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Abstract-We consider the use of strong static fields to control two related atomic processes: laser-assisted 
x-ray-atom scattering (XAS) and high-harmonic generation (HHG). We first analyze the laser field intensity 
dependence of the differential cross section (DCS) plateau structures for the laser-assisted XAS process in the 
presence of a static electric field as a function of the number of photons exchanged with the laser field. Besides 
the recently discovered (MiloSeviC, D.B. and Starace, A.F., 1998, Phys. Rev. Lett., 81, 5097) extended plateau 
for absorbed photons, which indicates a substantial increase of the scattered x-ray energies, a new plateau, hav- 
ing many orders of magnitude larger DCS, appears for higher laser field intensities. We show furthermore a con- 
nection between this process and HHG. We also consider control of HHG with static electric and magnetic 
fields which are parallel to the laser polarization. The B field can considerably increase the harmonic emission 
rate (MiloSevid, D.B. and Starace, A.F., 1999, Phys. Rev. Lett., 82,2653). The rate of a chosen harmonic is max- 
imal whenever an integer multiple of the cyclotron period of the electron's motion perpendicular to the mag- 
netic field is equal to the return time to the nucleus of the laser-field-generated electron wave packet in the inter- 
mediate state. While the B field has only a modest effect on the plateau cutoff positions, the static electric field 
can introduce additional plateaus and cutoffs. A properly chosen combination of static E and B fields can 
increase both the emission rate and the maximum harmonic order. The locations and magnitudes of the plateaus, 
both for XAS and HHG, are explained using the classical three-step model. 

I. INTRODUCTION 

Over the past decade high-harmonic generation 
(HHG) in laser-irradiated atomic gases has been exten- 
sively studied [I]. Many efforts have been made in 
order to control HHG, especially due to the potentially 
important applications of the coherent soft x-rays that 
might be produced via HHG [2]. It is known that the 
harmonic output can be manipulated by changing the 
driving field or altering the medium which generates 
harmonics. For example, a bichromatic driving laser 
field provides two additional parameters for control of 
HHG: the relative intensity and the relative phase of the 
fields [3,4]. Polarization of the laser field [4,5], as well 
as the shape of the laser pulse [6], are also parameters 
suitable for such control. For ultra-short pulses, the ini- 
tial laser field phase has a significant influence on the 
HHG process [6]. The HHG process can also be con- 
trolled by adding a static electric field [7-91 or a static 
magnetic field [lo, 1 I] to the driving laser field. The 
usual media used in HHG are atomic gases, but HHG 
has also been examined for ions [12], molecular gases 
[13, 141, and atomic clusters [15]. In addition, control 
of HHG has been explored theoretically for the case of 
an initial state prepared as a coherent superposition of 
states [16]. In the present paper we consider the control 

of HHG by adding parallel static electric and magnetic 
fields. 

Recently, another process which enables generation 
of coherent soft x-rays-laser-assisted x-ray-atom scat- 
tering (XAS)-was proposed [17, 181. It was shown 
[18] that, by controlling the laser-assisted XAS process 
with a strong static electric field, it is possible to gener- 
ate coherent x-ray photons with energies in the "water 
window" (between the K-shell absorption edges of car- 
bon (284 eV, 4.37 nm) and oxygen (532 eV, 2.33 nm)). 
Coherent x-rays in this energy region would have 
important applications to imaging living biological 
structures by means of x-ray holography [2]. In the 
present paper we further analyze laser-assisted XAS 
both in the presence and in the absence of a static elec- 
tric field. In the next two sections we show how this 
process is related to HHG and how both processes can 
be understood using a simple three-step physical model 
and a classical analysis. In Section IV we present our 
quantum-mechanical theory and numerical results for 
the laser-assisted XAS process and connect these 
results with the classical results of Section III. In Section V 
we present our results for HHG in the presence of static 
electric and magnetic fields. Finally, Section VI presents 
our conclusions. 
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Fig. 1. Schematic of high-harmonic generation in the presence of a magnetic field. The laser field is linearly polarized along the 
z-axis. Numbers 1 ,  2, and 3 denote the steps of the three-step model. The E-axis denotes the electron energy coordinate, and w~ is 
the cyclotron frequency for the electron's (perpendicular) motion in the xy-plane. See the text for a more detailed explanation. 

