined Benefit Pension Plan" (2013). Management Department Faculty Publications. 104. 
https://digitalcommons.unl.edu/managementfacpub/104 

This Article is brought to you for free and open access by the Management Department at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Management Department 
Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/managementfacpub
https://digitalcommons.unl.edu/managementdept
https://digitalcommons.unl.edu/managementfacpub?utm_source=digitalcommons.unl.edu%2Fmanagementfacpub%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/managementfacpub/104?utm_source=digitalcommons.unl.edu%2Fmanagementfacpub%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages


Published in Journal of Risk and Insurance 80:3 (September 2013), pages 585–619;  
doi: 10.1111/j.1539-6975.2012.01508.x

Copyright © 2013 The Journal of Risk and Insurance.  
Published by John Wiley & Sons, Inc. Used by permission.

Published online April 10, 2013.

Managing Capital Market and Longevity Risks 
in a Defined Benefit Pension Plan

Samuel H. Cox, Yijia Lin, Ruilin Tian, and Jifeng Yu

Abstract

This article proposes a model for a defined benefit pension plan to 
minimize total funding variation while controlling expected total pension 
cost and funding downside risk throughout the life of a pension cohort. 
With this setup, we first investigate the plan’s optimal contribution and 
asset allocation strategies, given the projection of stochastic asset returns 
and random mortality evolutions. To manage longevity risk, the plan 
can use either the ground-up hedging strategy or the excess-risk hedging 
strategy. Our numerical examples demonstrate that the plan transfers 
more unexpected longevity risk with the excess-risk strategy due to its 
lower total hedge cost and more attractive structure.

Introduction
Operating defined benefit (DB) pension plans involves risks: no matter what happens in 
financial markets and how long employees live after retirement, DB plans are responsible 
for providing employees guaranteed retirement income. The inherent volatility of the 
capital market and longevity risk force the sponsors of the DB pension plans to manage 
pension risk.

The DB pension plans can reduce risk by pursuing a strategy with stable contributions 
(Lee, 1986). In this light, Haberman, Butt, and Megaloudi (2000) investigate an optimization 
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problem with an objective to minimize the variance of periodic contributions. To cope 
with the risk, the sponsors can also adjust their asset allocation (Black, 1989; Bodie, 1991; 
Haberman, Butt, and Megaloudi, 2000; Colombo and Haberman, 2005; Maurer, Mitchell, 
and Rogalla, 2009; Lucas and Zeldes, 2009). A group of researchers is in favor of holding 
a 100 percent bond portfolio to minimize pension risk (Black, 1980; Gold and Hudson, 
2003). The most prominent example of a company that follows this advice is the Boots, a 
U.K. pharmaceutical retailer, which shifted all of its pension assets to bonds between the 
spring of 2000 and July 2001.1 Yet, given that there exists a trade-off between contribution 
and the level of risk a DB scheme is willing to take (Colombo and Haberman, 2005), this 
practice may raise total pension cost as more contributions are needed to meet retirement 
benefit liabilities. Total pension cost includes all costs and penalties associated with 
normal contributions, supplementary contributions, and withdrawals (Maurer, Mitchell, 
and Rogalla, 2009). By contrast, some others advocate investing heavily in higher yielding 
but riskier equities, reasoning that stocks are expected to earn higher returns than bonds 
over the long haul and help to reduce underfunding over time. Still, there is a problem of 
this strategy. That is, equity investment increases funding variation and leads to a high 
funding downside risk, that is, the risk that pension assets fall far below pension liabilities. 
Thus, pension investment strategy should take into account both funding downside risk 
and total pension cost.

To derive the optimal proportion invested in risky assets, Maurer, Mitchell, and Rogalla 
(2009) minimize the variance of plan contributions subject to a total pension cost constraint 
but they do not explicitly control the plan’s funding downside risk. Delong, Gerrard, 
and Haberman (2008), on the other hand, investigate the optimal investment strategy 
by minimizing funding variation. While they include supplementary contributions 
in their generalized optimization problem, they do not directly study the effect of total 
pension cost on pension asset allocation. Josa-Fombellida and RincÓn-Zapatero (2004) 
also examine the pension asset allocation with the aim of minimizing pension funding 
risk and contribution rate risk, along the lines of Haberman and Sung (1994), Haberman 
(1997), and Josa-Fombellida and RincÓn-Zapatero (2001). They conclude that the plan will 
invest more in risky assets (e.g., stocks) when the funding status deteriorates. Bogentoft, 
Romeijn, and Uryasev (2001) model a multi-period problem to adjust contributions and 
investments at each decision point by minimizing pension cost subject to a conditional 
value at risk (CVaR) constraint on pension underfunding. Based on a pension fund data 
from the Netherlands, they suggest investing, on average, 84 percent of the pension fund 
in bonds and the remainder in equities. Similar to Delong, Gerrard, and Haberman (2008), 
Josa-Fombellida and RincÓn-Zapatero (2004) and Bogentoft, Romeijn, and Uryasev (2001) 
do not directly control total pension cost at a given level. Nevertheless, considering a total 
pension cost constraint is important since it includes all costs a plan incurs during a period 
of interest. The budget constraint creates a strong incentive for the plan to specify a target 
total pension cost.

To extend the previous analysis, in an asset–liability management setting with various 
stochastic assets and dynamic mortality rates, not only do we propose a problem to 

1. However, the plan partially shifted back to equity investment in 2005.
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minimize funding variation of a DB pension plan, but we also impose a constraint to 
specify expected total pension cost and a CVaR constraint to control downside risk from 
pension underfunding. We consider a financial market with a low-risk asset driven by a 
Brownian motion and each risky asset driven by a Lévy process. The dynamic mortality 
rates are described by the Lee and Carter (1992) model. Our model is straightforward and 
easy to implement.

Longevity risk has been recognized as a major threat to pension sponsors. Delong, Gerrard, 
and Haberman (2008) conclude that pension plans with higher longevity risk are subject 
to higher costs. We analyze how the optimal normal contribution and asset allocation will 
change with different levels of mortality improvement. Our numerical results show that 
given a funding downside risk tolerance, a higher life expectancy of pensioners leads to 
a higher optimal normal contribution and a higher percentage of funds invested in low-
risk assets. In our example, when the common risk parameter in the Lee and Carter (1992) 
model decreases from –0.40 to x0 (a more negative common risk parameter implies a higher 
level of mortality improvement), the expected total pension cost rises by 33 percent.

To ensure the long-term financial health of pension plans, sponsors must find ways to 
mitigate longevity risk. The topic of longevity risk management of pension plans has 
attracted a great deal of attention in academics and industries (Lin and Cox, 2005, 2008; 
Blake et al., 2006; Cairns, Blake, and Dowd, 2006; Cox and Lin, 2007; Sherris and Wills, 
2008; Brcic and Brisebois, 2010; Wills and Sherris, 2010). These authors discuss possible 
longevity risk management solutions such as plan design, annuity purchase, and 
longevity securities. We take this discussion one step further. Instead of just comparing 
and proposing different longevity hedging tools, we study how much longevity risk a 
plan should transfer. In particular, we add a longevity hedging element to our pension 
optimization problem. Given this setup, we solve for the plan’s optimal hedge ratio.

Specifically, we look for optimal solutions for two longevity risk hedging strategies: the 
ground-up hedging strategy and the excess-risk hedging strategy. The ground-up hedging 
strategy transfers a proportion of all future retirement payments. A prominent example of 
the ground-up strategy is the EIB longevity bond offered in 2004. The excess-risk strategy 
is to cede the part of longevity risk that exceeds a given level. The 2008 survivor swap 
between Canada Life and owners of insurance-linked securities as well as other investors 
is based on this idea. Compared to the excess-risk hedging strategy, the ground-up 
strategy is more expensive and capital intensive. Our optimization results show that there 
exists a negative relation between hedge ratio and longevity hedge cost. Therefore, the 
plan tends to hedge much less with the ground-up hedging strategy. Our results offer a 
new explanation for the failure of the EIB bond. The approach is unique in that it describes 
how a longevity risk management strategy affects the magnitude of the plan’s hedge costs, 
which in turn determines its hedge level, whereas the earlier research on pension asset–
liability optimization does not numerically analyze longevity risk transfer.

