
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

U.S. Environmental Protection Agency Papers United States Environmental Protection Agency

1-1-2002

Receptor modeling application framework for
particle source apportionment
John G. Watson
Desert Research Institute, johnw@dri.edu

Tan Zhu
Nankai University

Judith C. Chow
Desert Research Institute

Johann Engelbrecht
Desert Research Institute

Eric M. Fujita
Desert Research Institute

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/usepapapers

This Article is brought to you for free and open access by the United States Environmental Protection Agency at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in U.S. Environmental Protection Agency Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Watson, John G.; Zhu, Tan; Chow, Judith C.; Engelbrecht, Johann; Fujita, Eric M.; and Wilson, William E., "Receptor modeling
application framework for particle source apportionment" (2002). U.S. Environmental Protection Agency Papers. Paper 109.
http://digitalcommons.unl.edu/usepapapers/109

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usepapapers?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usepa?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usepapapers?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usepapapers/109?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
John G. Watson, Tan Zhu, Judith C. Chow, Johann Engelbrecht, Eric M. Fujita, and William E. Wilson

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/usepapapers/109

http://digitalcommons.unl.edu/usepapapers/109?utm_source=digitalcommons.unl.edu%2Fusepapapers%2F109&utm_medium=PDF&utm_campaign=PDFCoverPages


Receptor modeling application framework for
particle source apportionment

John G. Watson a,*, Tan Zhu b, Judith C. Chow a, Johann Engelbrecht a,
Eric M. Fujita a, William E. Wilson c

a Desert Research Institute, Division of Atmospheric Sciences, 2215 Raggio Parkway, Reno, NV 89512, USA
b Nankai University, Environmental Science and Engineering Institute, Tianjin 300071, People�s Republic of China

c US Environmental Protection Agency, Research Triangle Park, NC 27711, USA

Received 30 August 2000; accepted 24 January 2002

Abstract

Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of

particle chemical and physical properties. Receptor models complement source models that estimate concentrations

from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear re-

gression, eigenvector, edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been

used to solve particulate air quality problems, and more than 500 citations of their theory and application document

these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2:5 among many source

types, many of these components have been reduced in source emissions such that more complex measurements of

carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be

measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for

the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing

networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The

framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2)

identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for

major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying

source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for

secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and re-

ceptor data analyses.

Published by Elsevier Science Ltd.
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1. Introduction

Receptor models infer contributions from different

source types using multivariate measurements taken at

one or more receptor locations. These receptors can be

fixed indoor or outdoor monitors or mobile samplers

that follow the activities of an individual or group of

people. Source models estimate receptor concentrations

from source emissions and meteorological measure-

ments. Receptor models use ambient concentrations and

the abundances of chemical components in source

emissions to quantify source contributions. Source and

receptor models are complementary rather than com-

petitive. Each has strengths and weaknesses that com-

pensate for the other. Both types of models can and

should be used in an air quality source assessment of

outdoor and indoor air.

Chemical and physical analysis methods are often

termed receptor models. A chemical ‘‘tracer’’ is often

sought for certain sources. Microscopic analysis, gas

chromatograms, X-ray spectra, carbon-14 (14C) and

other isotopic abundances, and many other analytical

outputs provide patterns that might allow a source

contribution to be identified and quantified. Without the

receptor model mathematics and applications frame-

work, however, these analytical methods do not quan-

tify source contributions.

True receptor models are not statistical black boxes.

They are based on the same scientific principles as

source models, but they are explanatory rather than

predictive of source contributions. Receptor models in-

clude the enrichment factors (EFs), chemical mass bal-

ance (CMB), eigenvector analysis (also termed principal

component analysis (PCA), factor analysis (FA), and

empirical orthogonal functions (EOF)), multiple lin-

ear regression, neural networks, edge detection, cluster

analysis, Fourier Transform time series, and a number

of other multivariate data analysis methods. Chemical

models that are usually embedded in source-oriented

models can also be used as receptor models to estimate

how emissions characteristics might change between

source and receptor and to determine limiting precursors

for secondary aerosols that form during transport.

Several books (Hopke, 1985, 1991), specialty con-

ference proceedings (Macias and Hopke, 1981; Hopke

and Dattner, 1982; Pace, 1986; Watson, 1989; Watson

et al., 1989; Chow et al., 1993c), and review articles

(Cooper and Watson, 1980; Gordon, 1980, 1988; Wat-

son, 1984; Javitz et al., 1988a; Watson et al., 2001a;

Chow and Watson, 2002; Watson and Chow, 2002b)

examine different types and variations of receptor mod-

els. Table 1 describes several receptor model types and

classifies published references by theory and application.

Examples are drawn from many countries throughout

the world. Some of the receptor model applications

apply to indoor air and personal exposure, but most

determine contributions to particles in outdoor air. Neu-

ral networks, edge detection, and chemical evolution

receptor models are still under development and are of

greater interest to researchers than to those attempting

to solve air pollution problems. EFs and the CMB are

well established and have been widely used to develop

pollution control strategies. The multivariate PCA, FA,

and EOF models have been used to confirm and some-

times identify unrecognized source types; their use for

estimating source profiles for input to the CMB is still

under study.

The particle size fractions normally monitored

throughout the world are total suspended particulate

(TSP, mass of particles with aerodynamic diameters

K 30 lm), PM10 (aerodynamic diameters <10 lm), and
PM2:5 (aerodynamic diameters <2.5 lm). PM2:5 is be-
coming more commonly measured because this fraction

can penetrate deep into the human lung and more effi-

ciently penetrates between outdoor and indoor envi-

ronments. PM2:5 contains most of the carbon, sulfate,

nitrate, and heavy metal components, while the larger

particles are dominated by suspended dust, with some

contributions from sea salt, pollen and plant detritus.

This article provides a framework for using receptor

models to determine those sources requiring emissions

reductions to improve air quality in populated areas

1094 J.G. Watson et al. / Chemosphere 49 (2002) 1093–1136



Table 1

Summary of receptor model types with references to their theory and use

Explanation Theory and evaluation Application

Enrichment factors

The ratios of atmospheric concentra-

tions of elements to a reference

element are compared to the same

ratios in geological or marine material.

Differences are explained in terms of

anthropogenic sources. Heavy metal

enrichments are usually attributed to

industrial emitters. Sulfur enrichment

is attributed to secondary sulfate.

Potassium enrichment is attributed to

burning and cooking. Local soil and

road dust compositions often differ

from global crystal compositions

Vinogradov (1959), Turekian and Wed-

epohl (1961), Taylor (1964), Mason (1966),

Gordon et al. (1973), Zoller et al. (1974),

Rahn (1976), Lawson and Winchester

(1979a), Reimann and de Caritat (2000)

Dams et al. (1971), Hoffman and Duce (1972), Hoffman et al. (1972), Moyers and Duce (1972),

Tsunogai et al. (1972), Wilkniss and Bressan (1972), Bogen (1973), Bressan et al. (1973), Zoller et al.

(1973, 1974), Heindryckx and Dams (1974), Mroz and Zoller (1975), Struempler (1975), King

et al. (1976), Neustadter et al. (1976), Meinert and Winchester (1977), Moyers et al. (1977), Rahn

et al. (1977), Buat-M�eenard and Arnold (1978), Lawson and Winchester (1978, 1979b), Husain and

Samson (1979), Fogg and Rahn (1984), Husain et al. (1984), Pacyna (1986), Lowenthal and Rahn

(1987b), Sturges (1989), Carter and Borys (1993), Rashid and Griffiths (1993), Benner et al. (1995),

Aunela-Tapola et al. (1998), Gatz et al. (1998), Deboudt et al. (1999), Reimann and de Caritat (2000),

Chen et al. (2001), Choi et al. (2001), Paciga et al. (1975, 1976), Winchester et al. (1974, 1979)

Chemical mass balance

Ambient chemical concentrations are

expressed as the sum of products of

species abundances and source

contributions. These equations are

solved for the source contributions

when ambient concentrations and

source profiles are supplied as input.

Several different solution methods

have been applied, but the effective

variance least squares estimation

method is most commonly used

because it incorporates precision

estimates for all of the input data into

the solution and propagates these

errors to the model outputs

Britt and Luecke (1973), Friedlander

(1973a, 1981), Watson (1979), Belsley et al.

(1980), Cooper and Watson (1980), Gordon

et al. (1981), Core et al. (1982), deCesar and

Cooper (1982), Gerlach et al. (1982), An-

derson et al. (1984), Dzubay et al. (1984),

Stevens and Pace (1984), Daisey (1985),

Gordon and Olmez (1986), Holzman et al.

(1986), US EPA (1987), Vong et al. (1988),

Larson and Vong (1989), Wang and Hopke

(1989), Matamala and Nininger (1990),

Kim et al. (1992a), Song and Hopke

(1996a,b), Gleser (1997), Hopke and Song

(1997), Gordon (1980, 1988), Watson et al.

(1981, 1984, 1990b, 1991, 1997b, 1998c),

Henry (1982, 1992, 1997a), Currie et al.

(1984, 1994), deCesar et al. (1985, 1986),

Cheng and Hopke (1986, 1989), Lowenthal

et al. (1987, 1988, 1992, 1994), Javitz et al.

(1988a,b), Lowenthal and Rahn (1988a,b,

1989), Kim and Henry (1989, 1999)

Hidy and Friedlander (1971), Winchester and Nifong (1971), Miller et al. (1972), Kneip et al. (1973),

Friedlander (1973a,b), Gartrell and Friedlander (1975), Hammerle and Pierson (1975), Kowalczyk

et al. (1978, 1982), Mizohata and Mamuro (1979), Watson (1979), Alpert and Hopke (1980, 1981),

Cooper (1980), Dzubay (1980, 1989), Rheingrover and Gordon (1980, 1988), Heisler et al. (1980),

Gatz et al. (1981), Stelson and Seinfeld (1981), Houck et al. (1982, 1992), Johnson and McIntyre

(1982), Liljestrand (1982), Stolzenburg et al. (1982), Cass and McRae (1983), Feeley and Liljestrand

(1983), Rahn and Lowenthal (1984, 1985), Scheff et al. (1984), Stevens et al. (1990), Chow (1985),

Lowenthal and Rahn (1985), Mangelson et al. (1985), Sexton et al. (1985), Chow and Spengler (1986),

Lewis et al. (1986, 1988), Rau (1986), Eatough et al. (1987, 1992, 1996, 1997a, 1997b, 2000), Iyer et al.