11. THREE-STEP MODEL above-mentioned amearance of a vlateau with its cut- 
off is in agreem$ with more 'rigorous quantum- The main characteristics of both the HHG and laser- mechanical calculations 201. assisted XAS processes can be explained using the so- 

called "three-step" physical model [19]. According to In Fig. 2 we present a similar schematic for laser- 
this model, the first step is the ionization of an atomic assisted XAS. The laser-field-lowered atomic potential 
electron, while the second step is the propagation of a is now shifted by the incident x-ray photon energy haK. 
free electron in the laser field. The third steD is the col- If > then the can be at the point 
lision between the electron, driven back Gy the laser 
field, and the atomic core, whereupon the electron 
recombines, emitting a harmonic or x-ray photon. This 
model is schematically presented in Fig. 1 for the HHG 
process. The above-mentioned steps are denoted by the 
numbers 1, 2, and 3, respectively, in Fig. 1. The atom, 
having the ionization energy I,,, is in its ground state 
when the laser field switches on. The atomic potential 
is lowered by the influence of the laser field, and the 
atom can be ionized (either by tunnelling or by mul- 
tiphoton ionization). The electron is "born" at the point 
r(to) with the velocity vo (where both are usually 
assumed equal to zero). The free electron propagates in 
the laser field and acquires an energy Ek. When the elec- 
tron is back at the origin (r(t,) = r(to)), it can then 
recombine, emitting a harmonic photon having energy 
hQ = 1, + E,. The HHG spectrum forms an extended 
plateau which consists of many harmonics with compa- 
rable intensities. The maximum kinetic energy which 
an electron can acquire from a linearly polarized laser 

field is 3.17 U,, where UD = e2 E: l(4mw2) is the ponder- 
omotive energy, where -e and m are the electron charge 
and mass, and where EL and o are the laser electric field 
amplitude and frequency, respectively. (We will use 
here SI units.) This result gives the well-known cutoff 
law for HHG: fiQ,,, = I, + 3.17Up [19,20]. If an addi- 
tional parallel static magnetic field B is present (as in 
Fig. I), then the harmonic photon energy should be 
increased by the ground-state Landau level energy 
h ~ I 2  = ehBl(2m), where o, is the cyclotron frequency 
for the electron's perpendicular motion [I l l .  The 

2 z(to) with the initial velocity vo, where m vo 12 = ha, - 
-- 

I,. During the second step-laser-field driven propaga- 
tion-the electron exchanges an energy nho with the 
laser field. The third step is the same as for HHG: the 
electron, having kinetic energy Ek, recombines at the 
point z(t,) = z(to), emitting an x-ray with the energy 
ho, = Ek + 1, = ho, + ntio. For n > 0 the electron 
absorbs from the laser field an energy proportional to 
Up (nho = cup,  see the solid line denoted by 2 in Fig. 2). 
This process corresponds to a positive n plateau of the 
differential cross section (DCS) for laser-assisted XAS 
(see Section IV). The maximum value of c is different 
from the corresponding HHG value c = 3.17 and will be 
determined in the next section. For n < 0, stimulated 
emission of photons occurs, and the scattered x-ray 
photon energy is lower. It was shown [17] that this pro- 
cess corresponds to a negative n DCS plateau and that 
recombination is most probable for E, = 0, so that the 
most probable number of emitted photons is given by 
nho = I,, - ha, (see the dotted 2' line in Fig. 2). The 
DCS cutoff position for negative values of n is deter- 
mined by the energy conserving condition: no, = 
hoK + nhw 2 0, which gives n 2 -o,/o. 

111. CLASSICAL ANALYSIS 
In this section we analyze the above-described 

three-step model for HHG and laser-assisted XAS 
quantitatively using a classical analysis. The electron is 
assumed to be born at time to at the origin r(to) = 0 with 
the velocity v(to) = vo, where vo = 0 for HHG and 
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Fig. 2. Schematic of laser-assisted x-ray-atom scattering, presented similarly to Fig. 1. The combined atomic and electric field poten- 
tial is shifted by the incident x-ray photon energy fi.wK. The electron propagation step of the three-step model is denoted by 2 (2') 
for the process in which a positive (negative) n plateau is formed. 

2 
In vo 12 = h a K  -Ip for laser-assisted XAS. This electron 
then moves under the influence of the laser field EL(t) 
and the static fields Es and B, if they are present. Solv- 
ing Newton's equation for the electron, mi' = -e[EL(t) + 
Es + r x B], one obtains the electron kinetic energy Ek 
at the time t, when the electron returns to the origin. 
The maximum of this energy is determined by two con- 
ditions: r(tl) = 0 (this is the condition that the electron, 
after the return time z = t, - to, comes back to the atomic 
core) and aE,lato = 0 (this condition determines the 
optimum time to, at which the electron is born, for 
which E, has maximum). In the case of a linearly polar- 
ized laser field and parallel static fields, Newton's equa- 
tion separates, so that: m i  = eBy, my = -eBx, and mi  = 
e[AL(t) + As(t) - AL(to) - As(to)] + nzvo, where Aj(t) = 

-I' dt* Ej(tr), j = L, S. Thus, Ek = mi2 (t)12 = e2{[AL(t) + 
As(t) -AL(to) -As(to) + (mle)voJ2 + B2(x2 + y2))l(2m). In 
the presence of a magnetic field, the electron rotates in 
the plane perpendicular to the magnetic field direction 
with the cyclotron period zB = 2n/oB, while its parallel 
motion is determined by the laser field and the static 
electric field. The electron returns to the origin at time 
t, = to + T ~ ,  to + 2TB, . . ., if the condition z(tl) = 0 is ful- 
filled. This condition leads to 