The article is organized as follows. The “Pension Fund Optimization” section describes the 
pension fund optimization model. We provide a numerical example to illustrate how to 
implement our model for a DB pension plan with a single cohort of employees. Then we 
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illustrate how longevity risk changes the optimal normal contribution and asset allocation. 
To hedge longevity risk, we examine the ground-up longevity risk hedging strategy in 
the section “Managing Pension Longevity Risks With the Ground-Up Hedging Strategy” 
The excess-risk hedging strategy has a lower cost than the ground-up hedging strategy. 
The section “Managing Pension Longevity Risks With the Excess-Risk Hedging Strategy” 
shows that the plan tends to hedge more unexpected risk with the excess-risk strategy. The 
results from the above-mentioned two sections provide important insights for longevity 
securitization, which is discussed in the “Implications for Longevity Securitization” 
section. The last section concludes the article.

Pension Fund Optimization
Basic Framework

Here we analyze a cohort whose members join a DB plan at the age of x0 at time 0 and retire 
at the age of x at time T. We look for an optimal pension asset allocation and contribution 
strategy throughout the life of the cohort for the DB plan. In our setting, one period is a 
year. We further assume the cohort is stable across the entire accumulation phase. That is, 
every member who withdraws is replaced by a one at the same age.

In terms of the future curtate lifetime K(x) at age x, the present value of benefits of 1 per 
year is an annuity for K(x) years: 

(1)

where v = 1/(1 + r)  is the discount factor at the discount rate r.

The probability that a plan member age x at time T survives to age x + s at time T + s (and 
gets a benefit payment) given the mortality table at time T is denoted as sp̃x,T. These are 
random variables for s = 1, 2, …, which we will simulate later. Define the conditional 
expected s-year survival rate for age x at retirement T as 

This allows us to compute the conditional expected value of life annuity in (1) as 

(2)

That is, the life annuity factor for age x at retirement T, a(x(T)), is the discounted conditional 
expected value of payments of 1 per year as long as the retiree survives. This conditional 
expected value depends on future survival rates sp̃x,T, which are random variables viewed 
from time 0 because we are considering the mortality table to be random whereas in 
practice it is an estimate of future rates.



Ca p i Ta L  Ma r k e T  a n d Lo n g e v i T Y  r i s k s  i n  a  de f i n e d Be n e f i T  pe n s i o n pL a n     589

We can similarly define the life annuity factor for a retiree age y. After retirement T, the life 
annuity factor for age y (y > x) at time t (t > T),  a(y(T)), is determined as: 

(3)

Here sp̂y,t is the conditional expected s-year survival rate for age y at time t, 

where sp̃y,t is the probability that the retiree age y at time t survives to age y + s (and gets a 
benefit payment).

Suppose the plan starts with an accumulated fund PA0 = M at time 0, which is invested in 
different assets. The value of the accumulated fund PAt at time t depends on the amount 
invested in asset i at time t – 1, Ai,t–1, and its return in period t, ri,t : 

(4)

Regulations require the following balance equation to hold: 

(5)

where t – T p̂x,T is the conditional expected probability that a plan member age x at time T 
survives t – T years when t > T, 

The normal contribution (or the normal cost) C represents new benefits earned by active 
participants each year. Following Haberman, Butt, and Megaloudi (2000), Maurer, 
Mitchell, and Rogalla (2009), and others, we assume the plan is free to choose a fixed 
normal contribution to minimize the variability of annual contributions. This means 
during the accumulation phase (t ≤ T), the sum of all investments at t, Σn

i =1 Ai,t , equals 
the accumulated fund PAt plus a constant normal contribution C (to be determined by 
optimization in the later sections) and a supplementary contribution k ∙ ULt, where k is 
the pension amortization factor and ULt is the plan’s unfunded liability at time t. After 
retirement (t > T), the available fund for investment at time t is reduced by the benefits paid 
to the survivors, B ∙ t – T p̂x,T , where the constant B is the promised annual survival payment 
after the plan participants reach retirement age x at time T. It depends on the number of 
pensionable service years accrued until T and projected salaries before retirement.
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We assume that regulations allow the plan to amortize the unfunded liability over m > 1 
periods at the plan’s periodic discount rate ρ. This approach is common; see, for example, 
Maurer, Mitchell, and Rogalla (2009).2 Therefore, the pension amortization factor k equals 

where 

(6)

Following the literature, when  t ≤ T, the plan’s unfunded liability ULt equals 

(7)

When t > T, ULt  equals 

(8)

In (7) and (8), the pension liability at time t, PBOt, is defined as the discounted value of 
future benefit obligations, 

(9)

In (9), the valuation rate ρ is set at a level reflecting the plan’s expectation on pension asset 
investment returns and future inflows of supplementary contribution (Delong, Gerrard, 
and Haberman, 2008).

2. Following Maurer, Mitchell, and Rogalla (2009), we assume pension shortfall has the same 
amortization period as surplus.
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Equations (4) and (5) imply that the total fund available for investment at time t ≤ T, Σn
i =1 

Ai,t , can be expressed as 

(10)

When t > T, Σn
i =1 Ai,t  becomes 

(11)

Assume the plan sponsor invests a proportion wi of pension funds in asset  i, i = 1, 2, …, n. 
The value of asset i at time t is 

(12)

When t = 0, Ai,0 = wi M  for i = 1, 2, …, n.

The plan makes periodic contributions to meet future benefit obligations. Those 
contributions constitute the plan’s total pension cost. Following Maurer, Mitchell, 
and Rogalla (2009), we define total pension cost TPC as the present value of all normal 
contributions C, supplementary contributions SCt, and withdrawals Wt: 

(13)

where 

SCt = max {k ∙ ULt, 0}
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and 

Wt = max {–k ∙ ULt, 0} 

The constants ψ1 and ψ2 are penalty factors on supplementary contributions SCt and 
withdrawals Wt, respectively. The penalty factor ψ1 accounts for the opportunity cost the 
plan sponsor incurs due to unexpected mandatory supplementary contributions SCt that 
could have been invested in positive net present value projects. And ψ2 takes into account 
the tax benefits the plan forgoes when it reduces the plan’s normal contribution.

Objective Function and Optimization Problem

In our setting, the decision is taken at t = 0 and the plan accumulates assets and asset returns 
plus contributions less liability cash flows at  t = 1, 2, … until the final age of the lives. 
Following Colombo and Haberman (2005) and others, we consider a pension plan that 
aims at minimizing funding variation. Consistent with much of the DB pension literature, 
we model this risk with a quadratic objective function J and measure supplementary 
contributions k ∙ ULt using the spread method for underfunding amortization in (66): 

(14)

This objective function is similar to Colombo and Haberman (2005) who minimize the 
variance of the two-tail funding status. As a departure, Kouwenberg (2001) defines the 
risk of a pension plan as the average squared one-tail underfundings (i.e., only penalizing 
supplementary contributions but not withdrawals) across the accumulation phase. 
However, as pointed out by Haberman and Sung (2005), an excessive solvency surplus 
held in the pension fund can be expensive because overfundings increase opportunity costs 
from forgone profitable investment opportunities and taxes on nondeductible surplus and 
contributions. Thus, in practice, the plan tries to avoid both over- and underfundings. The 
“two-tail” objective function in (14) is consistent with this goal.