(1987), Batterman et al. (1988), Chow et al. (1988b, 1990a,b, 1991a,b, 1992a,b, 1995, 1996b, 1999,

2000), Cooper et al. (1988, 1989), Dresser and Baird (1988), Dzubay et al. (1988), Gray et al. (1988),

Hlavinka and Bullin (1988), Magliano (1988), Vong et al. (1988), Casuccio et al. (1989), Dzubay and

Mamane (1989), Eatough (1989), Ge et al. (1989), Miller et al. (1989), Rau and Khalil (1989), Stafford

and Liljestrand (1989), Vossler et al. (1989), Egami et al. (1990), Kasahara et al. (1990), Kim and

Hopke (1990), Pistikopoulos et al. (1990), van Borm et al. (1990), Conner and Stevens (1991), Glover

et al. (1991), Toriyama et al. (1991), White and Macias (1991), Yoshizumi (1991), Hawthorne et al.

(1992), Heaton et al. (1992), Kim et al. (1992b), M€uuller (1992), Skidmore and Chow (1992), Vermette

et al. (1992), Zelenka et al. (1992, 1993), Annegarn and Pzybylowicz (1993), Wadden et al. (1993),

Bighouse and Houck (1994), Sharma and Patil (1994), Sheffield et al. (1994), Venkataraman and

Friedlander (1994), Watson et al. (1994b, 1996, 1997a, 1998b, 1999b), Adachi et al. (1995), Kao and

Friedlander (1995), Zhu et al. (1995a,b, 1996, 1998, 1999), Lowenthal et al. (1996, 1997a,b), Miguel

et al. (1995), Harrison et al. (1996), Hidy and Venkataraman (1996), Schauer et al. (1996), South Coast

Air Quality Management District (1996), Chen et al. (1997, 2001), Fujita et al. (1997, 1998), Malm and

Gebhart (1997), Vega et al. (1997), Willis et al. (1997), Adgate et al. (1998), Artaxo et al. (1998a,b,

1990), Biegalski et al. (1998), Coe and Chinkin (1998), Liu et al. (1998), Magliano et al. (1998, 1999),

Pinto et al. (1998), R.J. Lee Group (1998), Zhang et al. (1998a), Hosiokangas et al. (1999), Pitchford

et al. (1999), Brook et al. (2000), Green and Tombach (2000), Engelbrecht et al. (2000, 2001, 2002)

Schauer and Cass (2000), Mazzera et al. (2001), Park et al. (2001a,b), Shu et al. (2001), Temesi et al.

(2001), Chow and Watson (2002)
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Table 1 (continued)

Explanation Theory and evaluation Application

Linear regression

Mass, sulfate concentrations or light

extinction are expressed as a linear

sum of unknown regression coeffi-

cients times source marker concentra-

tions measured at a receptor. The

markers must originate only in the

source type being apportioned, which

is a stringent assumption rarely met in

practice. The regression coefficients

represent the inverse of the chemical

abundance of the marker species in the

source emissions. The product of the

regression coefficient and the marker

concentration for a specific sample is

the tracer solution to the CMB that

yields the source contribution

Ito et al. (1986), White (1986, 1989), White

and Macias (1987), Milionis and Davies

(1994a,b), Lowenthal et al. (1995), Ayers

(2001)

Kleinman et al. (1980), Ouimette et al. (1981), Ouimette and Flagan (1982), Kneip et al. (1983),

Morandi et al. (1987, 1991), Trijonis et al. (1987), Lowenthal and Rahn (1989), Malm et al. (1990b),

Okamoto et al. (1990), Malm and Gebhart (1997), Chan et al. (1999), Green and Tombach (2000)

Temporal and spatial correlation eigenvectors (PCA, FA, EOF)

Temporal correlations are calculated

from a time series of chemical con-

centrations at one or more locations.

Eigenvectors of this correlation matrix

are determined and a subset is rotated

to maximize and minimize correlations

of each factor with each measured

species. The factors are interpreted as

source profiles by comparison of fac-

tor loadings with source measure-

ments. Several different normalization

and rotation schemes have been used,

but their physical significance has not

been established

Spatial correlations are calculated

from chemical measurements taken on

simultaneous samples at a large num-

ber of locations. Eigenvectors of this

correlation matrix represent a spatial

distribution of source influence over

the area, providing that the samplers

have been located to represent the

gradients in source contributions. As

with temporal correlation models,

several normalization and rotation

schemes have been applied

Armstrong (1967), Blifford and Meeker

(1967), Prinz and Stratmann (1968), Craw-

ford (1975), Duewer et al. (1976), Gether

and Seip (1979), Hopke (1981, 1988),

Richman (1981, 1986), Hopke et al. (1982,

1983, 1995), Karl et al. (1982), Bergametti

et al. (1983), Cooper (1983), Henry (1984,

1986, 1987, 1991, 1997b), Hwang et al.

(1984), Chow and Spengler (1986), Ito et al.

(1986), Derde et al. (1987), Heidam (1987),

Lowenthal and Rahn (1987a), Cheng and

Lioy (1989), Henry and Kim (1989, 1990),

Zeng and Hopke (1989, 1992a), Henry et al.

(1991, 1999), Glover and Hopke (1992,

1994), Green et al. (1992a), Kuik et al.

(1993a), Paatero and Tapper (1993, 1994),

Richman and Vermette (1993), Nitta et al.

(1994), Poissant (1994), Brunet and

Vautard (1996), Centner et al. (1996),

Moro et al. (1997), Paatero (1997, 1998,

2000) Brumelis et al. (2000)

Blifford and Meeker (1967), Prinz and Stratmann (1968), Vavilova et al. (1969), Peterson (1970),

Padmanabhamarty (1975), Hopke (1976, 1981, 1982), Hopke et al. (1976, 1980, 1982, 1988, 1993),

Gaarenstroom et al. (1977), Barone et al. (1978), Gatz (1978), Hardy and Walton (1978), Gether and

Seip (1979), Henry and Hidy (1979, 1981, 1982), Alpert and Hopke (1980, 1981), Boutron and Martin

(1980), Throgmorton (1980), Cox and Clark (1981), Rohbock et al. (1981), Chang et al. (1982), Houck

et al. (1982), Lioy et al. (1982), Liu et al. (1982, 1995), Overland and Preisendorfer (1982), Rahn et al.

(1982), Roscoe et al. (1982, 1984), Bergametti et al. (1983), Cheng et al. (1993a,b), Hoogerbrugge et al.

(1983), Severin et al. (1983), Ashbaugh et al. (1984), Malm et al. (1985, 1987, 1990a), Smeyers-Verbeke

et al. (1984), Pitchford and Pitchford (1985), Thurston and Spengler (1985a,b), Wolff and Korsog

(1985), Wolff et al. (1985a,b), Chow and Spengler (1986), Crawley and Sievering (1986), Daisey et al.

(1986), Thomas (1986), Johnson and Malm (1987), Keiding et al. (1987), Kim et al. (1987), Koutrakis

and Spengler (1987), Kim and Hopke (1988), Lowenthal and Rahn (1987a), Lowenthal et al. (1992),

Pratsinis et al. (1988), Valaoras et al. (1988), Henry and Kim (1989), Koutrakis et al. (1989), Pio et al.

(1989), Artaxo et al. (1990), Artaxo et al. (1998a, 1990), Bomboi et al. (1990), Gebhart et al. (1990),

Okamoto et al. (1990), Henry et al. (1991), Morandi et al. (1991), Bridgman (1992), Buhr et al. (1992,

1995, 1996), Green et al. (1992a,b, 1993), Rouhani et al. (1992), Sharma and Patil (1992), Sharma and

Singh (1992), Zeng and Hopke (1992b), Gao et al. (1993a,b), Kuik et al. (1993a,b), Michaud et al.

(1993, 1996), Richman and Vermette (1993), Anttila et al. (1994), Berg et al. (1994), Brown and Lund

(1994), Nitta et al. (1994), Xie et al. (1994a,b, 1999a,b), Plumb and Zheng (1996), Sj€oogren et al. (1996),

Swietlicki et al. (1996), Veltkamp et al. (1996), Deininger and Saxena (1997), Gebhart and Malm

(1997), Henry (1997b,c,d), Yoo and Kim (1997), Echalar et al. (1998), Norris et al. (1998),

Statheropoulos et al. (1998), Polissar et al. (1998, 1999, 2001a,b), Currie et al. (1999), Huang et al.

(1999, 2001), Lee et al. (1999), Li and Deng (1999), Paterson et al. (1999), Rocha et al. (1999),

Yakovleva et al. (1999), Ames et al. (2000), Chan et al. (2000), Chueinta et al. (2000), Kim and Henry

(2000), Kusmierczyk-Michulec and Marks (2000), Ogawa et al. (2000), Pryor and Barthelmie (2000),

Ramadan et al. (2000), Tsai et al. (2000), Hien et al. (2001), Jeon et al. (2001), Kavouras et al. (2001),

Park et al. (2001a), Poirot et al. (2001), Roberts et al. (2001), Song et al. (2001)
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Neural networks

Known inputs and outputs are pre-

sented to a neural network that simu-

lates the human though process. The

network assigns weights to the inputs

that reproduce the outputs. Once these

patterns have been established for

cases where outputs are known, the

weights can be applied to input data to

estimate outputs. Neural networks can

also be used to provide function rela-

tionships and represent a solution to

the CMB equations

Reibnegger and Weiss (1991), Wienke and

Hopke (1994a,b), Wienke et al. (1994a,b,

1995), Song and Hopke (1996a,b), Gardner

and Dorling (1998), Reich et al. (1999)

Zelenka et al. (1992, 1994), Boznar et al. (1993), Gao et al. (1994), Wienke et al. (1994a,b, 1995), Xie

et al. (1999b,c), Fan et al. (1995), Cheng et al. (1996), Liu et al. (1996), Rege and Tock (1996), Song

and Hopke (1996a,b), Comrie (1997), Potukuchi and Wexler (1997), Mihalakakou et al. (1998),

Reifman and Feldman (1998), Gardner and Dorling (1999), Reich et al. (1999), Soja and Soja (1999),

Song et al. (1999a,b,c), Kao and Huang (2000), Krijnsen et al. (2000), Perez et al. (2000), Silverman

and Dracup (2000), Bhave et al. (2001), Pasini et al. (2001)

Edge detection

Edges are constant ratios among

chemical components that are detected

in multi-dimensional space. The data

set must contain many samples with

multivariate measurements and several

samples in which sources types are

both present and absent. The ‘‘edges’’

detected by models such as UMIX, are

translated into source profile abun-

dances that are used in an implicit or

explicit CMB

Henry (1997a, 2000, 2002) Willis (2000), Poirot et al. (2001)

Aerosol evolution

Source profiles containing particle

chemical components and gaseous

precursors are mathematically ’’aged’’

using a chemical reaction scheme.