For a laser field defined by EL(t) = ELsinwt2, we intro- 
duce the notation 

wz 
cp = at,, o = - 

2 '  
a (o )  = sino, 

sin o m v o o  Es 
(2) 

b(0) = COSO - - C(O) = -- o '  -0, 
eEL EL 

whereupon (1) can be rewritten as 

a (o)  sin (cp - o )  + b(o) cos (9 - o )  = c(o), (3) 
and the electron's kinetic energy becomes 

Equation (3) can be rewritten as a quadratic equation in 
the variable X = sin(cp - o), and, therefore, for each z we 
have two solutions for X: 

Introducing these solutions into (4), we obtain the elec- 
tron kinetic energy as a function of the return time z = 
2olo. The maximum of this energy can be obtained 
from the stationary kinetic energy condition dEklato = 0 
(for more details see [8] for HHG, and [18] for laser- 
assisted XAS). The two solutions in (5) correspond to 
positive and negative values of EL(t) at the moment of 
ionization. For one solution EL(to) is parallel to the 
static electric field Es, while for the other it is antipar- 
allel. In absence of the static electric field and for the 
HHG process (zero initial velocity), these two solutions 
coincide. In this case, c(o) = 0 and there is only one 
solution: Ek = 8a2b2Upl(a2 + b2). For laser-assisted XAS 
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H-, C02 laser (I = 5 x loL0 w/cm2) 
451 I I I I I I I I I I I I 

Fig. 3. Harmonic order rt as an oscillatory function of the dimensionless variable COT for the H- ion in a C02 laser with intensity I = 

5 x 101° w/cm2, and with (full and dotted lines) or without (dot-dashed line) a parallel static electric field having strength ES = 
1 MVIcm. T is the classical electron return time to the origin under the influence of both electric fields. The full (dotted) curves cor- 
respond to parallel (antiparallel) static and laser fields at t = to. 

(nonzero electron initial velocity), the energy exchanged is no upper limit for m. The maximum value n,,, = 21 
with the laser field is corresponds to the cutoff law rz,,,ho = 1, +3.17Up. 

m v,L 
n h o  = E, - ,- = 8U,[a(o)X(o) - c(o)l 

which has two solutions whenever (5) gives nondegen- 
erate solutions for X(o). 

Let us analyze in more detail the above solutions for 
HHG in the presence of a static electric field. In Fig. 3 
we present the harmonic order n(oz) = (Ip + Ek)/ho as 
a function of the dimensionless parameter o z  for the H- 
ion (having electron affinity I, = 0.754 eV), a C02 laser 
( h a  = 0.1165 eV) with intensity I = 5 x 101° W/cm2, 
and a static electric field with strength Es = 1 MVIcm. 
We present the two solutions for n by a solid curve for 
the parallel orientation of EL(@ and Es, and by a dotted 
curve for the antiparallel orientation. For a long enough 
return time (oz > 12.41 in the present case), the laser 
field cannot return the electron back to the nucleus 
because the influence of the static electric field, which 
is proportional to the return time, becomes too large. 
The maxima of the curves presented explain why the 
cutoffs of the harmonic spectrum which we obtain in 
our quantum-mechanical calculations (cf. Section V) 
appear at n = 31 and 43. For comparison, we also 
present, by a dot-dashed curve, the results obtained in 
the absence of the static electric field. In this case, there 

For the laser-assisted XAS process, in absence of a 
static electric field, there are no real solutions of (3)-(6) 

2 if the initial electron kinetic energy m v, 12 = ha, - I, 
is larger than the maximum energy which the electroi 
can acquire in the laser field. In this case, the laser field 
alone is not strong enough to return the electron to 
the nucleus, and, therefore, it is not capable of produc- 
ing a positive rt plateau. But, in the presence of a static 
electric field parallel to v,, the electron can be returned 
to the nucleus because the static field acts on it with 
the force -eEs2. In this case, the energy which the 
electron acquires from the laser field can be much 
larger than 3.17Up. In order to illustrate this, in Fig. 4 
we present the solutions for the energy exchanged with 
the laser field, (6), in units of Up, as functions of m for 
H atoms (I, = 13.6 eV), a Nd :YAG laser (ha  = 
1.17 eV), and a static electric field with strength Es = 
20 MV/cm. (This large value of Es is chosen to reduce 
the number of oscillations in Fig. 4, thereby allowing a 
clearer picture of our physical interpretation than 
would be the case for smaller values of Es.) The inci- 
dent x-ray photon energy is ha, = 3 1 h o ,  and we con- 
sider two values of the laser field intensity. For the 
lower laser field intensity, 1 = 4 x 1 OI3 W/cm2, there are 
no solutions for o z  < 10 and wz > 45.5. For o z  < 10 the 
influence of the static field, which increases with the 
increase of the return time z, is not yet strong enough to 
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H, Nd : YAG laser (I = i x 1013 w/crn2), Es = 20 MV/cm, wK = 3 1 0  