We also impose three constraints respectively to control the total pension cost defined 
in (13), the expected total unfunded liability E(TUL) , and the downside risk of the total 
unfunded liability up to the terminal age of the retirees. The total unfunded liability up to 
the terminal age of the retirees, TUL, is defined as 

To manage the downside risk of the total unfunded liability, following Bogentoft, Romeijn, 
and Uryasev (2001), we include a CVaR constraint on TUL at some percentile of interest , 
denoted as CVar(TUL).
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Our optimization problem is to solve for the asset weights w = [w1, w2, …, wn] and the 
normal contribution C, so as to minimize the funding variation J throughout the whole life 
of the cohort: 

Minimize
    w, C

subject to

(15)

Different from Chang, Tzeng, and Miao (2003) who construct a weighted-average objective 
function that incorporates the first and second moments of underfunding, we impose the 
constraint E(TUL) = 0  and minimize the total funding variation. The E(TUL) = 0 constraint 
is also included in Delong, Gerrard, and Haberman (2008), Josa-Fombellida and Rincón-
Zapatero (2004), and others. In (15) the expected total pension cost E(TPC) equals a preset 
target level ζ. The constant τ specifies the upper limit of the -level CVaR constraint on 
TUL. The constraint  wi ≥ 0 implies short-selling is not allowed.

As a robustness check, we compare our proposed model (15) with two alternative models, 
called problem (16) and problem (17), to investigate whether (15) can better balance funding 
variation, total pension cost, and funding downside risk. Problem (16) is to minimize 
E(TPC) subject to the E(TUL) and CVar(TUL) constraints: 

Minimize
    w, C

subject to

(16)

The objective function of (16) is similar to that in Bogentoft, Romeijn, and Uryasev (2001) 
who minimize the total cost of funding a pension plan.
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Our second alternative model uses the same objective function as Haberman, Butt, and 
Megaloudi (2000) who define a weighted average function that addresses both funding 
variation and contribution rate risk. Specifically, their objective function is specified as: 

(17)

where θ is a weighting factor to reflect the relative importance of the funding variation 
risk against the contribution rate risk. The contribution cash flow mismatch (i.e., the 
contribution rate risk), CRt, is defined as 

(18)

Here, Ct is the plan’s contribution at time t, t ≤ T. Specifically, Ct can be decomposed into 
two parts based on the normal contribution C and the plan’s underfunding ULt at time t, 
t ≤ T: 

(19)

Based on the objective function (17), our second alternative model has the same constraints 
as model (15). In Haberman, Butt, and Megaloudi (2000), the pension amortization factor 
k is a choice variable. In the United States, in some cases, the pension firms do not have 
any leeway to flexibly determine their pension amortization period.3 Therefore, we do not 
solve optimization problem (17) with respect to k.

In the “Optimization Results” section, we will use a numerical example to compare our 
proposed model (problem (15)) with its alternatives (problem (16) and problem (17)). The 
results show that problem (15) and problem (17) realize the same optimal solutions when 
the amortization period of unfunded liabilities is fixed. Problem (16) achieves a lower 
E(TPC) than problem (15) but is at the expense of a higher funding variation. As discussed 
earlier, managing total pension cost, funding variation, and funding downside risk in an 
integrated way is important for the plan. Thus, in this article we rely on optimization 
problem (15), the model with a more holistic view, to perform further analysis.

3. For example, in Franzoni and Marin (2006), “According to accounting regulations, if a loss emerges 
in a pension plan as a consequence of reduced assets or increased liabilities and the loss is larger 
than 10 percent of the maximum between the two items, then the company is obliged to amortize 
the loss starting from the next fiscal year. According to SFAS 87, the amortization period will be 
the average remaining service period of active employees expected to receive benefits under the 
plan. If all, or almost all, of a plan’s participants are inactive, the average remaining life expectancy 
of the inactive participants will be used instead of average remaining service.”
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Example

Here we present a numerical example to show how to obtain the optimal normal 
contribution and asset allocation by solving optimization problem (15). We consider a 
cohort, all joining the plan at age x0 = 45 at t = 0, and retiring at T = 20 when they reach age 
x = 65. We estimate that the benefit payment rate is c and number of survivors at age x is n, 
so that B = nc = $10 million. The plan will pay benefits to survivors at times T + 1, T + 2, . 
. . so for each of the n retirees, the present value of benefits is c · a(x(T)), and the aggregate 
present value is the sum of n independent identically distributed benefits nc · a(x(T)) = 10 
· a(x(T)) million at time T.

We assume the initial pension fund is M = $5 million at t = 0. The pension funds are invested 
in three assets: S&P 500 index A1,t, Merrill Lynch corporate bond index A2,t, and 3-month 
T-bill A3,t, with rates of returns r1,t, r2,t, and r3,t in period t, respectively. The plan sets the 
pension valuation rate at ρ = 0.08 and the life annuity factor discount rate at r = 0.05. It will 
amortize the unfunded liability over m = 7 years. Moreover, following Maurer, Mitchell, 
and Rogalla (2009) we assume the penalty factors on supplementary contributions and 
withdrawals are both equal to ψ1 = ψ2 = 0.2.

To model pension assets and mortality dynamics, we consider a probability space (Ω, 
F, F, P) with the filtration F = (Ft)0 ≤ t ≤ ∞, where Ft is the information available up to 
time t. The filtration F, denoted as F = FF  FM, consists of two subfiltrations where FF 
contains information about the financial market and FM contains information about the 
mortality evolution. We assume the two subfiltrations FF and M are independent. That is, 
the stochastic processes for assets and for mortality rates are independent.

Financial Market Model

 We describe the process of the S&P 500 index at time t, A1,t, as the combination of a 
Brownian motion and a compound Poisson process as follows:

 dA1,t     {  1 dt + σ1 dW1t,                                 if the Poisson event does not occur at time t;

   A1,t 
=     (1 − λ1k1) dt + σ1 dW1t + (Y1 − 1),   if the Poisson event occurs at time t.

(20)

The constant 1 is the drift of the S&P 500 index; σ1 is its instantaneous volatility, conditional 
on no jumps. W1t is a standard Brownian motion with mean 0 and variance t. λ1 is the mean 
number of arrivals per unit time of a Poisson process N1

t . The Poisson random measure 
N1

t  counts the number of jumps of a particular size (Y1 − 1) during a time interval of (0, 
t). A dramatic change (or a jump) in the value of S&P 500 index can be driven by the 
events such as the stock market downturn of 2002 or the recent financial crisis in the late 
2000s. The Poisson process N1

t and the standard Brownian motion W1t are independent. 
The parameter k1 is k1 ≡ E(Y1 − 1), where E(Y1 − 1) is the expected percentage change in the 
S&P 500 index if a Poisson event occurs.

The S&P 500 index, A1,t, will be continuous most of the time with finite jumps occurring 
at discrete points of time. The part “σ1 dW1t” describes the instantaneous part of an 
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unanticipated “normal” S&P index change, and “Y1 − 1” captures the “abnormal” shocks. 
If λ1 = 0, then Y1 − 1 = 0 and it is the same as the standard stochastic model without jumps. 
If 1, σ1, λ1, and k1 are constants, we can solve the differential equation (20) as

(21)

The cumulative jump size Y(N1
t  ) = 1 if N1

t = 0 and Y(N1
t ) =  ∏N 1

t j=1 Y1 j for N1
t  ≥ 1, 

where the jump sizes, Y1 j for j = 1, 2 . . ., are independent and identically distributed as 
lognormal random variables so that log Y1 j is a standard normal random variable with 
mean parameter m1 and volatility parameter s1.

From (21), we can derive the S&P 500 index value A1,t+Δ, given Ft resulting in

 (22)

where Ft is the information set up to time t.

Similarly, the Merrill Lynch corporate bond index A2,t+Δ given Ft is defined as follows:

 (23)

where 2 is the drift of the Merrill Lynch corporate bond index; σ2 is the instantaneous 
volatility, conditional on no jumps. W2t is a standard Brownian motion with mean 0 and 
variance t. The jump sizes are independent lognormal random variables with parameters 
m2 and s2. The jumps Y1 j and Y2i are independent for all i and j. The covariance of W1t and 
W2t is

Cov(W1t,W2t) = ρ12 σ1 σ2 t                                                    (24)

where ρ12 is the parameter measuring the dependence of the stock and bond indices.