Source profile evolution has been done

using Lagrangian source models to

simulate the conditions that a profile

might encounter en route between

source and receptor

Grosjean and Friedlander (1975), Bassett

et al. (1981), Friedlander (1981), Lewis and

Stevens (1985), Stockwell et al. (1988,

1997), Grosjean and Seinfeld (1989), Wexler

and Seinfeld (1991), Pandis et al. (1992),

Stockwell (1994), Wexler et al. (1994),

Bowman et al. (1995), Fraser et al. (1996),

Seinfeld (1997), Kuhn et al. (1998), Seinfeld

and Pandis (1998), Zhang et al. (1999),

Watson et al. (2002)

Grosjean and Friedlander (1975), Roberts and Friedlander (1975), White et al. (1977), Bassett et al.

(1981), Friedlander (1981), Russell et al. (1983), Robinson and Whitbeck (1985), Gordon and Olmez

(1986), Iyer et al. (1987), Grosjean and Seinfeld (1989), Latimer et al. (1990), Wexler and Seinfeld

(1990, 1991), Pandis et al. (1992), Pankow (1993), Stockwell (1994), Venkataraman and Friedlander

(1994), Wexler et al. (1994), McDonald et al. (1996), Kleeman et al. (1997), Lurmann et al. (1997),

Gray and Cass (1998), Stockwell et al. (1988, 1990, 2000), Kleeman and Cass (1999), West et al.

(1999), Capaldo et al. (2000), Eatough et al. (2000), Chen et al. (2002), Tsuang et al. (2002)

Gas/particle equilibrium

The portions of a semi-volatile

species in the gas and particle

phase are estimated based on

receptor measurements. This

shows which precursor is in

excess and which needs to

be diminished in order to reduce

H€aanel (1965), Stelson et al. (1979),

Stelson and Seinfeld (1982a,b, 1982c),

Saxena et al. (1986), Pankow

(1987, 1988, 1992, 1994a, 1994b, 1998),

Pilinis et al. (1987), Harrison et al.

(1990), Harrison and MacKenzie

(1990), Pankow and Bidleman (1992),

Stelson et al. (1979), Stelson and Seinfeld (1982a,b, 1982c), Bassett and Seinfeld

(1983, 1984), Harrison and Pio (1983), Saxena and Seigneur (1983),

Saxena et al. (1986), Pilinis and Seinfeld (1987), Pilinis and Farber (1991),

Barrett et al. (1992), Tanner and Harrison (1992), Wexler and Seinfeld (1992),

Kim et al. (1993a,b), Koutrakis and Kelly (1993), Mozurkewich (1993),

Koloutsou-Vakakis and Rood (1994), Watson et al. (1994c),

Kim and Seinfeld (1995), Meng et al. (1995), Hayami and Carmichael (1997),
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with a variety of industrial, area, and mobile emissions.

An eight-step receptor source apportionment procedure

is outlined and illustrated with examples from winter-

time Denver, CO (Watson et al., 1998b). These examples

are complemented by information extracted from sev-

eral of the references in Table 1.

2. Receptor modeling procedure

Semi-quantitative source apportionment can be ap-

plied to existing samples from air quality compliance

networks (Chow et al., 2002b), but these networks are

seldom designed for source apportionment. Compliance

monitoring sites do not usually provide the contrast

needed between different times of the day and proximity

to or distance from suspected contributors. Filter sub-

strates used for compliance are not usually compatible

with all of the needed measurements. Chow and Watson

(1994a) and Chow et al. (1996a) describe a ‘‘Level 1’’

(i.e., preliminary or first-level) particulate matter (PM)

assessment that can be completed with existing filters as

a pilot study to form a conceptual model. The inaccu-

racy of the Level 1 assessment usually precludes justifi-

cation for advanced emissions reduction strategies. The

following eight steps should be performed when con-

ducting a source apportionment study.

(1) Formulate conceptual model: The conceptual

model provides a plausible, though not necessarily ac-

curate, explanation of the sources, their zones of influ-

ence, transport from distant areas, timing of emissions

throughout the day, and meteorology that affects rela-

tive emissions rates, transport, dispersion, transforma-

tion, and receptor concentration. The conceptual model

guides the location of monitoring sites, sampling peri-

ods, sampling frequencies, sample durations, the selec-

tion of samples for laboratory analysis, and the species

that are quantified in those samples. A conceptual model

can be postulated from studies in similar areas, from

smaller pilot studies (e.g., analysis of archived filters),

and analysis of existing air quality and meteorological

data.

(2) Compile emissions inventory: Receptor models

need to be supplied with sources that are potential

contributors. A receptor model inventory requires only

source categories, not the locations and emission rates of

specific sources. While ducted point source emissions

can be reasonably estimated through source tests and

operating records, area and mobile source emissions are

inexact. The most common cause of differences between

relative source contributions from source and receptor

models is inaccurate emissions estimates (Core et al.,

1981; Ryan et al., 1988; Watson and Chow, 2000;

Watson et al., 2000). Receptor model results focus re-

sources on those source emissions that are the most

important contributors to excessive PM concentrations.T
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(3) Characterize source emissions: Chemical or phys-

ical properties that are believed to distinguish among

different source types are measured on representative

emitters. Source profiles are the mass abundances

(fraction of total mass) of chemical species in source

emissions. Source profiles are intended to represent a

category of source rather than individual emitters. The

number and meaning of these categories is limited by the

degree of similarity between the profiles. Several com-

pilations of particle profiles have been produced that

might be applicable to a Level 1 source assessment

(Watson, 1979; Sheffield and Gordon, 1986; Cooper

et al., 1988; Olmez et al., 1988; Ahuja et al., 1989; Chow

and Watson, 1989, 1994b; Core, 1989; Houck et al.,

1989, 1990; Shareef et al., 1989; Watson and Chow,

2001a; Watson et al., 2001b). These profiles do not

necessarily represent those that affect an area where they

were not measured.

(4) Analyze ambient samples for mass, elements, ions,

carbon, and other components from sources: Elements,

ions (chloride, nitrate, sulfate, ammonium, water-solu-

ble sodium, and water-soluble potassium), and organic

(OC) and elemental carbon (EC) are sufficient to ac-

count for most of the particle mass. Additional prop-

erties such as molecular organic compounds, isotopic

abundances, and single particle characteristics further

distinguish source contributions from each other, even

though they may not constitute large mass fractions.

(5) Confirm source types with multivariate model: If a

sufficient number of chemically characterized ambient

samples is available (more than 50), PCA and other

multivariate analyses are helpful to determine the source

types and profile characteristics that might be contrib-

utors.

(6) Quantify source contribution: The CMB model

estimates source contributions based on the degree to

which source profiles can be combined to reproduce

ambient concentrations. The CMB attributes primary

particles to their source types and determines the

chemical form of secondary aerosol when the ap-

propriate chemical components have been measured.

Modern CMB software (Watson et al., 1990b, 1997b)

requires specification of input data uncertainty and

calculates standard errors for source contribution esti-

mates. Table 1 provides detailed references on how to

use the CMB.

(7) Estimate profile changes and limiting precursors:

Source characteristics may change during transport to

the receptor, the most common being changes of sulfur

dioxide and oxide of nitrogen gaseous emissions to sul-

fate and nitrate particles. These changes can be simu-

lated with aerosol evolution models (Watson and Chow,

2002a). Secondary ammonium sulfate and ammonium

nitrate involve ammonia from non-combustion sources

that may be a limiting precursor. Chemical equilibrium

receptor models determine the extent to which one

precursors need to be diminished to achieve reductions

in ammonium nitrate levels.

(8) Reconcile source contributions with other data an-

alyses and source models: Since no model, source or re-

ceptor, is a perfect representation of reality the results

must be independently challenged. Receptor model

source contributions should be consistent between

locations and sampling times. Discrepancies between

source contributions estimated by receptor models and

emissions inventories or source model should be recon-

ciled. A ‘‘weight of evidence’’ from multiple source at-

tribution approaches should add confidence to the

control strategies that are developed.

Examples are given below for each of the eight steps

to be performed in a source apportionment study.

2.1. Step 1: Form a conceptual model

A conceptual model describes the relevant physical

and chemical processes that affect emissions, transport,

and transformation by taking advantage of the large

body of scientific knowledge already acquired. Citations

in Table 1 propose several conceptual models (e.g., Pun

and Seigneur, 1999; Watson and Chow, 2002a) that

might be adapted to other areas. Widely applicable

conceptual models and their implications for receptor

model monitoring are:

Motor vehicle exhaust is the major PM contributor and

originates mostly from downtown traffic during morning

rush hours. Carbon measurements are taken before,

during, and after rush hours at downtown and residen-

tial locations. Specific organic markers for diesel and

gasoline exhaust are quantified.

The majority of particulate sulfate forms by regional

photochemical reactions. Sulfate measurements are taken

at an urban site and at an upwind regional site during

the summer and compared with similar sulfate mea-

surements during winter.

The majority of personal exposure results from side-

stream cigarette smoke. Nicotine measurements are

acquired from personal samplers attached to represen-

tative individuals that spend time in smoking and non-

smoking environments.

Non-urban windblown dust is a major source of urban

particle concentrations. Elemental measurements are

taken at a downtown site and in an up-wind barren area

(e.g. desert, playa, unplanted field) during windy and

non-windy situations. Short time duration (<5 min)
particle measurements are acquired with a continuous

monitor and correlated with wind speeds of similar du-

ration.