Fig. 4. Energy exchanged with the laser field in laser-assisted x-ray-hydrogen atom scattering, in units of the ponderomotive energy, 
as a function of the electron return time T (multiplied by the laser frequency w) for the case of a Nd : YAG laser and a static electric 
field having strength Es = 20 MV/cm. The incident x-ray photon energy is haK = 31hw and the laser field intensity is I = 
4 x 1013 w/cm2 and 4 x 10'' w/cm2. The results are obtained as solutions of (6). The full (dotted) curves correspond to parallel 
(antiparallel) static and laser field at t = tg. 

support the laser-driven electron to overcome the initial 
electron kinetic energy and to return the electron to the 
origin. For o z  > 10, solutions of (6)  exist and can con- 
tribute to a positive n plateau of the DCS for laser- 
assisted XAS. However, for o z  > 45.5 the influence of 
the static field is too strong, so that the laser field cannot 
return the electron to the origin. The absence of solu- 
tions for o z  > 45.5 corresponds to the cutoff of the DCS 
at 19.8Up for positive n. For higher laser field intensity, 
I = 4 x 10'' W/cm2, solutions exist for 1 < orc < 82.8. 
The solid curve in Fig. 4 has a maximum at n,,,. , h o  = 
2.81 Up during the first optical cycle (0 < < 2 ~ ) .  In 
Section IV we will see that this maximum gives the 
position of the first cutoff of the DCS as a function of 
the number of photons n exchanged with the laser field. 
The solutions for I = 4 x 1 0'' W/cm2 and for higher val- 
ues of oz correspond to an extended positive n plateau, 
with its cutoff at n,,,, ,ho = 1 1  .9Up. 

can see that, in the high laser field intensity limit, the 
cutoff positions behave as nmax,,ho = c,Up and 
n,,,, 2 h o  = d,Up, where the asymptotic quantities c, and 
d,  depend only on the ratio Es/EL. The values of c, and 
d,, shown in Fig. 5, are in excellent agreement with the 
values obtained in [8]  for HHG with zero initial elec- 
tron velocity. (Note that for intensities I with n,,,  < 0 
in Fig. 5, there is no plateau for laser-assisted XAS for 
fi* > fioK.) It is important to note that n,ax,2fio/Up 
approaches d,  from above, and that very high values of 
the scattered x-ray photon energies haK > n,,x,2ho + 
fioK can be obtained for relatively low laser field inten- 
sities. The quantity c ,  decreases with decrease of EsIEL 
and, for Es = 0, approaches the value 3.17, which is the 
cutoff value for the HHG process in absence of the 
static field. Therefore, we have established a connec- 
tions between laser-assisted XAS and HHG. 

Let us now explore how the positions of these low- 
and high-energy cutoffs depend on the laser field inten- 
sity. In Fig. 5 we present results for nma,ho/Up as a 

IV. QUANTUM-MECHANICAL RESULTS 
FOR LASER-ASSISTED X-RAY-ATOM 

function of the laser field intensity for three values of 
the incident x-ray photon energy: noK = 15ho, 31 ho ,  

SCATTERING 

and 61ho,  and fortwo values -df the Gtio of the static Treatments of x-ray scattering in the absence of a 
and the laser field strengths: (a) 0.01 and (b) 0.1. One laser field can be found in the textbooks by Heitler [21] 
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Fig. 5. Maximum energy exchanged with the laser field in laser-assisted x-ray-hydrogen atom scattering, in units of the ponderomo- 
tive energy, as a function of the laser field intensity, for three values of the incident x-ray photon energy haK = 15hw 31hw and 
61 hw, and for two values of the static and the laser electric field ratio: (a) EsIEL = 0.01 and (b) 0.1. The two asymptotic horizontal 
lines, denoted by c, and d,, correspond to the cutoff values of the HHG spectrum. 

and by Loudon [22] .  There are many papers in which back to H.A. Bethe. As an example of more recent 
x-ray scattering by bound systems is considered in the work, we cite the paper by Jung et al. [24]. The 
absence of the laser field. According to an early one by S-matrix theory of laser-assisted XAS was presented in 
Levinger [23] ,  one sees that this theory can be traced [17]. A detailed derivation of the main expressions for 

LASER PHYSICS Vol. 10 No. 1 2000 



H, Nd : YAG Laser 
I 

n 

H, Nd : YAG Laser 
I 

2 
Fig. 6. The DCS for x-ray-hydrogen atom scattering in units of re (where re = 2.8 x lo-'' m is the classical electron radius) as a 
function of the number n of absorbed (n > 0) or emitted (n < 0) laser field photons, for different laser field intensities I(i) = 
i x 1014 w/cm2, where i = 1 (dot-dashed curve), 2 (long-dashed curve), 3 (dashed curve), 4 (dotted curve), and 5 (solid curve). The 
laser field is linearly polarized and monochromatic with photon energy hw = 1.17 eV. The energy of the incident x-ray photons, hwK, 
is: (a) 15w, (b) 31 w, and (c) 61w. The energy cutoff positions are denoted by multiples ci of the ponderomotive potential energy Upi 
for laser field intensity I(i). 
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H, Nd : YAG Laser 