In addition, we assume the 3-month T-bill evolves according to a geometric Brownian 
motion as follows:

                                                         dA3,t
A3,t   

= 3 dt + σ3 dW3t                                                        (25)

where 3, σ3, and W3t are the drift, volatility, and standard Brownian motion of the 
3-month T-bill. The differential equation (25) can be solved as

A3,t+Δ|Ft = A3,t exp[(3 − ½ σ 3
2)Δ + σ3ΔW3t]                                      (26)
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We further assume the 3-month T-bill is uncorrelated with the S&P 500 index and the 
Merrill Lynch corporate bond index,

Cov(W1t,W3t) = 0, and Cov(W2t,W3t) = 0.

We estimate models (22), (23), and (26) based on monthly data from March 1988 to December 
2010. For the S&P 500 index and the Merrill Lynch corporate bond index, we rely on the 
time series data provided by DataStream. The monthly 3-month T-bill rates are obtained 
from FRED at Federal Reserve Bank of St. Louis.4 We use the monthly data to increase the 
number of observations for model calibration. Since we are interested in annual returns, 
we convert our monthly maximum likelihood estimates to annual estimates. Those annual 
estimates are presented in Table 1.

Table 1 indicates that the S&P 500 index has a higher expected log return (1 = 0.1081) and 
volatility (σ1 = 0.1069) than the Merrill Lynch corporate bond index (2 = 0.0794, σ2 = 0.0481) 
and the 3-month T-bill (3 = 0.0523, σ3 = 0.0094). The expected number of jumps per year for 
the stock index is λ1 = 0.2946. For the corporate bond index the expected number of jumps 
per year is λ2 = 0.0080 . Given a jump event occurs, the expected logarithm of the jump 
size is m1 = −0.0272 for the stock index and m2 = −0.0744 for the bond index. In addition, 
the stock index and the corporate bond index are positively correlated with correlation 
parameter ρ12 = 0.3380.

Stochastic Mortality Model. We apply the Lee and Carter (1992) model to describe 
pension mortality rates. This model incorporates both the age-specific mortality variation 
and the general time trend of mortality evolution for all ages. In this form of the Lee–
Carter model, the logarithm of the 1-year death rate qx,t at age x (x = 0, 1, 2, . . .) in year t 
(t = 1, 2, . . . , K) is

ln qx,t = ax + bxγt + εx,t                                                          (27)

where ax and bx are the age-specific parameters.

The transitory shock εx,t  is a normally distributed variable with zero mean. The time series 
common risk factor γt affects the mortality rates of all ages in year t. Lee and Carter (1992) 

Table 1. Maximum Likelihood Parameter Estimates of Three Pension Assets

Parameter  Estimate  Parameter  Estimate  Parameter  Estimate

1  0.1081  2  0.0794  3  0.0523
σ1  0.1069  σ2  0.0481  σ3  0.0094
λ1  0.2946  λ2  0.0080
m1  −0.0272  m2  −0.0744
s1  0.0536  s2  0.0000  ρ12  0.3380

4. http://research.stlouisfed.org
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assume γt follows a random walk with drift g,

γt = γt−1 + g + et                                                                   (28)

where the error term et is normally distributed with a zero mean and a variance σγ .

The solution of (27) is not unique so the following two constraints are imposed:

∑ bx = 1   and     ∑ γt = 0                                                        (29)
                                                                              x                                       t

These two constraints imply that the intercept ax is simply the empirical average of age x 
over time:

                                                                                                  K

ax =
 ∑t=1 ln qx,t                                                                  (30)

                                                                          K

where K is the length of the time series of mortality data. We follow the Lee and Carter’s  
(1992) method by incorporating singular value decomposition to estimate bx for each age 
x and γt for each year t.

We assume the pension plan has the same mortality experience as that of the U.S. male 
population and it estimates model (27) following the Lee and Carter (1992) procedure. 
The tables for years 1901 to 1999 are from the Human Life Table Database and the tables 
for 2000 to 2007 are from the Human Mortality Database, published by the University of 
California, Berkeley, and Max Planck Institute for Demographic Research.5 The estimated 
γt are shown in Figure 1.6 Based on the ages x = 0, 1, 2, . . ., and the time series of γt where 
t = 1901, 1902, . . . , 2006, 2007, we obtain g = −0.20 and σγ = 0.63 for (28).

Now consider a cohort who joins the plan at age x0 = 45 in year 2007. After setting year 
2007 as the base year t = 0, we forecast the mortality rates q45+t,t for t = 1, . . . , T, T + 1, . . . 
. We first simulate the error term et and then add the constant g = −0.20 to each simulated 
et to get a γt where t = 1, 2, . . . , T, T + 1, . . . . Given the estimated a45+t’s and b45+t’s and the 
simulated γt’s, we use model (27) to calculate simulated future mortality rates

q̃45+t,t = ea45+t + b45+t γt + ε45+t,t ,    t = 1, 2, . . . , T, T + 1, . . . .

The forecasted 1-year survival probability is

p̃45+t,t  = 1 − q̃45+t,t

5. Available at http://www.mortality.org  or http://www.humanmortality.de  (data downloaded 
on February 25, 2011).

6. To conserve space, the parameter estimates of ax and bx are not reported but available upon request.
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This pension cohort will retire at time t = T = 20 when all pensioners reach age x = 45 + 
t = 65. Based on the simulated survival rates forecasted with the Lee–Carter model, we 
calculate the conditional expected value of the life annuity a(x(T)) using (2):

(31)

where

After retirement T, we use (3) to determine the value of the life annuity a(y(t)) for y > x = 
65 and t > T = 20, 

(32)

where

Figure 1. Estimated Time Series Common Risk Factor γt Shown in the Vertical Axis for Year t = 1901, 
1902, . . . , 2006, 2007 in the Horizontal Axis.
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With the values of a(x(T)) and a(y(t)), the value of the pension liability PBOt at time t, t = 0, 
1, … can be calculated from (9).

Optimization Results. We set year 2007 as the base year t = 0 and ran a Monte Carlo 
simulation with 1,000 iterations to generate returns for three financial assets Ai,t i = 1, 2, 3 
and future liabilities PBOt for t = 1, 2, . . . .7 Initially, we assume the plan invests equally 
in the three assets, that is, w1 = w2 = w3 = 1/3 and makes an annual normal contribution C 
= 1. This strategy leads to an expected total pension cost E(TPC) = 15.01. As shown in the 
row labeled “Initial” in Table 2, the initial strategy has a 95 percent CVaR of TUL equal to 
CVaR95%(TUL) = 69.66 and an expected TUL equal to E(TUL) = 3.79. The sum of all funding 
variations throughout the whole lives of the pension cohort equals J = 984.20.

Next we solve the optimization problem (15) to obtain the optimal asset allocation and 
normal contribution. Based on our experiments, given the same ζ = 15.01 as the E(TPC) 
of the initial case, we find that the lowest feasible upper limit of CVaR95%(TUL) for (15) 
equals τ = 59.63. With the combination of ζ = 15.01 and τ = 59.63, the optimal solution for 
(15) is shown in the row labeled “Problem (15)” in Table 2. To achieve the lowest funding 
variation, on average, the plan should invest w1 = 17.13 percent of the funds in the S&P 500 
index, w2 = 69.82 percent in the Merrill Lynch corporate bond index, and the remaining 
funds should be invested in the 3-month T-bill with w3 = 13.06 percent. In addition, 
given E(TUL) = 0, the optimal normal contribution equalsC = $1.07 million per year.Our 
optimization problem (15) achieves E(TUL) = 0 and it has a lower funding downside risk 
CVaR95%(TUL) = 59.63 and a lower total funding variation J = 935.63 than the initial case 
with CVaR95%(TUL) = 69.66 and J = 984.20.