Denver measurements were based on the following

conceptual model for PM2:5: (1) secondary ammonium

nitrate is a large component of wintertime PM2:5, is of

local rather than regional origin, is dominated by oxides
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of nitrogen emissions from mobile emissions rather than

elevated power station emissions, and is limited by nitric

acid production rather than by available ammonia; (2)

PM carbon is dominated by diesel exhaust and wood

smoke, with less important contributions from gasoline

exhaust and cooking; and (3) fugitive dust contributions

are minimal, except when roads are sanded after snow,

and is from manmade deposits rather than natural wind

erosion during winter. To evaluate these concepts, nitric

acid and ammonia gas measurements were needed with

particulate ammonium nitrate and ammonium sulfate

measurements at urban and non-urban sites. Specific

organic compounds were needed to separate the different

carbon source contributions. Elemental concentrations

were needed to differentiate coal fly ash from suspended

dust. Urban and non-urban monitors were needed with

nighttime and morning samples that would bracket

morning traffic and nighttime heating emissions. Testing

this conceptual model also required extensive meteoro-

logical measurements at the surface and aloft to deter-

mine how surface and elevated emissions would mix

throughout the day.

2.2. Step 2: Compile emissions

Emission models (Dickson and Oliver, 1991) estimate

temporal and spatial emission rates based on activity

level, emission rate per unit of activity, and meteorology.

Emissions models apply emission factors measured for a

range of activity levels from representative sources to

values for those activities estimated for a study area.

Commonly used activity surrogates are: (1) fuel con-

sumed, product produce, or material inputs for in-

dustrial sources; (2) vehicle miles traveled, fuel sales,

miles of roadway, or vehicle registrations for mobile

source emissions; and (3) population density, number of

households or businesses, amount of residential wood or

coal sold for area source emissions. Activity data are

often unavailable for the spatial scales desired of source

models, and emissions are estimated for a larger area

(e.g., a county, state, or province) and spatially allocated

to a smaller scale based on population census tracts,

land-use maps, and roadway networks. An accurate

inventory for source modeling often requires greater

effort and expense than field monitoring for air quality

concentrations and meteorology.

US EPA (1999) publishes AP-42 emission factors

used to formulate national inventories, but these are

often inappropriate for specific airsheds, especially those

outside of the US. This is recognized in the AP-42 in-

troduction that recommends locally derived emission

factors, where possible, and reiterates the limitations of

factors derived from a few tests at other times and pla-

ces.

Emissions inventory models are often used to de-

velop control strategies by linear rollback modeling

(Barth, 1970; deNevers and Morris, 1975; Cass, 1981;

Cass and McRae, 1981, 1983). The linear rollback model

assumes that atmospheric concentrations in excess of

background are proportional to aggregate emission

rates. Reducing excessive concentrations of a pollutant

to levels below a pre-set standard requires emissions

reductions that are proportionally equal to the relative

amount by which the standard is exceeded. Receptor

models are often used in conjunction with linear roll-

back to determine the contribution of source categories

to excessive concentrations. The linear rollback is then

performed on a category-specific basis, starting with the

largest contributors. This is a more accurate method of

justifying emissions reductions than a rollback of un-

speciated PM because the relative emissions from indi-

vidual sources within a category are believed to be more

accurate than the absolute emissions within the category

or the relative emissions between source categories (e.g.,

Cass and McRae, 1981, 1983).

While source models need spatial and temporal res-

olution and very accurate emissions rates, receptor

models need only a seasonal or annual average, area-

wide inventory to identify potential source categories.

Individual emitters must be grouped into more gen-

eralized categories with similar source profiles. For

example, an outdoor inventory will often contain sepa-

rate entries for power generation, industrial, and in-

stitutional coal combustion. Since these combustion

processes, and often the coal, are similar in a given

airshed, it is unlikely that their contributions can be

distinguished by the CMB and they must be combined

into a ‘‘coal-burning category’’. Source categories that

are often combined for particulate receptor modeling

are:

Vegetative burning and cooking: Fireplaces, wood

stoves, prescribed burns, wildfires, char-broiling, and

meat cooking. Some of these sub-categories may be

separated when appropriate organic compounds are

measured.

Diesel exhaust: Heavy and light duty cars and trucks,

off-road equipment, stationary engines for pumps and

generators, and locomotives.

Gasoline exhaust: Heavy and light duty cars and

trucks, and small engines. Emissions inventories do not

usually contain breakdowns by cold-starts and poorly

maintained vehicles, although these might be discrimi-

nated by certain organic compounds in a profile. Since

leaded fuels are no longer used in the US, there is no

need to separately apportion use of this fuel, but leaded

gasoline is still in use in many other countries.

Fugitive dust: Paved roads, unpaved roads, agricul-

tural tilling, construction, wind erosion, and industrial

aggregate. These can sometimes be divided into sub-

categories based on single particle shape and elemental

content or the measurement of specific mineral compo-

sition.
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Metals: Copper smelters, lead smelters, steel mills,

and aluminum mills. These often have similar metal

emissions but in different abundances depending on the

process.

Aggregate handling: Cement, quarrying, and mining.

Ores, in particular, are often enriched in the materials

being extracted and sub-categories may be defined for

these cases. When low level measurements of trace ele-

ments such as copper, zinc, and lead are made, metal

processing operations that use these materials can be

classified into separate categories.

Indoor inventories might include the following par-

ticulate source types (Sexton et al., 1986; Sexton and

Hayward, 1987; Koutrakis et al., 1992): (1) outdoor air

that infiltrates through doors, windows, and poor insu-

lation; (2) house dust from track-in and resuspension

from vacuuming and personal movement; (3) cooking,

both from the fuel combustion and the food, especially

during frying; (4) sidestream smoke when the building

contains smokers; (5) animal dander and fur in the pres-

ence of pets and other animals; (6) molds, spores, and

fungi, especially those that form and are entrained from

ventilation ducts; (7) vehicle exhaust in commuter trans-

port compartments; and (8) a large variety of occupa-

tional emissions, depending on the type of work involved.

Table 2 summarizes wintertime outdoor emission

rates for several source categories in the Denver, CO,

metropolitan area. Similar sources and pollutants are

found in most urban areas. Inventories should include

primary particles that are directly emitted by sources

(PM10 and PM2:5) as well as gaseous precursors for

secondary particles that form in the atmosphere. Sulfur

dioxide, ammonia, and oxides of nitrogen are the pre-

cursors for sulfuric acid, ammonium bisulfate, ammo-

nium sulfate, and ammonium nitrate particles that often

constitute major fractions of PM2:5 and PM10. Volatile

organic compounds (VOC) are involved in photochem-

ical reactions that engender sulfuric acid, nitric acid,

particle-phase organics, as well as ozone. VOC precur-

sors that convert to secondary organic particles are

those with more than 6–8 carbon atoms (Pandis et al.,

1992), and canister-based hydrocarbons are only valid

for species with less than 12 carbon atoms.

Table 2 reflects the fact that most particle emis-

sions from combustion sources are in the PM2:5 fraction,

while fugitive dust emissions are mostly in the coarse

(PM10 )PM2:5) fraction. This is consistent with source
measurements of particle size fractions. Coarse particles

are produced by grinding of larger particles to smaller

particles while fine particles are produced by condensa-

tion, coagulation, and gas-to-particle conversion com-

mon to combustion sources.

Table 2 indicates that fugitive dust sources from

paved and unpaved roads, sanding, and construction

constitute 79% of PM10 and 43% of PM2:5 emis-

sions. Fugitive dust is a large fraction of all emissions

inventories and is inconsistent with the amount of

geological material found in ambient air in most loca-

tions. Detailed examination of fugitive dust emission

factors (Watson and Chow, 2000; Watson et al., 2000;

Countess et al., 2001) shows that these are derived from

horizontal fluxes in upwind/downwind experiments in

Table 2

Wintertime emissions estimates for the Denver, CO, metropolitan areaa

Source type Source emission rate estimates (tons/day)

PM10 PM2:5 SO2 NOx NH3 VOC CO

Gasoline exhaust 1.7 1.6 3.3 137.7 –b 157.6 1340.8

Visibly smoking gas exhaust 0.2 0.2 –b –b –b –b –b

Diesel exhaust 5.0 4.9 1.5 36.1 –b 8.4 30.9

Off-road diesel exhaust 1.8 1.8 1.7 27.4 –b 14.3 111.7

Wood burning 1.8 1.8 0.0 0.0 –b –b –b

Road dust and sand 49.6 7.4 0.0 0.0 –b –b –b

Coal power stations 1.3 0.7 62.1 64.3 –b –b –b

Other industries 7.8 2.6 16.7 47.8 –b –b –b

Natural gas 0.5 0.5 0.0 28.4 –b –b –b

Unpaved road dust 28.2 4.2 0.0 0.0 –b –b –b

Restaurant cooking 1.4 1.4 0.0 0.0 –b –b –b

Construction dust 2.2 0.3 0.0 0.0 –b –b –b

Biogenic –b –b –b 3.0 –b 31.3 0.0

Industrial –b –b –b –b 34.8 22.3

Area sources –b –b –b 1.0 –b 89.8 72.3

Total 101.6 27.5 85.2 345.7 –b 336.2 1578.0

a From Regional Air Quality Council (1998), ‘‘Review of Blueprint for Clean Air Emissions Inventory’’, April 8 as summarized in

Watson et al. (1998b).
bNot estimated for the Denver area owing to lack of activity data or emissions factors.
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which 60–90% of the emissions are within the lowest

two meters above ground level. Since these low level

emissions are likely to deposit within a few hundred

meters of the emissions point, they should not be part of

emission factors used to represent urban-scale invento-

ries.

Mobile source combustion emissions from diesel and

gasoline engines operating on- and off-road are impor-

tant contributions in nearly all urban areas. Fujita et al.

(1997) identified two-stroke engines, common on small

motorbikes, as an important mobile source category in

Bangkock, Thailand. For the Denver area, Table 2

shows that motor vehicle exhaust (the sum of gasoline,

diesel, and off-road emissions) constitutes 31% of PM2:5
emissions, with diesel (including off-road) representing

more than 79% of vehicle exhaust. Poorly maintained

gasoline vehicles, identified by visible exhaust, constitute

11% of gasoline-fueled vehicle emissions and only 2% of

total vehicle emissions.