Fig. 6. (Contd.) 

the DCS for laser-assisted XAS (including discussion 
of the approximations used) is presented in that paper and 
will not be repeated here. The final result for the DCS for 
laser-assisted XAS with absorption (n > 0) or emission 
(n c 0) of n laser photons having frequency o is 

where K = o,lc, K = o,lc, and fiw, and hw, = ha, + 
nho are the energies of the incident and scattered x-ray 
photons, respectively. The T-matrix elements, 

are the Fourier components of the matrix elements 

assume parallel polarizations in all our numerical cal- 

culations). A(r) and S(q; t, T) = f dt' {[hq + 
t - T  

eA(t')12/(2m) + I,,} are the vector potential and the elec- 
tron's quasiclassical action in the presence of both a 
laser field and a static electric field. The matrix element 

TL!, (n) corresponds to the process in which an x-ray 
photon having wave vector K and energy h o ,  is 
absorbed first. The ionized electron propagates under 
the influence of both the laser and static electric fields 
during the time interval from t - z to t, at which time it 
comes back to the atomic core (i.e., the return time is z). 
The electron then recombines with the atomic core, 
exchanging n photons with the laser field and emitting 
an x-ray photon having wave vector K' and energy 

fiw,.. The matrix element T[',- (n) describes the pro- 
cess in which the x-ray photon having wave vector K' 
and energy ha,, is emitted first. It was shown in paper 

[17] that the contribution of T : ) ~  (n) to the DCS can be 

neglected in comparison to the contribution of T:!, (n) 
(for In1 > 5). This is in agreement with the three-step 

where 1v0) is the atomic ground-state ket vector, iq) is a model described in section 11 (cf. Fig. 2). The three- 
dimensional integral over the intermediate electron plane-wave ket vector for the electron, cp = ot, and GK momenta in (9) can be carried out using the time- 

and & are the unit polarization vectors of the incident dependent WBK approximation [I  71. The integral over 
and scattered photons, respectively (for simplicity, we the return time z is computed numerically, and, finally, 
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the T matrices, (8), are obtained using the fast Fourier 
transform method. The explicit analytical forms of the 
matrix elements in (9) for the H atom are given in [I71 
in terms of the vector potential A(t), the stationary 

momentum hq,  = QY(t ,  z) = -- er dt' A(tq) and the z t - T  

action S, = S(q,; t, z). The expressions for A(t), q,y, and 
S, in the presence of a static electric field are given in 
[181. 

In order to further analyze plateau structures, 
observed in [I 7,181, in Figs. 6 and 7 we present numerical 
results for the DCS for laser-assisted x-ray-hydrogen atom 

2 scattering (in units of r,, where re = 2.8 x 10-l5 m is the 
classical electron radius) as functions of the number of 
photons n exchanged with the Nd : YAG laser field (ha  = 
1 .I  7 eV). The laser field intensity is I = i x 1014 W/cm2, 
i = 1, . . ., 5, the incident x-ray photon energy is fioK = 
jhw, where j = (a) 15, (b) 31, and (c) 61, and the static 
electric field strength is Es = 0 (Fig. 6) and Es = 
2 MV/cm (Fig. 7). The main characteristics of the DCS 
in the absence of a static electric field (Fig. 6) are the 
following: (i) an extended plateau for positive values of 
n appears as the laser field intensity increases, (ii) this 
plateau is more extended for lower values of the inci- 
dent x-ray photon energies, (iii) the cutoff positions 
(denoted by c, where nm,,hw = cup) tend to the HHG 
cutoff position (c = 3.17) as the laser field intensity 
increases and as the incident x-ray photon energies 
decrease, (iv) for o, = 150 there is a sharp maximum 
for elastic scattering and the negative n plateau is 
absent; with increase of wK the maximum for small val- 
ues of In I is less sharp and a negative n plateau appears 
and becomes longer, (v) for low laser field intensities, 
the positive n plateau is absent (cf. i = 1 in Fig. 6b, and 
i = 1,2 in Fig. 6c) and the height of the negative n plateau 
is lower, i.e., the DCS is smaller (cf. i = 1 in Fig. 6c). 

The main additional features of the DCS in the pres- 
ence of a static electric field (Fig. 7) are: (i) a second 
positive n plateau appears, having orders of magnitude 
smaller DCS, but which is one order of magnitude 
longer in n, (ii) the dependence of the cutoff position of 
this second plateau on the laser field intensity and on 
the incident x-ray photon energy is in agreement with 
the results of classical analysis (cf. Fig. 5): with the 
increase of I the parameter d, where nmaX,,hw = dUp, 
decreases, and the limiting value of d is equal to the 
corresponding value for HHG in the presence of a static 
field; contrary to the behavior of c, d increases with 
increase of wK, (iii) the behavior of the cutoff position 
of the shorter positive rz and larger DCS plateau is also 
in agreement with the results of Fig. 5 and is very sim- 
ilar to that in the absence of the static field: compare the 
corresponding values of c in Figs. 6 and 7. 