Our results show that problem (17) with different θs has the same optimal asset allocation 
and normal contribution as our proposed model (15) shown in Table 2. This is not surprising 
because when ULt > 0, the supplementary contribution SCt equals k · ULt and when ULt 
< 0, the plan has a withdrawal Wt = −k · ULt. That is, ULt determines the deviation of the 
actual periodic contribution Ct from the normal contribution C in (19). In fact, when the 

Table 2. Model Comparison

 C  w1  w2  w3  E(TPC)  CVaR95%(TUL)  E(TUL)  J

Initial  1.00  33.33%  33.33%  33.33%  15.01  69.66  3.79  984.20
Problem (15)  1.07  17.13%  69.82%  13.06%  15.01  59.63  0.00  935.63
Problem (16)  1.06  21.16%  61.40%  17.45%  14.90  59.63  0.00  942.57

7. In our numerical example we only consider three assets but our model can handle a higher number 
of assets.
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pension amortization factor k is specified at a given level, the objective function of problem 
(17) can be restated as:

 (33)

which is the same as the objective function of problem (15) scaled by a constant (θ + (1 − 
θ)k2). This explains why problem (15) and problem (17) have the same solution and our 
setting is equivalent to Haberman, Butt, and Megaloudi (2000) when k is a constant.

Finally, we compare problem (16) with problem (15). To make comparison comparable, 
we set the constraints in (16),

E(TUL) =0 and CVaR95%(TUL) ≤ 59.63,

which are the same as those in our example for (15). Table 2 shows that problem (16) has 
a little lower E(TPC) but a higher total funding variation J than problem (15). This can be 
explained by the fact that problem (16) aims at minimizing E(TPC) but does not manage 
the total funding variation. Since both funding variation and downside risk are the major 
concerns for pension risk management, in the following discussion, we focus on problem 
(15) that takes a more balanced view.

Longevity Risks

Mortality has improved over time. The example in the “Stochastic Mortality Model” 
section, which we call the base case, shows that on average the value of the common 
risk factor γt decreases by 0.20 across all ages per year from 1901 to 2007 (i.e., g = −0.20). 
However, the tendency of pension participants to live longer than what the historical 
data suggest has been increasingly attracting the attention of plan sponsors, regulators, 
actuaries, academics, and others. This is so-called longevity risk, the risk that the mortality 
of pensioners improves at a higher rate than expectation. Accordingly, an interesting 
question for the pension plan is: if the mortality improves more than the base case with g = 
−0.20, how will it change the optimal asset allocation and normal contribution?

In particular, we consider mortality dynamics under which the pension liability is an 
increasing function of survival probabilities, as higher survival probabilities will yield a 
longer lifetime and a longer duration of annuity payments. In a sensitivity analysis of 
the plan’s total pension cost to the longevity risk, we change the drift of the common risk 
factor γt in the Lee and Carter (1992) model in an equal interval of 0.05 from the base case 
g = −0.20 to g = −0.40. A more negative g means a greater level of mortality improvement.
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Next, given a level of funding downside risk, we investigate how the optimal normal 
contribution, asset allocation, and total pension cost will change with the life expectancy 
of pensioners. Specifically, we solve a problem that minimizes

                                                                         T                            2

J = E [ ∑ (    ULt      )  ]                                                                                                       t=1   (1 + ρ)t

subject to the constraint E(TUL) = 0 and a 95 percent CVaR constraint on total unfunded 
liability, CVaR95%(TUL). To make our comparison comparable, we specify this CVaR 
constraint as 

CVaR95%(TUL) = 59.63,

which ensures the unexpected mortality improvement cases with different gs have the 
same downside risk as the base case with g = −0.20.

Notice we do not impose the constraint E(TPC) = ζ when we examine longevity risk effects 
due to regulatory considerations. Theoretically, as pensioners live longer, to achieve 
a target expected total pension cost E(TPC), the pension plan has to make less normal 
contribution and invest a higher proportion of funds in risky assets (Josa-Fombellida and 
Rincón-Zapatero, 2004). However, in reality, regulators will not allow an underfunded 
plan to reduce its contribution and speculate on risky assets simply to realize a target 
E(TPC). Instead, E(TPC) has to be adjusted upward to reflect a higher longevity risk as 
shown in Table 3.

In Table 3, the adverse effect of an unexpected mortality improvement is captured by the 
change in E(TPC) paid by the plan. As g decreases from −0.20 to −0.40, E(TPC) significantly 
increases from 15.01 to 19.97, a 33 percent rise. In addition, we observe a higher life 
expectancy of the pensioners (with a more negative g) leads to a higher optimal normal 
contribution: C increases from 1.07 with g = −0.20 to 1.59 with g = −0.40. Also notice that 
as the mortality improves, the plan needs to invest more in the low-risk asset to satisfy the 
downside risk constraint CVaR95%(TUL) = 59.63. The proportion of total funds invested in 
the 3-month T-bill dramatically increases from 13.06 percent with g = −0.20 to 53.93 percent 
with g = −0.40.

Table 3. Optimal Pension Normal Contribution and Asset Allocation Strategies With E(TUL) = 0 and 
CVaR95%(TUL) = 59.63 and Different Assumptions on Mortality Improvement Parameter g in the Lee 
and Carter (1992) Model.

    g C w1 w2 w3 E(TPC) J

−0.20 1.07 17.13% 69.82% 13.06% 15.01 935.63
−0.25 1.24 26.83% 38.37% 34.80% 16.60 941.38
−0.30 1.37 28.26% 28.64% 43.10% 17.86 954.88
−0.35 1.53 29.49% 17.77% 52.74% 19.36 955.44
−0.40 1.59 28.78% 17.29% 53.93% 19.97 974.56
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It is difficult for a plan to predict future mortality rates. The resulting uncertainty can 
immediately affect the stability of the pension plan through, at least, wrong asset allocations 
and inappropriate normal contributions. However, if the pension plan can hedge its 
longevity risk, it will suffer much less from financial distress due to unexpected mortality 
improvement. Therefore, we turn our attention to analyzing optimal hedging decisions. 
In the next two sections, we discuss two pension longevity risk hedging strategies: the 
ground-up hedging strategy and the excess-risk hedging strategy.

Managing Pension Longevity Risks with the Ground-Up Hedging Strategy

In this section, we study the optimal hedging decision for a pension plan when it 
implements the ground-up hedging strategy. This strategy transfers a proportion hG of 
the pension liability, represented by the shaded area hG Ba(x(T)) in Figure 2, to a hedge 
provider where 0 ≤ hG ≤ 1. The hedge provider will pay a proportion hG of benefits due to 
retirees at time T + 1, T + 2, . . . .

Specifically, let E[Ba(x(T))] = B ā(x(T)). At time t = 0, the pension plan starts with an 
accumulated fund M and cedes a portion hG of the plan liability Ba(x(T)) to a third party 
(e.g., longevity-security investors), who accepts the obligation for a price equal to8

HPG =
 hG (1 + δG)B ā(x(T))

                                                                              (1 + ρ)T 

where δG is the unit hedge cost. The unit hedge cost δG covers risk premium, issuance cost, 
and administrative expenses of the longevity risk taker as well as the time and  resources 

Figure 2. The Ground-Up Hedging Strategy; Ba(x(T ))max Stands for the Highest Possible Pension 
Liability Ba(x(T )); This Strategy Hedges a Proportion hG (0 ≤ hG ≤ 1) of the Pension Liability Ba(x(T )), 
Represented by the Shaded Area hGBa(x(T ))

8. In our article, the price HPG for the ground-up strategy (or HPE for the excess-risk strategy) is the 
market price determined by the capital market. We assume the plan takes the price HPG (or HPE) 
as given for its optimal hedging decision. An example of HPG is the annuity premium General 
Motors paid Prudential to reduce its pension obligations (Kelly, 2012).
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the plan spends to transfer its longevity risk. As a result, the pension plan retains a liability 
of (1 − hG)PBOG

t and its liability at time t becomes

 (34)

Meanwhile, the plan invests in the capital market to generate investment income. Given 
that the plan hedges a fraction hG of its pension liability by paying HPG, the total amount 
of pension assets available for investment at t = 0 is

PAG
0 = MG = M − HPG

which is lower than that in the no-hedge case where PA0 = M. The balance equation under 
the ground-up hedging strategy changes to:

(35)

The underfunding liability equals

 (36)

where PAG
t is the value of pension assets before the plan makes contributions and pays 

survival benefits at time t.