Vehicle emission testing is expensive, and it is difficult

to recruit commercially used trucks for testing; as a re-

sult, the California emissions inventory is based on tests

of 6000 light-duty gasoline vehicles, as compared to only

70 heavy-duty diesel trucks (Lloyd and Cackette,

2001a,b). Recent tests have shown large discrepancies

between motor vehicle emission factors and on-road

tests for a variety of pollutants. Hansen and Rosen

(1990) report measurements from Berkeley, CA, of

carbon emissions from individual vehicles in on-road

operation. They measured the ratio of light-absorbing

carbon to CO2 as vehicles drove past the Lawrence

Berkeley Laboratory, and found a factor of 250 between

the highest and lowest ratio for 60 gasoline-fueled ve-

hicles. They did not categorize vehicles by weight and

age, but the range of ratios shows the potential for large

uncertainties in these factors. Further evidence of these

discrepancies was found by using remote sensing of in-

dividual tailpipe emissions for carbon monoxide, hy-

drocarbons, and oxides of nitrogen (Bishop et al., 1989,

1996, 1997; Ashbaugh et al., 1992; Stedman et al., 1993;

Zhang et al., 1993; Cadle and Stephens, 1994; Stephens

et al., 1996; Johnson et al., 1998; Singer et al., 1998).

Remote sensing shows that approximately 20% of the

on-road vehicles emit nearly 80% of the pollutants. Ex-

cess emissions are due to off-cycle operating conditions

and poor-maintenance that are not well represented by

laboratory dynamometer studies. Remote sensors for

suspended particles are still being developed, although

excessive gaseous emissions detected by current tech-

nology probably indicate poor combustion properties

that also increase particle emissions over those currently

estimated by emissions models.

Table 2 shows that residential wood combustion

(RWC) constitutes �7% of PM2:5 emissions for winter-
time Denver. This estimate includes the effectiveness of

control measures such as new technology stoves and no-

burn days that were implemented after a 1988 receptor

modeling study found wood-burning contributing 25%

of wintertime PM2:5 in Denver (Watson et al., 1988).

Special tests of wood-burning emissions (McDonald

et al., 2000) using contemporary wood-burning methods

were made for the Denver area.

The impact of cooking on indoor air has been well

documented (Truesdale, 1982; Davidson et al., 1986;

Reid et al., 1986; Ahuja et al., 1987; Raiyani et al., 1993;

Smith, 1995; Ballard-Tremeer and Jawurek, 1996; Fan

and Zhang, 1998; Albalak et al., 1999; Lee et al., 2001),

and its effects on outdoor PM2:5 concentrations have

been identified (Hildemann et al., 1991; Rogge et al.,

1991; McDonald et al., 1998; Kleeman et al., 1999;

Nolte et al., 1999; Schauer et al., 1999; Mugica et al.,

2001). Table 2 indicates that �5% of PM2:5 is emitted by
this source. For Table 2 emissions, refineries, cement

production, grain handling, and aggregate handling op-

erations were quantified with 12% of PM2:5 emissions;

coal-fired power stations emitted 2.5% of PM2:5 while

other combustion, mostly with natural gas, is estimated

to contribute �2% of the total.
Table 2 shows nearly 60% of the oxides of nitrogen

deriving from mobile sources, with coal-fired power

generation emitting 19% of the total. Coal is the

major sulfur dioxide emitter in areas where it is used,

and this is evident for Denver. Motor vehicle fuels also

include sulfur that may be more influential for the

formation of wintertime sulfate if it is emitted into

ground-level fogs under stagnant conditions where con-

version can be very rapid. A significant quantity (8%)

of sulfur dioxide derives from mobile sources, with half

of that deriving from on-road and off-road diesel ex-

haust.

Fig. 1 shows how inventory PM2:5 emissions are

combined into source categories that can be distin-

guished at receptors by their chemical components. This

figure assumes that measured organic compounds used

in CMB calculations can distinguish among different

carbon sub-types such as cooking/burning and gasoline/

diesel exhaust. These sub-types usually cannot be dis-

tinguished by commonly applied elemental/ion/carbon

analyses. All of the fugitive dust sources are combined

because distinguishing species have not yet been devel-

oped that conclusively separate paved road, unpaved

road, and construction sources. Salt used as a de-icing

material can be detected, but it does not have a constant

abundance relative to other geological materials because

it is applied intermittently and is soon washed away by

melting snow.

2.3. Step 3: Characterize sources

Analogous to the measurement of emission factors,

source profiles are created by sampling emissions from

a variety of single emitters or small groups of emit-
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ters. These samples are then submitted to a variety of

chemical and physical analyses to determine those

properties that will allow contributions from the sources

they represent to be distinguished at receptors. The mass

for each of these properties is normalized to a common

property in the emissions from all sources, typically the

PM10 or PM2:5 mass emissions rate. This mass fraction is

termed the species abundance.

Individual profiles are formed from single samples,

and the precisions of the numerator and denominator of

the species abundances are propagated (Watson et al.,

2001c) to obtain the individual profile uncertainties.

These individual profiles are further composited to ob-

tain the source profiles used for CMB source appor-

tionment. The simplest composite consists of the average

and standard deviation of species abundances for all

individual profiles within a group. For example, if ten

tests of diesel vehicle exhaust are taken, the composite

species abundance is an average of the ten individual

profile abundances and the uncertainty is the standard

deviation of that average. Outlier tests are applied to

reject individual profiles that unduly bias the average

and standard deviation of the composite profile. There

are always some outliers in any series of source tests,

usually for reasons that can never be determined. It is

important to obtain ten or more samples that run the

range of operating conditions and fuels in an area to

develop source profiles.

The ideal source sampling method would allow for

chemical and physical transformations of source emis-

sions to occur prior to sample collection. Lacking this

ideal, the sampling would at least quantify the precur-

sors of the receptor profile so that a theoretically or

empirically derived transformation could be applied.

The following methods (Gordon et al., 1984; Chow

et al., 1988a; Watson and Chow, 2001a; Watson et al.,

2001b) are commonly used for different source types to

obtain samples from which profiles may be determined:

Hot exhaust sampling: Effluent is extracted from a

duct or stack at emissions temperatures and drawn

though filters. The EPA ‘‘Method 201’’ stack test method

is most commonly applied in the US to determine com-

pliance with PM10 emissions standards. Hot exhaust does

not permit the condensation of vapors into particles prior

to sampling, and it sometimes interferes with the sam-

pling substrate or container. In coal-fired station emis-

sions, the selenium does not condense on other particles

until temperatures approach ambient. Hot exhaust sam-

ples are not often taken on substrates or in containers

amenable to extensive chemical analysis. Even though it

is widely used for compliance, hot exhaust sampling is

not appropriate for receptor modeling studies.

Diluted exhaust sampling: Effluent extracted from a

duct is mixed with clean ambient air so that gases can

condense on particles (Heinsohn et al., 1980; Hildemann

et al., 1989; Zielinska et al., 1998; England et al., 2000).

The near-ambient temperature effluent is then drawn

through substrates that are analyzed for the desired

properties. Diluted exhaust samplers are used for labo-

ratory simulations of emissions from individual sources.

Dynamometer simulations use diluted exhaust sampling

to estimate emissions for different vehicle types, fuels,

Fig. 1. PM2:5 emissions from Table 2 are combined into categories that might be resolved by receptor models. Paved road dust,

unpaved road dust, and construction emissions are summed, as are on-road and off-road diesel emissions.
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and driving conditions. Wood stove, fireplace, and

cookstove emissions can also be simulated by dilution

sampling of representatives in a laboratory or field en-

vironment.

Airborne sampling: Effluent is drawn from a plume

aloft after it has cooled to near ambient temperatures

but before it is dominated by the particles present in the

background air. Aircraft, balloons, and cranes have

been used to elevate sampling systems into the plume

(Anderson et al., 1977, 1998; Armstrong et al., 1981;

Hering et al., 1981; Gillani and Wilson, 1983; Shah

et al., 1989; Cahill et al., 1992; Baxter and Pederson,

1994; Lagomarsino and Latner, 1997; Hofmann et al.,

1998; Greenberg et al., 1999). With airborne sampling it

is possible to follow a large plume and examine how

source profiles change as secondary aerosol is formed.

Difficulties of airborne plume sampling are: (1) locating

the sampler in the plume instead of ambient air; (2)

staying in the plume long enough to obtain a sufficient

sample for chemical analysis; and (3) mixing of ambient

air with the plume, so the source profile is really a

combination of emissions and ambient air.

Ground-based sampling: Ambient samples are taken

in locations and during time periods for which a single

source type dominates the emissions. Ground-based

source sampling methods are identical to receptor sam-

pling methods with the requirements that: (1) meteoro-

logical conditions and sampling times are conducive to

domination by a particular source; (2) samples are of

short enough duration to take advantage of those con-

ditions; and (3) aerosol from other interfering sources is

low or can be apportioned and removed from the sam-

ple. Tunnels, parking garages, vehicle staging areas, and

isolated but heavily traveled roadways are often used to

obtain samples for motor vehicle exhaust. Tunnels are

especially useful for this because a large number of ve-

hicles can be evaluated with little interference from

sources other than suspended road dust (Pierson and

Brachaczek, 1976, 1983; Chang et al., 1981; Hering et al.,

1984; Miguel, 1984; Lonneman et al., 1986; Benner

et al., 1989; Dannecker et al., 1990; Pierson et al., 1990,

1996; Zielinska and Fung, 1994; Khalili et al., 1995;

Barrefors, 1996; Bishop et al., 1996; Duffy and Nelson,

1996; Gertler and Pierson, 1996; Moeckli et al., 1996;

Gertler et al., 1997; Weingartner et al., 1997; Fraser

et al., 1998; Gillies et al., 1998, 2001; Rogak et al., 1998;

Staehelin et al., 1998). Using short-duration source-

dominated samples, Rheingrover and Gordon (1988)

and Annegarn et al. (1992) characterized several point

sources using ambient sampling downwind of the

source. Chow (1985) examined the effects of an elevated

coal-fired power plant emission on ground-based sam-

ples in a rural environment with this method.

Grab sampling and laboratory resuspension: A sample

of pollution residue is obtained and suspended in a

chamber for sampling onto filters (Chow et al., 1994;

Carvacho et al., 1996). This is most applicable to non-

ducted fugitive and industrial dust emissions. A sam-

ple swept, shoveled, or vacuumed from a storage pile,

transfer system, or roadbed can be taken to represent

these source types. Five to ten different samples from the

same source are averaged to obtain a representative

source profile.