These numerical results, both with and without a 
static electric field, confirm the predictions of the three- 
step model. Moreover, a simple classical analysis pre- 

dicts very well quantum-mechanical numerical values 
of the DCS plateau and cutoff positions. The relative 
height of the plateaus can be estimated considering the 
values of the return time z which correspond to these 
cutoffs (cf. Fig. 4). Namely, because the T-matrix ele- 
ments contain a term proportional to , t 3 I 2  [I 71, the DCS 
decreases with increase of z. Physically, this corre- 
sponds to the spreading of the electron wave packet. 
This explains why the second positive n plateau in Fig. 7 
has a smaller DCS. It should also be mentioned that the 
semiclassical analysis of the T-matrix elements [17, 181 
leads to the same results as the classical analysis, pre- 
sented in Section I11 in the present paper. 

V. HARMONIC EMISSION RATES IN PARALLEL 
STATIC MAGNETIC AND ELECTRIC FIELDS 

The rate of emission of a harmonic photon of fre- 
quency Q = cK and polarization e, into a solid angle 
dB, is [22] 

hR + E f  = nfio + Ei, 

where n is the number of photons exchanged with the 
laser field during the transition from the initial atomic 
state with the energy Ei to the final atomic state with the 
energy Ef, and the T-matrix element is 

The states 1@ji'(t)), j = i, f, are the solutions of the 
Schrodinger equation for the system (atom + laser field + 
static fields) with the appropriate boundary conditions: 

the state I a:'' (t))(10:' (t))) evolves from the initial 
(final) atomic state lu(tq)), t' - -- (t' - +-), under 
the action of the total Green's operator G(+)(t, t') (G(-)(t, t')). 
For the HHG process both the initial and final states are 
usually the atomic ground state lu(t)) = lu,)exp(iI,tlh) 
so that we can omit the indexes i and$ Furthermore, we 
will adopt here a slightly different approach for com- 
puting the harmonic emission rate. Namely, the quan- 
tity which enters the classical Maxwell equations as a 
source is the dipole-moment expectation value [20,25] 
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Fig. 7. The same as in Fig. 6, but in the presence of an additional static electric field having strength Eq = 2 MV/cm, and for laser - - 
intensities Yi )  = i x 1014 w/cm2, where i = 1,3, and 5. The energy cutoff positions for higher and lower DCS plateaus are denoted 
by the ponderomotive energy multiples ci and di, respectively. 
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Fig. 7. (Contd.) 

Therefore, instead of (10) and (1 11, we calculate the ernis- (ling dt d(t)exp(inwt), where, according to (14) and 
sion rate of the nth harmonic (!2 = no) according to the results of [26], 

1 1  

Using the strong-field approximation and neglecting with 
the continuum-continuum coupling, the time-depen- 
dent dipole can be written as [20] 

Q(t) = 4 + i[AL(t) + As(f)I, 
t 

d(t) =J dt'(u(t)lerG,(t, t')eEL(tl) . rlu(t')) + c.c.,(14) 2 

to s ~ , ;  , t = ~ d t " $ { ~  + j [ ~ ~ ( t l l )  + ~ ~ ( t ~ ' ) l  
where GL(t, t') is the Volkov-type Green's operator for t' 

the electron in the presence of the laser field and the 
static fields, and eEL(t1) r is the interaction of the elec- + (I, + Ev,)(t - t') = hq[a(t)  - a(t1)] 

tron with the laser field in the length gauge. We suppose 2 2 
that the static fields are not strong enough to modify the + ~ ( t )  - ~ ( t ' )  + (2 + I, + E,,)(t - t'), (16) 
atomic ground state lu(t)). However, these fields are 
included in GL(t, t') so that they influence the interme- 
diate states of the electron. In the case of a linearly 

t 

polarized laser field and parallel static electric and ~ ( t )  = Sjdt1[ilL(t') + ~ ~ ( t ' ) ] ,  
m magnetic fields, we compute the dipole moment D, = 
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H-, C 0 2  laser 
V) 
Y 

I I I I I I l I I l I l I I I I l I I J J 1 1 ~ ~ ~ ~ , ~  

'9 m - - m  OT 

Harmonic order n 
Fig. 8. Harmonic emission rates as functions of the har- 
monic order n for the H- ion and a C 0 2  laser with intensity 
I = 5 x 101° w/cm2. The magnetic field induction is: B = 0 T 
(squares), 1900 T (circles), and 3800 T (triangles). 