Similar to (10), the total fund available for investment at time t ≤ T, ∑n
i=1

 AG
i,t in (35) for the 

ground-up strategy equals

 (37)

When t > T,   ∑n
i=1

 AG
i,t  becomes

 (38)
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Assume the plan sponsor invests a proportion wG
i of pension funds in asset i, i = 1, 2, . . . , 

n. The value of asset i at time t is

(39)

When t = 0, AG
i,0  = wi MG  for i = 1, 2, . . . , n.

The optimal investment and contribution policy is subject to a total pension cost constraint. 
Compared to the no-hedge case, the ground-up hedging strategy has an additional cost 
component—the hedge cost. For each dollar hedged, the plan pays δG dollars to set up the 
contract. After hedging hG Ba(x(T)) of the plan liability, the plan pays a total pension cost 
with the present value at time 0 equal to:

 (40)

where hGδG B ā(x(T))/(1 + ρ)T is the present value of the total hedge cost.

How to Transfer Longevity Risk with the Ground-Up Hedging Strategy?

The optimization problem of the pension plan with respect to the asset weights wG = [w1
G, 

w2
G, …, wn

G ], normal contribution CG, and hedge ratio hG is expressed as:

                             Minimize

 (41)



606 Co x,  L i n ,  T i a n ,  & Yu i n  Jo u r n a l  o f  r i s k  a n d in s u r a n c e 80 (2013)  

where TULG = ∑∞
t=1     

ULt
G 

   .  The constraint

                                    
(1 + ρ)t

  

hG(1 + δG)B ā(x(T))  
≤  M

                                                                     (1 + ρ)T 

ensures the hedge price does not exceed the pension fund at t = 0. That is, the plan does not 
borrow money to pay for the cost of risk transferred.

Example

Here we continue the example in the previous “Example” section, but now assume that 
the plan implements a ground-up hedging strategy.We set E(TPC) and the upper bound 
of CVaR(TUL) at the same levels as those in the optimal case without hedging (see the 
row labeled “Problem (15)” in Table 2). The results are shown in Table 4. When hedging 
is costless (δG = 0), subject to the total pension cost constraint ζ = 15.01 and the upper limit 
of the TUL 95 percent CVaR constraint τ = 59.63, the plan hedges 21 percent of the pension 
liability. This allows the plan to achieve a total funding variation

which is lower than that in the no-hedge case J G = 935.63 when hG = 0.

When the plan hedges, it incurs an explicit cost and an implicit cost. The explicit cost is the 
unit hedge cost δG. The implicit cost arises from the reduced fund available for investment 
since the fund available for investment decreases from M to MG. The plan sacrifices a 
higher expected return from the risky asset class in exchange for a lower longevity risk. 
However, longevity risk hedging is attractive only if its benefits exceed costs. Table 4 
shows a negative relation between the hedge ratio hG and the unit hedge cost δG. The plan 
chooses to hedge less as hedging becomes more expensive. As δG increases from 0 to 0.03, 
the hedge ratio hG decreases from 21 to 1 percent. When δG goes above 0.03, no longevity 

Table 4. Optimal Ground-Up Hedging Strategies with Different Assumptions on Hedge Cost 
Parameter δG Given ζ = 15.01, τ = 59.63, and g= −0.20

δG  CG  w1
G   w2

G       w3
G   hG  CVaR95%(TULG)  J G

0.000 1.09 19.37% 77.87% 2.76% 21% 51.82 917.18
0.010 1.08 20.07% 76.89% 3.04% 21% 52.28 925.83
0.020 1.07 18.50% 74.80% 6.70% 13% 55.31 932.86
0.025 1.07 17.95% 72.33% 9.72% 7% 57.25 934.83
0.030 1.07 17.24% 69.96% 12.79% 1% 59.45 935.61
0.035 1.07 17.13% 69.82% 13.06% 0% 59.63 935.63
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risk will be ceded. Moreover, as the hedge ratio hG goes down, the plan’s total funding 
variation J G increases due to, at least, higher longevity risk.

Managing Pension Longevity Risks with the Excess-Risk Hedging Strategy

Although the ground-up hedging strategy in the “Managing Pension Longevity Risks 
with the Ground-Up Hedging Strategy” section reduces longevity risk, it has two major 
problems. First, it provides a protection that the plan may not need. The plan can predict 
its future payments to some extent and it is only uncertain about the amount exceeding 
its expectation. The cost of hedging is usually proportional to the amount of coverage. As 
such, the ground-up strategy is expensive. In addition, this strategy is capital intensive. 
It requires a large up-front premium, which the plan may not afford. The first longevity 
bond, the EIB bond issued in November 2004, is an example of the ground-up hedging 
strategy. It is a 25-year bond that provides a protection equal to the amount of a fixed 
annuity, £50 million, multiplied by the percentage of the reference population still alive at 
each anniversary. The coverage of this bond is illustrated as the solid filled bars in Figure 3.

The EIB bond offered a hedge to pension plans but the EIB did not sell. The ground-up 
protection structure, at least partially, explains its failure (Lin and Cox, 2008). A more 
attractive structure is the one that only covers the annuity payment that exceeds a certain 
strike level. The modified EIB bond we suggest is shown in Figure 4. The unfilled area 
of each bar in Figure 4 represents the risk retained by the plan. The plan only cedes the 
longevity risk above the strike levels, which are represented as the solid filled bars. This 
illustrates the second strategy we examine in this section: the excess-risk hedging strategy.

Figure 3. Coverage of the EIB Longevity Bond. Note: The solid filled bars show the protection 
provided by the EIB longevity bond each year (millions in pounds); the horizontal axis represents 
time in years.
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With the excess-risk strategy, the plan needs to determine a threshold level for each of 
the years T + 1, T + 2, … above which to transfer a proportion hE of risk. Recall that the 
conditional expected s-year survival rate, s p̂x,T , for age x at retirement T is defined as,

s p̂x,T = E[s p̃x,T | p̃x,T,  p̃x+1,T+1, … ,  p̃x+s–1,T+s–1],

which is random at time 0. Suppose at time 0, the plan transfers the risk that exceeds the 
plan’s expectation, s p̄x,T = E[s p̂x,T ], after the plan participants reach the retirement age x at 
time T,

max[B s p̂x,T − B s p̄x,T, 0]   s = 1, 2, … ,                                       (42)

which can be viewed as a set of European call options written at time 0 and exercised 
at T + 1, T + 2, …. In this example, the strike price equals the expected survival benefit,  
Bs p̄x,T, s = 1, 2, …. Of course, the plan can set a different threshold given its risk tolerance, 
for example, one or two standard deviations above the mean Bs p̄x,T, s = 1, 2, …. In the 
“Optimization with a Different Strike Level“ section, we investigate how a change in the 
strike level will change the optimal hedging strategies. Because the excess-risk strategy 
only cedes the high-end risk, in general, it has a much lower capital requirement for the 
protection than the ground-up strategy.

Figure 4. Coverage of the Modified EIB Longevity Bond Using the Excess-Risk Hedging Strategy. 
The solid filled bars show the protection provided by the excess-risk hedging strategy each year 
(millions in pounds) and time in years is on the horizontal axis.
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If the plan hedges a proportion hE of (42), it needs to pay a price equal to

HPE =
 hE(1 + δE) E [ ∑ ∞

s=1
 vs max[Bs p̂x,T  − Bs p̄x,T, 0]]

                                                                            (1 + ρ)T 

where δE is the hedge cost per dollar hedged in the excess-risk hedging strategy and

E [ ∑ ∞
s=1

 vs max[Bs p̂x,T  − Bs p̄x,T, 0]]
is the present value of expected payments from the longevity risk taker at time T. As such, 
the plan’s liability at the end of period t becomes

(43)

After the plan buys the excess-risk longevity hedge, the fund ME it can invest in the capital 
market at t = 0 is

ME = M− HPE

The excess-risk hedging strategy should satisfy the following balance equation:

 (44)

In (44), the underfunding liability in the excess-risk strategy equals

 (45)

where PAE
t is the value of pension assets at time t before the plan makes contributions and 

pays survival benefits at time t.
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From (44) and (45), the total fund available for investment at time t ≤ T, ∑ n
i=1

 AE
i,t can be 

written as

 (46)

When t > T, ∑ n
i=1

 AE
i,t  is calculated as:

 (47)

Therefore, the value of asset i at time t given the weight w E
i  is

(48)

When t = 0,  AE
i,0 = wi ME for i = 1, 2, . . . , n.