Ground-based and grab sampling are the most cost-

effective and practical methods for most situations, al-

though large industrial stack emissions require diluted

sampling and mobile source sub-types (e.g., high emit-

ting vehicles) can only be isolated in laboratory dyna-

mometer tests.

Source profiles for Denver are qualitatively similar to

those found elsewhere, although the abundances vary

depending on local conditions. In geological material,

aluminum (Al), silicon (Si), potassium (K), calcium

(Ca), and iron (Fe) have large abundances with low

variabilities. The total potassium (K) abundance is often

10–30 times the abundance of soluble potassium (Kþ) in

fugitive dust. Aluminum (Al), potassium (K), calcium

(Ca), and iron (Fe) abundances are similar among dust

profiles. Lead (Pb) is sometimes abundant in paved road

dust, but it is <0.005% in the other geological profiles,
probably due to deposition from previously emitted

leaded-gasoline vehicle exhaust or remnants of lead from

the exhaust trains of older vehicles. EC abundances are

highly variable in geological material, and are often

negligible in natural soil samples. OC is typically 5–15%

in geological emitters. OC is most abundant in paved

road and agricultural dusts, although the specific com-

pounds probably differ for these two sources. Vehicle

brake wear, tire wear, and oil drips could result in

greater abundances of Pb, EC, and OC in paved road

dust. Soluble sulfate, nitrate, and ammonium abun-

dances are usually low, in the range of 0–0.5%. Sodium

and chloride are also low, with less than 0.5% in abun-

dance. Larger abundances of these materials may occur

soon after roadway de-icing.

OC and EC are the most abundant species in motor

vehicle exhaust, typically accounting for over 95% of

the total mass. Lead, bromine, and chloride are good

markers for gasoline exhaust in areas where leaded fuels

are used, but lead is quickly being eliminated in most

areas and is completely gone from fuels used in the

United States. Watson et al. (2001b) found an OC/TC

ratio of 0.58 in the composite vehicle profile for north-

western Colorado. Earlier measurements in Denver, CO

(Watson et al., 1990a) reported an OC/TC ratio of 0.39

for the cold transient cycle and 0.81 for the cold stabi-

lized cycle.

OC and EC are also abundant in wood burning and

cooking emissions. Watson et al. (2001b) compared

RWC, residential coal combustion (RCC), and forest

fire PM2:5 profiles. Average OC abundances ranged from

�50% in RWC and the forest fire profiles to �70% in the
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RCC profile. EC averaged 3% in forest fire, 12% in

RWC, and 26% in RCC. The OC/TC ratio was highest

in the forest fire profile (0.94) and similar for the two

residential combustion profiles, with 0.73 in RCC and

0.81 in RWC. Watson and Chow (2001a) measured

profiles for asparagus field burning in California�s Im-
perial Valley with OC/TC ratios of 0.93, similar to the

0.94 ratio for forest fire emissions. A similar observation

was made for charbroil cooking emissions, with 60–70%

OC abundances and high (>0.95) OC/TC ratios. The
Kþ/K ratios of 0.80–0.90 in burning profiles (Calloway

et al., 1989) are in large contrast to the low soluble to

total potassium ratios found in geological material.

Coal-fired power generation profiles differ substan-

tially from residential coal burning, even though the

fuels are similar, owing to the different combustion

conditions and different emissions. Sulfate is one of the

most abundant constituents in the particle phase and

sulfur dioxide can be hundreds to thousands of time

higher than the particle mass. Sulfur dioxide is a good

indicator of contributions from nearby coal-fired power

stations when it has not reacted or deposited signifi-

cantly during transport to a receptor. Crystal elements

such as Si, Ca, and Fe are often present at 30–50% of the

corresponding levels in geological material, while Al

abundances are similar to or enriched over those found

in surface soils. Other elements such as phosphorus (P),

potassium (K), titanium (Ti), chromium (Cr), manga-

nese (Mn), strontium (Sr), zirconium (Zr), and barium

(Ba) are often detectable at less than 1% levels.

All of the elemental abundances are highly dependent

on the ash composition of the parent coal, as well as the

specific combustion process and pollution control de-

vices. Watson et al. (2001b) detected selenium (Se) at the

level of 0.2–0.4% in coal-fired power station emissions

with no scrubbers or wet scrubbers, but not in emissions

from a unit with a dry limestone scrubber. Se is usually

in the gaseous phase within hot stack emissions, and it

condenses on particles when air is cooled in the dilution

chamber. Abundances of Ca (15%), Cl (1%), and nitrate

(1%) in the limestone-scrubbed unit were a few times

higher than in the other units. These differences may

have resulted from the dry lime scrubber, which added

some calcium and absorbed the selenium in the vapor

phase.

These examples show that although there are simi-

larities in chemical compositions for different sources,

using source profiles from one airshed or time period

may not provide a valid CMB apportionment for am-

bient samples in another airshed or in another time pe-

riod. Source emissions of precursor gases and primary

particles are highly variable due to differences in fuel use,

operating conditions, and sampling methods. Source

and ambient measurements must be paired in time to

establish reasonable estimates of source/receptor rela-

tionships. Trace metals acquired from elemental analysis

of Teflon-membrane filters are only abundant in the

geological and some industrial profiles. Elemental mea-

surements by themselves are necessary, but insufficient,

for a receptor modeling study. Chemical speciation must

also include ammonium, sulfate, nitrate, OC, and EC.

Separating carbon fractions with the use of different

combustion temperatures and atmospheres can also be a

useful tool in source apportionment studies (Chow et al.,

1993b). Watson et al. (1994a), using the thermal evolu-

tion method in the IMPROVE protocol (Chow et al.,

1993b, 2001), showed that gasoline- and diesel-powered

vehicle emissions exhibit different abundances of differ-

ent fractions of OC and EC. Engelbrecht et al. (2002)

used seven carbon fractions in their CMB analysis to

distinguish source contributions between regular and

low-smoke RCC. Simultaneous gas measurements as

well as other characteristics of suspended particles will

be needed as more refined control strategies are devel-

oped using receptor models.

The Denver example measured organic compounds

such as those listed in Table 3 in both source and re-

ceptor samples to apportion source sub-types such as

meat cooking, wood burning, and exhaust from different

vehicle operating modes. Sampling and analysis meth-

ods for organic compounds are still being perfected.

Organic analyses are more difficult or costly to apply

than currently available elemental, ion, and carbon

measurements.

2.4. Step 4: Analyze samples for material balance

A material balance is a preliminary source appor-

tionment that allocates TSP, PM10, or PM2:5 to geo-

logical material, OC, EC, sulfate, nitrate, ammonium,

and possibly salt (from marine aerosol, de-icing, or

windblown dry lake beds). Several summaries of particle

sampling and analysis methods (Watson and Chow,

1993, 1994, 2001b; Chow and Watson, 1994a, 1998;

Chow, 1995) describe ambient sampling and chemical

analysis options. The material balance requires elemen-

tal, ionic, and carbon analyses. Although not a source

apportionment, the material balance provides guidance

on which components are the major cause of excessive

mass concentrations. This knowledge can focus efforts

to improve the emissions inventory for source modeling

and allows a speciated linear rollback model to be ap-

plied for initial control strategy development. The fol-

lowing sample analysis hierarchy (updated from Chow

et al., 1996a) demonstrates how elemental, ionic, and

carbon concentrations can be measured for different

levels of resources:

Analyze archived filter samples: High-volume quartz-

fiber filter samples used to determine mass for compli-

ance with air quality standards are sub-optimal for

chemical analysis, but they are commonly available

throughout the world. These filters have already been
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weighed to determine mass concentration. They can be

analyzed for elements by X-ray fluorescence (Watson

et al., 1999a) with appropriate corrections for filter ab-

sorption and blank subtraction; for ions by ion chro-

matography (Chow and Watson, 1999) and atomic

absorption spectrophotometry (Chow et al., 2002b), and

for carbon by thermal combustion carbon analysis

(Chow et al., 1993b, 2001). Aluminum and silicon can-

not be quantified on these samples because they are part

of the filter matrix. Other trace elements may also be

present in the filter matrix as impurities, and large

fractions of volatile species such as ammonium nitrate

may have evaporated during storage (Witz et al., 1990).

For PM2:5 standard attainment, US EPA requires sam-

pling with low-volume federal reference method (FRM)

samplers equipped with Teflon-membrane filters. These

samples can be analyzed for elements by X-ray fluores-

cence. Sulfate can be estimated from the sulfur concen-

Table 3

Organic compounds from different OC emission and in ambient air

Species Predominant sources Particle–gas phase distribution

PAH

Naphthalene Motor vehicles, wood smoke Gas phase

Methylnaphthalenes Motor vehicles, wood smoke Gas phase

Dimethynaphthalenes Motor vehicles, wood smoke Gas phase

Biphenyl Motor vehicles, wood smoke Gas phase

Acenaphthylene Motor vehicles, wood smoke Gas phase

Acenaphthene Motor vehicles, wood smoke Gas phase

Fluorene Motor vehicles, wood smoke Gas phase

Phenanthrene Motor vehicles, wood smoke Particle–gas phase

Anthracene Motor vehicles, wood smoke Particle–gas phase

Fluoranthene Motor vehicles, wood smoke Particle–gas phase

Pyrene Motor vehicles, wood smoke Particle–gas phase

Retene Motor vehicles, wood smoke Particle–gas phase

Benzo[b]naphtho[2,1]thiophene Motor vehicles Particle phase

Benz[a]anthracene Motor vehicles, wood smoke Particle phase

Chrysene Motor vehicles, wood smoke Particle phase

Benzo[bþ jþ k]fluoranthene Motor vehicles, wood smoke Particle phase

Benzo[a]pyrene Motor vehicles, wood smoke Particle phase

Indene[123-cd]pyrene Motor vehicles, wood smoke Particle phase

Dibenzo[ahþ ac]anthracene Motor vehicles, wood smoke Particle phase

Benzo[ghi]perylene Motor vehicles, wood smoke Particle phase

Coronene Motor vehicles, wood smoke Particle phase

Hopanes and Steranes

Cholestanes Motor vehicles Particle phase

Trisnorhopanes Motor vehicles Particle phase

Norhopanes Motor vehicles Particle phase

Hopanes Motor vehicles Particle phase

Guaiacols

4-Methylguaiacol Wood smoke Gas phase

4-Allylguaiacol Wood smoke Particle–gas phase

Isouegenol Wood smoke Particle–gas phase

Acetovanillone Wood smoke Particle phase

Syringols

Syringol Wood smoke, mostly hardwood Particle–gas phase

4-Methylsyringol Wood smoke, mostly hardwood Particle–gas phase

Syringaldehyde Wood smoke, mostly hardwood Particle phase

Lactones

Caprolactone Meat cooking Gas phase

Decanolactone Meat cooking Particle–gas phase

Undecanoic-c-lactone Meat cooking Particle–gas phase

Sterols

Cholesterol Meat cooking Particle phase

Sitosterol Meat cooking, wood smoke Particle phase
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tration. Nitrate and sulfate ions can be subsequently

measured by ion chromatography, except that heating

and vacuum stages during X-ray fluorescence analysis

enhances nitrate volatilization and results in a low esti-

mate of nitrate concentration.