The method of computation of the matrix elements 
with the wavefunctions (p@zlvpq) = Yv,,(p, @, z, 0) is 
given in the appendices of [26]. The integral over the 
z-component of the intermediate electron momentum hq 
is computed using the saddle-point method, as in [4,20]. 
This gives the factor [2.nmhl(i~)]"~exp[-iS,(t, z)lh], 
where &(t, 7) = Svp(q,y; t, t - z) is the stationary action, 
and hq, is the stationary momentum 

t 

hq,(t, T) = -4 j dt"[A t" 
T 

L( + As(t")l 

z = t-t ' .  
The final result for the time-dependent dipole is [26] 

ca 

x exp --S,(t, z) + C.C. [ f  I 
1 I eB 

E,, = [ Y + Z ( ~ p ~ + p + l )  ha,, a, = -. The summation over the quantum numbers v and p can 
m be performed analytically, and, as the result for the 

H-, C 0 2  laser, Es = I MV/cm 
lo0 t I I I I I I I I I - - 2 

- - 
- - 

C .. . . . . . . I T  - 
- - 
- 

1500T 
-3000T Z - - - - 

- - - 

- 

- - - - 
- b: 

1 o - ~  I I I I I I I I I 
II 

0 10 20 30 40 50 
Harmonic order n 

Fig. 9. The same as in Fig. 8, but in the presence of a parallel static electric field having strength Es = 1 MVIcm, and for the following 
values of the magnetic field induction: B = 1 T (squares), 1500 T (triangles), and 3000 T (circles). 
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Harmonic order n 

Fig. 10. Harmonic emission rates (in arbitrary units) as functions of the harmonic order n and of the magnetic field induction B. The 
laser field and the H- ion parameters are as in Fig. 8. 

A0 

Harmonic order n 
*n 

44 '10000 

Fig. 11. The same as in Fig. 10, but in the presence of a parallel static electric field having strength Es = 1 MVIcm. 

summed product of the matrix elements in (1 8), we We present numerical results for the harmonic emis- 
obtained a single integral over a function which contains sion rates for the H- ion and a C 0 2  laser with intensity 
exponential integral functions. This integral can be com- I = 5 x 101° W/cm2, both with and without a static elec- 
puted efficiently using the method described in [26]. tric field having strength Es = 1 MVIcm, and for differ- 
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H-, C02 laser, Es = 1 MV/cm, n = 25 
1 .o I I I I I I I I I 

Fig. 12. The 25th harmonic emission rate as a function of the magnetic field induction B for the same parameters as in Fig. 11. 
(a) Emission rate plotted vs. Biz). (b) Emission rate plotted vs. the dimensionless parameters T ~ / T ~ ,  i = 1, . . ., 6, where .si is the ith 
classical return time. The harmonic emission rate has maxima for zi = jzB, where i and j are integers, and OB is the cyclotron period. 
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ent values of the magnetic induction B (cf. Fig. 3 for our 
classical analysis for the case of B = 0). In Fig. 8 we 
present the emission rates as functions of the harmonic 
order n for Es = 0 and for B = 0 T (squares), 1900 T (cir- 
cles), and 3800 T (triangles). The classical cutoff posi- 
tion is 3.17Up + 1, = 20.9ho, so that nmaX(B = 0) = 21, 
which agrees with the results in Fig. 8. In the presence 
of a magnetic field, the cutoff energies are increased by 
the ground-state Landau level energy fioB/2 = ehBl(2m), 
which is 0.944fio and 1.89ho for B = 1900 T and 3800 T, 
respectively. In absence of a static electric field, only 
the odd harmonics can be generated, so that the cutoff 
position is n,,, = 23 both for B = 1900 T and 3800 T. 
For B = 1900 T there is a pronounced maximum of the 
harmonic emission rate for n = 15, while for B = 3800 T 
the maximum is at n = 13. 

In Fig. 9 we present the emission rates as functions 
of the harmonic order n similarly as in Fig. 8, but for 
Es = 1 MVIcm and for B = 1 T (squares), 1500 T (cir- 
cles), and 3000 T (triangles). The static electric field 
breaks the symmetry of the system and emission rates 
for both odd and even harmonics are of comparable 
magnitude. The harmonic spectrum is also extended to 
higher harmonic orders. Two additional cutoffs appear, 
one at the 31st and the other at the 43rd harmonic, 
which agrees with the results of our classical analy- 
sis in Section I11 (cf. Fig. 3). As in Fig. 8, the emis- 
sion rates for particular harmonics are increased by 
more than two orders of magnitude in the presence of 
the magnetic field. It is important to note that, by 
choosing particular values of both fields, it is possi- 
ble to generate higher-order harmonics having 
higher emission rates. 

In order to explore the dependence of the harmonic 
emission rates on the magnetic field strength, in Figs. 10 
and 1 1 we present the rates (in arbitrary units on a lin- 
ear ordinate scale) as functions of the harmonic order n 
and of the magnetic induction B. The results presented 
in Fig. 10 (for Es = 0) show pronounced maxima for 
particular values of B. One notices also a periodicity in 
the appearance of these maxima. In [l 1 ] we referred to 
this periodicity as revivals of the harmonic emission 
rates. The physical explanation of these revivals fol- 
lows from the three-step model. We expect that the 
rates have maxima if the electron (or, quantum mechan- 
ically speaking, its wave packet) returns to the origin 
both in the perpendicular and the parallel directions at 
the same time. As we mentioned in the section concern- 
ing our classical analysis, the electron returns to the ori- 
gin at time t, = to + z,, to + 2zB, ..., if the condition 
z(tl) = 0 is fulfilled. Therefore, we expect maximal 
rates for values of B for which an integer multiple of z, 
is equal to the return time of the laser field-driven (and, 
if present, static electric field-driven) ionized electron 
wave packet to the nucleus, i.e., for jz, = t, - to = z, j = 
1, 2, . . . . In [I I] such a physical explanation was sup- 