The excess-risk strategy has a total pension cost TPCE as follows:

 (49)

where  hE δE E [ ∑ ∞
s=1

 vs max[Bs p̂x,T  − Bs p̄x,T, 0]]/(1 + ρ)T  is the total hedge cost. Recall that 
TPCG in (40) is the total pension cost of the ground-up hedging strategy. Both TPCG and 
TPCE have a hedge cost component. However, the hedge cost components of these two 
strategies are not equal due to different hedging structures and possibly different unit 
hedge costs (δG vs. δE ). This can lead to very different optimal hedging solutions for these 
two strategies, which we will discuss later.
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How to Manage Longevity Risks With the Excess-Risk Hedging Strategy?

The optimal excess-risk hedging strategy is to solve the following optimization problem:

Minimize

subject to

(50)

where                                               The constraint

ensures the premium does not exceed the pension fund at t = 0.

Example

Continue the example as in the section mentioned initially. This time the plan adopts the 
excess-risk hedging strategy with the strike level Bs p̄x,T , s = 1, 2, . . . and T = 20. It solves 
problem (50) to obtain the optimal normal contributionCE , the asset allocations w E

i (i = 1, 
2, 3), and hedge ratio hE that will minimize the total funding variation,

subject to E(TULE) = 0, E(TPCE) = ζ = 15.01, and CVaR95%(TULE) ≤ τ = 59.63.

Table 5 summarizes the results with different unit hedge costs δE. As long as δE is not 
higher than 0.10, the plan will transfer longevity risk that exceeds the strike level with  
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hE > 0. In these cases, the total funding variations J E are all lower than the case without 
hedging longevity risk. However, the hedging will not do anything good when δE ≥ 0.10 so 
the plan chooses to retain all risks (hE = 0 percent).

The hedge ratios hE in Table 5 are much higher than hG for the ground-up hedging in Table 
4, which creates an apparent contrast between the excess-risk strategy and the ground-
up strategy. This can be explained by the more attractive structure and the lower capital 
requirement of the excess-risk strategy. The excess risk strategy only covers the payment 
above the strike level. However, the ground-up strategy covers the entire risk, including 
the payment the plan can predict reasonably. As such, the ground-up strategy requires a 
higher price that reflects the higher future payments from the hedge provider. This means 
the plan has to give up a large proportion of the initial fund M and forgo possibly higher 
returns from the capital market. In this case the plan decides to hedge less. Moreover, the 
hedge cost increases with the amount of coverage. The unneeded coverage provided by 
the ground-up strategy increases the hedge cost. This further discourages the plan from 
hedging with the ground-up strategy. In contrast, the excess-risk strategy focuses on the 
protection the plan really needs. In our example, as long as the unit hedge cost is not too 
high (δE ≤ 0.05), the plan will hedge all of the excess longevity risk.

One must use caution when comparing the total funding variation J G in Table 4 with J E in 
Table 5. One might find it striking that many values of J E in Table 5 are higher than those of 
J G in Table 4 and then might conclude that the excess-risk strategy retains a higher extreme 
longevity risk. This may not be true because this belief does not recognize that the total 
funding variation reflects not only longevity risk, but also investment risk. Actually, the 
higher variation J E in the excess-risk strategy arises from the higher amount available for 
asset investments (i.e., ME > MG). In our example, the expected annuity payment Bā(x(T)) 
equals $110.13 million and the expected excess-risk payment is

                                                                                                       = $1.34 million.

Table 5. Optimal Excess-Risk Hedging Strategies With Different Assumptions on Hedge Cost 
Parameter δE Given ζ = 15.01, τ = 59.63, g= −0.20, and the Strike Level Bs p̄x,T , s = 1, 2, . . . and T = 20

δE  CE    w E
1    w E

2    w E
3    hE    CVaR95%(TULE )  J E

0.000  1.07  17.07%  69.14%  13.80%  100%  56.08  931.62
0.050  1.07  16.93%  69.69%  13.38%  100%  56.19  934.03
0.075  1.07  17.03%  69.67%  13.30%  79%  56.78  935.19
0.090  1.07  16.91%  70.18%  12.90%  30%  58.52  935.58
0.095  1.07  17.11%  69.79%  13.10%  15%  59.02  935.62
0.100  1.07  17.13%  69.82%  13.06%  0%  59.63  935.63
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Assuming δG = δE = 0, the price of the ground-up hedging strategy paid to the risk taker 
at t = 0 is

  $4.96 million,

while the price of the excess-risk strategy is only

 $0.29 million.

This implies that the initial fund available for asset investment in the ground-up 
strategy is

PAG
0
 = MG = 5 − 4.96 = $0.04 million,

which is much lower than that in the excess-risk strategy

PAE
0
 = ME = 5 − 0.29 = $4.71 million.

Since the risky assets’ volatility, in general, is much higher than that of longevity risk, we 
observe a higher funding variation of the excess-risk strategy. Nevertheless, the excess-risk 
strategy has a much lower high-end longevity risk than the ground-up strategy as hE > hG 
for all cases when δE = δG < 0.10 as illustrated in this example.

Discussion of Asset Allocations With and Without Hedging. In our article, we follow a 
common assumption in the pension literature that the stochastic processes for assets and 
mortality are independent.9 With this setting, the main driver of the interaction between 
investment risk and longevity risk is the hedge price paid to the longevity risk taker. After 
a plan sets its target expected total pension cost and downside risk level, the hedge price 
the plan pays for the ceded risk determines the amount available for asset investments 
that in turn affects asset allocation. In our example, to achieve the lowest funding variation 
without hedging, on average, the plan should invest 17.13 percent of the funds in the S&P 
500 index, 69.82 percent in the Merrill Lynch corporate bond index, and the remaining 
funds should be invested in the 3-month T-bill with 13.06 percent as shown earlier in Table 
2 and reproduced for comparison in Table 6.

9. This is a common assumption but it may not always be the case. We leave this question for future research.



614 Co x,  L i n ,  T i a n ,  & Yu i n  Jo u r n a l  o f  r i s k  a n d in s u r a n c e 80 (2013)  

If the hedge price is high and the available fund for investment is low, the difference in 
asset allocation between the no-hedge case and the hedge case will be large. For example, 
given δG = δE = 0, Table 6 shows the hedge price for the ground-up strategy (HPG = $4.96 
million) is much higher than that of the excess-risk strategy (HPE = $0.29 million). As such, 
we observe a much more significant change in asset allocation for the ground-up strategy 
than for the excess-risk strategy, both compared to the no-hedge case. The ground-up 
strategy invests almost all of its funds, 97.24 percent (= 19.37 + 77.87 percent) in risky 
assets, notably higher than 86.94 percent without hedge and 86.20 percent with the excess-
risk strategy.

 

Optimization With a Different Strike Level

We next turn our attention to the optimal solutions with a different strike level. In the earlier 
example we set the strike level at the expected benefit payment Bs p̄x,T, s = 1, 2, … and T = 
20. The plan may want to set a higher strike level such as one standard deviation above the 
expected payment, that is, Bs ̄px,T + σBs ̂px,T

   where  σBs ̂px,T
  is the standard deviation of Bs ̂px,T .