Planned compliance sampling: If it is known that

chemical analyses will be applied to some or all of the

high-volume PM10 or low-volume PM2:5 samples, sev-

eral precautions should be taken. When procuring fil-

ters, minimally acceptable blank concentrations should

be stated for each chemical to be quantified. Filter

holders that mate to the high-volume PM10 sampler or

PM2:5 FRM sampler should be obtained, and filters

should be loaded and unloaded using gloved hands in

a laboratory setting to minimize contamination. The

passive period in the sampler before and after air is

drawn through the filter should be minimized, and filters

should be stored in clean containers under refrigeration

after weighing.

Collocated filter sampling: An additional sampler

with a Teflon-membrane filter appropriate for complete

elemental analysis can be collocated with the high-vol-

ume PM10 compliance sampler. This filter should also be

pre- and post-weighed and submitted to the same ac-

ceptance testing and storage conditions described for

planned compliance sampling. For the PM2:5 FRM,

collocated quartz-fiber filters appropriate for ion and

carbon analysis are needed. Chow (1995) identifies sev-

eral sampling systems that can be collocated. A Minivol

sampler with a 5 lmin�1 flow rate (Baldauf et al., 2001;

Chow et al., 2002a) is a cost-effective method of adding

additional filter media to a sampling site.

Collocated continuous monitor sampling: Watson et al.

(1998a) and McMurry (2000) describe several continu-

ous particle detectors that can obtain mass, mass-sur-

rogates, and chemical- or size-specific concentrations

over averaging periods of 1–60 min duration. These

monitors can identify diurnal patterns, associate high

concentrations with wind directions from sources, and

provide indicators of concentrations between infrequent

filter samples (which are often every sixth day). Nephe-

lometers with ‘‘smart’’ heaters are the most cost-effective

continuous monitors. These measure light scattering

rather than particle mass, but good relationships be-

tween the two variables can often be established (Chow

et al., 2002c). Since light scattering increases rapidly as

soluble particles take on water at humidities exceeding

70%, a smart heater in the sample line provides a tem-

perature increase sufficient to maintain sampler humid-

ities below this threshold. Constant heating at high

temperatures (typically >30 �C) causes volatile particles
to evaporate, thereby negatively biasing the mass esti-

mate.

Sequential filter sampling: Daily samples, or samples

taken during different parts of the day, are often needed

to evaluate pollution buildups or to relate concentra-

tions to human exposure or observed health end-points.

Sequential filter samplers using several filter media in

parallel have been used to acquire these types of filters

for subsequent analysis (e.g., Chow et al., 1993a; Chow,

1995). Sequential sampling systems have been applied in

PM2:5 FRM networks across the US. Several filters are

loaded and a timing mechanism switches the flow

through different sets of filters at pre-set intervals.

Saturation sampling: An area can be saturated with

small, battery-powered samplers to evaluate the zone of

representation for long-term monitors and the zone of

influence for source emissions. This strategy is useful for

spatial correlation receptor models and when chemical

profiles of specific emitters are too similar to differenti-

ate them from each other. Samplers are located within

and around the suspected emitters (Tropp et al., 1998;

Blanchard et al., 1999; Chow et al., 1999, 2002a; Gillies

et al., 1999).

Denuder and absorbant sampling: Volatile substances

such as ammonium nitrate and organic compounds re-

quire denuders and gas-absorbing backup filters (Kitto

and Colbeck, 1999). Precursor gases for chemical re-

ceptor models can also be obtained from these sampling

strategies.

Fig. 2 illustrates a material balance for a single high

volume TSP sample from a sample in Xian, China. This

sample had a relatively high TSP mass loading (336

lgm�3) and was measured on a day with stagnant me-

teorology in a residential area. The commonly held

conceptual model in Xian is that most of the high TSP

concentrations result from dust storms in the region

Fig. 2. Material balance for a 24-h 336 lgm�3 TSP quartz filter

sample from an eastern urban site in Xian, China for October

27, 1997. Aluminum and silicon cannot be quantified on these

samples because they are in the filter matrix and much of the

nitrate may have volatilized before analysis. Fugitive dust

emissions are estimated as 20 times the iron concentration and

OC is multiplied by 1.2 to account for unmeasured hydrogen

and oxygen associated with urban organic compounds.
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(Zhang et al., 1996, 1997, 1998b). The simple material

balance in Fig. 2 demonstrates that only half of the TSP

is due to dust. Given the low wind speeds during the

sampling period, most of this is probably from nearby

roads and vacant land rather than windblown loess in

the desert. This could be further verified by comparison

with simultaneous samples taken at other sites closer to

cleaner or dirtier roadways. OC and EC account for 34%

of TSP mass, indicating that combustion sources are a

major portion of TSP. Secondary sulfate constitutes a

relatively low fraction. Although the nitrate concentra-

tion is a minor portion of TSP, it is probable that much

of the original nitrate sampled was lost from the filter

prior to chemical analysis. Additional archived samples

for different time periods and locations would need to be

analyzed and compared to form a conceptual model.

Some of these should include periods of high winds

when desert dust might be a large contributor. This

simple analysis on archived filters helps to focus emis-

sions characterization efforts and future network design

by establishing the most abundant components of the

suspended particle mass. It suggests that primary emis-

sions reductions for local dust and combustion sources

(both mobile and area) should be pursued to reduce

ambient concentrations.

The other extreme for the material balance is illus-

trated in Fig. 3 for two PM2:5 pollution episodes near

Denver, CO. Samples were taken during the morning,

afternoon, and overnight on consecutive days. The days

selected for detailed chemical analysis were determined

after examining mass concentrations measured on each

sample, thereby reducing the study cost by minimizing

analyses on low concentration samples. Three pollution

episodes can be detected in these data, each with dif-

Fig. 3. Material balance for PM2:5 concentrations measured at Welby, CO, located on the northern edge of Denver, resulting from

gravimetric, elemental, ion, and carbon analysis (Watson et al., 1998b). Three samples per day were acquired from 0600 to 1200, 1200

to 1800, and 1800 to 0600 MST with the first sample centered over the date in 1996. Organic material is 1.4 times the OC measurement

to compensate for unmeasured hydrogen and oxygen (Turpin and Lim, 2001). Geological is defined as 1:89Alþ 2:14Siþ 1:4Caþ
1:43Fe to account for unmeasured oxides in minerals. Soot is operationally defined as EC reported by the IMPROVE thermal/optical

reflectance method (Chow et al., 1993b, 2001). The unidentified fraction is the difference between measured mass and the sum of other

components. This is negative when the sum exceeds the measured mass. The unidentified amount is typically within measurement

uncertainties when elements, ions, and carbon are measured.
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ferent compositions. The first two that peak on the

mornings of January 14, 1996 and January 17, 1996 have

secondary ammonium nitrate and OC and EC as their

most abundant components. The episode peaking on the

morning of January 20, 1996 is dominated by OC and

EC. Examining wind directions in conjunction with the

evolution of these episodes shows PM2:5 levels are

highest when secondary sulfate and nitrate are trans-

ported back into the city where they mix with fresh

emissions.

The morning sample on January 14, 1996 experi-

enced an invalid sample for the quartz filter, so carbon

and ion analyses were not performed. This sample il-

lustrates the need for ions and carbon to obtain a ma-

terial balance. The elements account for less than 10% of

the measured PM2:5 mass, even when the geological

marker elements are weighted for unmeasured oxides.

2.5. Step 5: Multivariate analysis

Several multivariate data analysis methods should be

applied to the data to confirm potential source contri-

butions. These should make use of whatever air quality

and meteorological measurements are available within

the study area. Several useful analyses are described

below.

Time series plots: Mass concentrations are plotted for

each sampling period, similar to that illustrated in Fig.

3, and compared among different monitoring locations.

Similar temporal patterns and concentrations indicate

urban or regional scale source contributions, while a

large divergence at one site indicates a middle-scale or

neighborhood-scale source influence. This is extremely

useful in short duration, continuous measurements.

Using a successive moving average subtraction method,

Watson and Chow (2001a) demonstrated that short-

duration pulses in 5-min black carbon concentrations

caused by nearby sources can be used in urban areas to

estimate spatial zones of influence. Seasons and days of

the week on which highest concentrations occur can be

detected. Examination of these plots and comparisons

among different sampling sites assists the selection of a

sample subset for chemical analysis.

Diurnal plots: When continuous particle monitoring

data are available, average concentrations can be cal-

culated for each hour over a subset of days to identify

patterns. These patterns can be associated with meteo-

rological conditions and emissions for different sites.

These plots often reveal increases in concentrations

during morning and evening rush hours on weekdays at

downtown locations that are not seen on weekends or at

residential sites. This indicates that local traffic emis-

sions are large contributors. The evening traffic peak

may not appear during summer when mixed layers are

deep later into the evening, but it will be very evident

during winter when sunset corresponds to evening traf-

fic. Residential heating with wood or coal often appears

as an elevated nighttime concentration that does not

decay until very early the following morning.

Pollution roses: Averages of hourly or shorter time

duration data can be calculated for wind direction sec-

tors. Watson and Chow (2002a) showed that large

concentrations associated with a given wind direction

indicate a major source from that direction. Frequent

wind direction shifts over a 24-h period usually preclude

this type of analysis for day-long samples.

Time series correlation: Correlation coefficients can

be calculated for chemical concentrations to determine

which ones vary together and which ones do not. High

correlation coefficients usually indicate origin from a

common source or effects of common meteorology on all

sources.