ported by presenting (D,,I2 vs. B in terms of zi(n)lzB = 
[ezi(n)l(2nm)]B, where zi(n) is the return time, which 
corresponds to the ith return of the electron having 
energy nfio - I,, to the origin (see the intersection of the 
horizontal lines for a fixed n and the dot-dashed curve, 
obtained from the condition z(t,) = 0, in Fig. 3). The 
results presented in [l 11 have shown that, whenever 
zi(n) is close to an integer multiple of zB, there is a 
revival of the intensity of the emitted harmonics; more- 
over the interval between revivals is approximately z,. 
In Fig. 11 we present the harmonic emission rates as in 
Fig. 10, but for Es = 1 MVIcm. The B-dependence of 
the rates is now more complex. We still have maxima 
for particular values of B, but they are broader and 
interference structures are present. In order to explain 
the appearance of these maxima using the classical 

L. - 
analysis of Section 111, we consider, as an example, one 
particular harmonic. In Fig. 12a we present the 25th 
harmonic emission rate as a function of the magnetic 
induction B for the same atomic, laser and static E and 
B field parameters as in Fig. 11. For some particular 
values of B, the emission rate has maxima, but these 
maxima are broader and are not equally spaced, as in 
the absence of the static electric field. Nevertheless, this 
behavior can be explained using our classical analysis. 
From Fig. 3 one can see that the horizontal line n = 25 
has six intersections with the full and dotted curves 
which are obtained from the condition that the electron 
returns to the Qigin. We denote the corresponding 
return times by zi, i = 1, ..., 6. In Fig. 12b we present 
the rates for the same parameters as in Fig. 12a, but as 
functions of the dimensionless parameter z;/zB. We 
have six curves denoted by i = 1, . . ., 6. The position of 
the highest maximum is at zl  = TB, which indicates that 
the rate has the highest maximum when the shortest 
electron return time in the parallel direction is equal to one 
cyclotron period. The origins of other maxima can be 
identified in a similar way and are denoted in Fig. 12b. 
Even the lowest maximum position (7, = z,) can be sat- 
isfactorily explained. A similar analysis can be done for 
other harmonics. Thus, our quantum-mechanical 
results confirm the three-step model for harmonic gen- 
eration in the presence of strong static electric and mag- 
netic fields as well as its applicability to laser-assisted 
XAS. 

CONCLUSION 

We have shown that it is possible to control HHG 
and XAS in a linearly polarized laser field by adding 
parallel static electric and magnetic fields. Using a sim- 
ple classical analysis, based on the three-step model, 
we predicted the main characteristic of these processes, 
i.e., the positions of the plateaus and the cutoffs for the 
DCS of laser-assisted XAS and for the harmonic emis- 
sion rates as functions of the number of photons 
exchanged with the laser field. Our quantum-mechani- 
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cal results confirm these predictions. We have also 
shown a clear connection between the laser-assisted 
XAS and HHG. In the high laser field intensity limit, 
the cutoff position for laser-assisted XAS approaches 
the cutoff positions of HHG from below (i.e., from 
lower energies). If a static electric field is present, both 
high- and low-energy plateaus appear. It is important to 
note that, in the high laser field intensity limit, the XAS 
cutoff position of the high-energy plateau approaches 
the cutoff position for HHG from above. This enables 
control of the scattered x-ray's energy by choosing 
proper values of the laser field intensity and the static 
electric field strength. It is possible to produce the scat- 
tered x-rays having an order of magnitude higher 
energy than the incident x-rays (with the extra energy 
being absorbed from the laser field). We have also con- 
sidered the influence of a parallel magnetic field on the 
HHG process. It was shown that the magnetic field can 
considerably increase the harmonic emission rate and 
that there are optimal values of the magnetic induction 
for which the rate for a particular harmonic has a max- 
imum. We have also explained, using the classical 
three-step model, that the positions of these maxima 
correspond to such values of magnetic induction for 
which an integer multiple of the classical period for 
motion perpendicular to the magnetic field is equal to 
the return time of the laser field-driven and static elec- 
tric field-driven ionized electron wave packet to the 
nucleus. We interpret this fact to mean that the har- 
monic emission rate has a maximum if the electronic 
wave packet is at the nucleus both in the parallel and in 
the perpendicular directions at the same time. While the 
static magnetic field (for the inductions we are consid- 
ering) only slightly affects the position of the cutoff, the 
static electric field can introduce new plateaus with 
their own cutoffs. A properly chosen combination of 
the static electric and magnetic fields can both increase 
the harmonic emission rate and shift the cutoff position 
to a higher harmonic order. 
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