In this case, the optimization results are shown in Table 7. Table 7 presents a pattern similar 
to that in Table 5: the plan transfers the entire longevity risk (h = 100 percent) as long as the 
unit hedge cost δE is not too high. As the strike level goes up, the maximum allowed δE to 
ensure a positive hedge ratio increases. In our example, the maximum allowed δE increases 
from 0.095 to 0.12, a 26 percent rise, when the strike level increases from Bs p̄x,T  to Bs p̄x,T 
+ σBs p̂x,T

 , s = 1, 2, … and T = 20. The fact that the maximum acceptable unit hedge cost δE 

Table 6. Asset Allocation Comparison Given δG = δE = 0, ζ = 15.01, τ = 59.63, g= −0.20 for All Cases, 
and the Strike Level Bs p̄x,T , s = 1, 2, . . . and T = 20 for the Excess-Risk Strategy

 Hedge Price  w1  w2  w3  Hedge Ratio

No hedge  0.00  17.13%  69.82%  13.06%  0%
Ground-up hedge  4.96  19.37%  77.87%  2.76%  21%
Excess-risk hedge  0.29  17.07%  69.14%  13.80%  100%

Table 7. Optimal Excess-Risk Hedging Strategies With Different Assumptions on Hedge Cost 
Parameter δE Given ζ = 15.01, τ = 59.63, g= −0.20, and the Strike Level Bs p̄x,T + σBs p̂x,T

 , s = 1, 2, . . . 
and T = 20

δE  CE    w E
1    w E

2    w E
3    hE    CVaR95%(TULE )  J E

0.000  1.07  17.14%  69.62%  13.24%  100%  58.49  934.52
0.050  1.07  17.12%  69.72%  13.16%  100%  58.49  935.03
0.100  1.07  17.05%  69.94%  13.01%  91%  58.60  935.52
0.110  1.07  17.20%  69.62%  13.18%  51%  59.03  935.60
0.120  1.07  17.07%  69.93%  13.00%  24%  59.37  935.62
0.125  1.07  17.13%  69.82%  13.06%  0%  59.63  935.63
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increases with the strike level reflects the risk aversion of pension plans toward catastrophic 
longevity risk as the high-end risk is more difficult to predict and if it occurs, it will lead to 
more serious financial consequences. Thus, the risk averse plan chooses to hedge more at a 
higher strike level even if the unit hedge cost δE increases (but up to a limit).

Implications for Longevity Securitization

Packaging longevity risk through securitization was first advocated by Blake and Burrows 
(2001) to help pension plans transfer longevity risk. Since then, it has been widely discussed 
by both academics and practitioners (Lin and Cox, 2005, 2008; Cox, Lin, and Wang, 2006; 
Blake et al., 2006; Cairns, Blake, and Dowd, 2006; Cox and Lin, 2007; Sherris and Wills, 
2008; Cox, Lin, and Petersen, 2010; Wills and Sherris, 2010; Milidonis, Lin, and Cox, 2011; 
Cox et al., Forthcoming; Lin, Liu, and Yu, Forthcoming). However, many of the possible 
capital market solutions for longevity risk remain theoretical. Before 2010, the market for 
longevity securities did not really take off, although there were limited experiments with 
products assuming longevity risk (Standard & Poor’s, 2010). Since the past a couple of 
years, investment banks have been actively exploring this space. Our optimization results 
provide important insights for longevity securitization that may draw pension plans to 
this market and allow transaction activity to grow.

First, the market should design appealing longevity securities that can attract pension 
plans. As our results indicate, the pension plans are inclined to transferring more longevity 
risk with the excess-risk hedging strategy since it is less capital intensive and more cost 
effective. In July 2008, Canada Life traded a survivor swap with a group of insurance-
linked security investors. This is the first publicly known longevity security successfully 
executed. Although this deal has no pension plan involvement, it does provide support 
for the pension plans to pursue the excess-risk strategy. As we observe in the market, 
this strategy has gained momentum. Notably, six longevity swaps were completed in 
the United Kingdom in 2009 covering liabilities of approximately £4.1 billion (Brcic and 
Brisebois, 2010).

Second, longevity securities should not be too expensive. The EIB longevity bond in 
2004 received much attention in the financial press because it was considered as the first 
longevity security. However, no pension funds and life insurance companies subscribed 
to the deal and it failed. Besides technical issues such as the design problems we discussed 
earlier, Thomsen and Andersen (2007) and Lin and Cox (2008) conclude that one of the 
major reasons why the EIB issue was withdrawn without being issued is because the 
pension industry found the price of coverage on longevity risk is too high. Our model 
indicates that the longevity hedge ratio is a decreasing function of unit hedge cost. If the 
hedge cost per dollar hedged (δG or δE) is too high, the plan will not transfer its longevity 
risk. In this sense, our model can be used to explain the failure of the EIB bond from the 
perspective of pension asset–liability optimization.

Our model can also be used to explain the reluctance of pension plans to use capital markets 
to hedge longevity risk. The current high transaction costs in the capital market discourage 
the plans from transferring longevity risk. This problem can be mitigated by standardizing 
longevity transactions. For example, we can promote consistent best market practices 
and publish tradable longevity indices. Such efforts will provide greater transparency 
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and confidence for this market, and increase transaction activity. Standardization can 
also alleviate the problems related to investor education and barriers to entry because 
it helps investors to understand those complex longevity securities and promotes price 
convergence between buyers and sellers. The longevity market is expected to develop 
more standardization to allow a broader range of investors to enter the market. As pointed 
out by Manish Kapoor, “We’ll see more efforts at standardization between transactions, 
and as that occurs, increased liquidity—albeit to a limited extent—and the ability to novate 
or exit structures. It will be interesting to see how the pricing changes as capital market 
participants other than insurers and reinsurers enter [longevity securitization markets]” 
(Standard & Poor’s, 2010). As liquidity increases, the cost of longevity securities will go 
down and we expect more pension plans to enter into these transactions.

Conclusion
This article proposes a model to identify the optimal contribution, asset allocation, and 
longevity risk hedging strategies that minimize total funding risk for a DB plan throughout 
the life of a single pension cohort. Given a target expected total pension cost, zero expected 
total unfunded liability, and a CVaR constraint on total unfunded liability, we minimize 
the plan’s total funding variation across all years before and after retirement until the 
death of the last pension participant.

Then we investigate how sensitive the plan is to longevity risk given a downside risk 
tolerance. Populations all over the world have enjoyed increasing life expectancy in the 
last century. This trend is expected to continue in the future (KPMG LLP, 2008). It makes 
clear the need to study the impact of mortality improvement on the plan’s asset–liability 
management. Given a level of 95 percent CVaR on total unfunded liability, we investigate 
how normal contribution, asset allocation, and total pension cost will change with the 
life expectancy of pensioners. Our results show that as pensioners live longer, the plan 
has to make a higher normal contribution, invest more in the low-risk asset, and pay a 
much higher expected total pension cost. This can cause a serious financing problem, in 
particular, for firms with capital constraints.

To mitigate the longevity effect, as another contribution of this article, we examine 
the plan’s optimal longevity risk management decision and compare two longevity 
risk hedging strategies—the ground-up hedging strategy and the excess-risk hedging 
strategy. Our optimization results show that the longevity hedge ratio is negatively 
related to the unit hedge cost. The plan tends to hedge more with the excess-risk strategy 
due to its lower total hedge cost and more attractive structure. Our results also explain 
the failure of the 2004 EIB longevity bond and the emergence of longevity swaps in recent 
years: the EIB bond has a design similar to the ground-up strategy and the longevity 
swaps have a structure similar to the excess-risk strategy.10 As far as we know, this is 
the first article that incorporates longevity risk management into a pension plan’s asset–
liability optimization problem.

We believe this article presents the starting point of a new way of thinking about pension 
longevity risk management in the optimization context. As such, it leaves some questions 

10. A longevity swap can be flexible and tailor made, providing fixed-for-floating payments against a mortality 
index.
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unanswered and in turn opens lines for further research. First, notice that we only consider 
pension longevity risk management. This is based on the assumption of no hedge on 
pension assets.We would likely obtain richer results from a model in which the plan makes 
hedging decisions on both asset and liability risks. Second, we study the plan’s optimization 
decision at one moment. It would be of interest to investigate a multiperiod decision model 
to adjust contribution and asset allocation in each period as that in Bogentoft, Romeijn, and 
Uryasev (2001). Further questions involve to what extent our results are affected by the 
assumption that the stochastic processes for assets and mortality rates are independent. 
This is a common assumption but it may not always be the case as shown in Lin, MacMinn, 
and Tzeng (2011). We leave these questions for future research.
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