Spatial correlation: High spatial correlations among

chemical components indicate urban or regional source

influences, while low correlations indicate that the

chemical component is mostly from nearby origin.

Eigenvector analysis: As explained in Table 1, time

series or spatial eigenvector analysis in the form of PCA,

FA, or EOF defines a smaller sample space for the

measured chemical concentrations that can sometimes

be related to source contributions. Source profiles from

direct measurements are needed to interpret these ei-

genvectors.

All of these methods except the spatial eigenvec-

tor analysis were applied by Watson et al. (1998b) for

the Denver study prior to estimating source contri-

butions. These analyses provided the conceptual bases

for selecting the source profiles applied to each indi-

vidual sample on which chemical components were

measured.

2.6. Step 6: Calculate source contributions

All of the multivariate models include, implicitly or

explicitly, a CMB that quantifies source contributions.

The CMB expresses each aerosol property concentration

measured at a receptor as the sum of a source contri-

bution multiplied by the abundance of the correspond-

ing aerosol property in the source emissions. When these

equations are not collinear (i.e., source profiles sub-

stantially differ among different emitters) and the chem-

ical abundances in the source profile are reasonably

constant (i.e., standard deviations less than half the

average abundance for representative source tests), these

equations can be solved for the source contributions.

Species abundances and the receptor concentrations,

with appropriate uncertainty estimates, serve as input

data to the CMB model. The output consists of the

amount contributed by each source type represented by

a profile to the total mass and each chemical species.

The CMB modeling procedure requires: (1) identifi-

cation of the contributing sources types; (2) selection of
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chemical species or other properties to be included in the

calculation; (3) estimation of the fraction of each of the

chemical species which is contained in each source type

(source profiles); (4) estimation of the uncertainty in

both ambient concentrations and source profiles; and

(5) solution of the CMB equations. Several solutions

methods have been proposed for the CMB equations

that are documented in Table 1 citations. Of these, the

effective variance weighted solution (Watson et al., 1984)

is almost universally applied because it: (1) theoretically

yields the most likely solutions to the CMB equations,

providing model assumptions are met; (2) uses all

available chemical measurements, not just so-called

‘‘tracer’’ species; (3) analytically estimates the uncer-

tainty of the source contributions based on precisions of

both the ambient concentrations and source profiles;

and (4) gives greater influence to chemical species with

higher precisions in both the source and receptor mea-

surements than to species with lower precisions.

CMB model assumptions are: (1) compositions of

source emissions are constant over the period of ambient

and source sampling; (2) chemical species do not react

with each other (i.e., they add linearly); (3) all sources

with a potential for contributing to the receptor have

been identified and have had their emissions character-

ized; (4) the number of sources or source categories is

less than or equal to the number of species; (5) the

source profiles are linearly independent of each other;

and (6) measurement uncertainties are random, uncor-

related, and normally distributed.

The degree to which these assumptions are met in

applications depends to a large extent on the particle

and gas properties measured at source and receptor.

CMB model performance is examined generically, by

applying analytical and randomized testing methods,

and specifically for each application by following an

applications and validation protocol. The six assump-

tions are fairly restrictive and they will never be totally

complied with in actual practice. Fortunately, the CMB

model can tolerate reasonable deviations from these

assumptions, as documented in the theory and testing

references of Table 1. Deviations from assumptions may

increase the stated uncertainties of the source contribu-

tion estimates.

The formalized protocol for CMB model application

and validation (Pace and Watson, 1987; Watson et al.,

1991, 1998c) is applicable to the apportionment of gas-

eous organic compounds and particles. This seven-step

protocol: (1) determines model applicability; (2) selects a

variety of profiles to represent identified contributors;

(3) evaluates model outputs and performance measures;

(4) identifies and evaluates deviations from model as-

sumptions; (5) identifies and corrects of model input

deficiencies; (6) verifies consistency and stability of

source contribution estimates; and (7) evaluates CMB

results with respect to other data analysis and source

assessment methods. Chow and Watson (2002) found

that this protocol was seldom followed in more than 20

recent CMB applications.

Fig. 4 shows average source contributions for the

Denver samples obtained by following this protocol.

Using organic compounds measured at source and re-

ceptor, it was demonstrated that meat cooking could be

distinguished from wood burning. The three classes of

gasoline vehicle exhaust (hot stabilized, cold start, and

high emitters) could be distinguished by CMB from their

source profiles. These sub-groups needed to be com-

bined for receptor sites where only the elements, ions,

and carbon were measured.

2.7. Step 7: Evaluate limiting precursors of secondary

aerosol

Most applications use source profiles measured at the

source, with at most dilution to ambient temperatures

and <1 min of aging prior to collection to allow for
condensation and rapid transformation. Profiles have

been ‘‘aged’’ with aerosol evolution models (Watson

et al., 2002), prior to submission to the CMB. These

models simulate changes between source and receptor;

they are often overly simplified and require additional

assumptions regarding chemical mechanisms, relative

transformation and deposition rates, mixing volumes,

and transport times.

Changes in ammonia or nitric acid precursor con-

centrations do not proportionally result in reductions in

ammonium nitrate concentrations. Ammonia concen-

trations might increase with emissions (e.g., larger fer-

tilizer applications, a larger number of farm animals) or

from reductions in sulfur dioxide emissions that would

Fig. 4. Average 1997 wintertime source contribution estimates to

PM2:5 determined by the CMB receptor model for samples taken

at Welby, CO, located on the northern edge of Denver, CO.
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provide less sulfuric acid to react with existing ammonia.

Conversely, ammonia emission reductions owing to ur-

banization might reduce ammonia concentrations. An-

sari and Pandis (1998) and Blanchard et al. (2000) have

created nomographs that allow a screening process for

limiting precursors.

Fig. 5a–c shows how change in ammonia, nitric acid,

and sulfate affect ambient concentrations in wintertime

Denver. Fig. 5a shows no increases in ammonium nitrate

result from increases in ammonia concentrations; a 25%

reduction in ammonia results in a minor reduction in

particle nitrate and a 50% ammonia reduction reduces

particle nitrate by only 15%. After a 50% ammonia re-

duction, however, particulate nitrate decreases are

nearly proportional to ammonia reductions. Ammonia

levels must be reduced by more than half before large

reductions of particulate nitrate are realized.

This contrasts with Fig. 5b that examines effects of

nitric acid reductions on particulate nitrate. Change in

nitric acid, presumably resulting from changes in NOx

emissions that contribute to nitric acid, result in a direct

and proportional reduction in PM2:5 ammonium nitrate

concentrations. Fig. 5c shows that there is no sensitivity

to changes in sulfate levels. There is sufficient free am-

monia in the Denver area that the small amount of

ammonia freed by removing ammonium sulfate from the

atmosphere has no effect on ammonium nitrate levels.

Sulfate concentrations would need to increase by more

than double to engender even a slight decrease in am-

monium nitrate concentrations.

2.8. Step 8: Reconcile source contributions

Fig. 4 shows discrepancies with the proportional

contributions from the inventory in Fig. 1. Comparisons

between emissions inventories and receptor source con-

tributions are not exact because: (1) primary particle

inventories do not include the secondary aerosol

Fig. 5. Effects of changes in (a) ammonia, (b) nitric acid, and (c) sulfate levels that might result from emissions control strategies on

average ammonium nitrate concentrations estimated using the simulating composition of atmospheric particles at equilibrium

(SCAPE) method (Kim et al., 1993a,b; Kim and Seinfeld, 1995). SCAPE, an example of an aerosol equilibrium receptor model,

apportions sodium, nitrate, sulfate, ammonium, and chloride among gas, liquid, and solid phases using thermodynamic equilibrium

theory. These averages were derived from thousands of individual SCAPE simulations applied to 3-h periods over which particulate

nitrate, sulfate, and ammonium and gaseous nitric acid and ammonia were measured at urban and non-urban receptor sites in the

Denver area. Ambient temperature and relative humidity corresponding to the samples are the other SCAPE inputs. The horizontal

axis represents the fraction of the measured 1997 concentration.
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determined by receptor models; and (2) inventories are

usually averaged over large areas and time periods while

receptor model source contributions apply to the zone of

representation of the receptor and to the time period

over which samples were taken.

Major discrepancies were found between emissions

estimates and receptor source apportionment of ambient

samples for wintertime Denver, CO. Secondary ammo-

nium sulfate and ammonium nitrate accounted for 35%

of PM2:5 in the receptor samples. Although sulfur dioxide

and oxides of nitrogen emissions are often included in

urban inventories, the fraction that converts to sulfate

and nitrate can only be determined by source or receptor

modeling. Ammonia emissions that engender the am-

monium portion of these secondary contributions are

seldom estimated. The emissions inventory estimated that

45% of emissions resulted from fugitive dust sources,

while the receptormodel source apportionment found the

dust contribution to be 16%. The inventory showed that

diesel exhaust constituted 80% of mobile source emis-

sions, while receptor analysis with organic compounds

showed that diesel exhaust constituted only �25% of the
mobile source contributions. This finding has resulted

in focusing efforts on better representing the emis-

sions from gasoline vehicles in the inventory used for

control strategy development and source modeling. This

was a substantial deviation from the conceptual model

stated earlier, and it is justification for refining that

model.

Fig. 6 shows how source contributions vary among

the seven measurement locations in the Denver area.

There were similar PM2:5 mass concentrations at both

urban (Welby, CAMP, Fort Collins) and non-urban

(Brighton, Evans, and Masters) sites, but the composi-

tion was quite different. The non-urban sites were

dominated by secondary sulfate and nitrate. Analyzing

sequential and diurnal samples along with wind flow

patterns shows that oxides of nitrogen generated in the

urban area mix in low lying fogs with ammonia from the

rural areas results in higher secondary sulfate and nitrate

levels that add mass to the primary particles generated

within the city. This is another refinement to the original

conceptual model.

3. Summary and conclusions

Receptor models complement source models for

evaluating the contributions from different sources to

measured concentrations. They use chemical charac-

teristics measured at both source and receptor to ac-

complish this apportionment. Elemental analysis is

necessary, but not sufficient for receptor models. Ele-

ments, ions, and carbon must be measured at a mini-

mum. Additional chemical components such as organic

compounds, carbon fractions, isotopic abundances, and

single particle characteristics are methods that are being

developed to further distinguish among source types.

Fig. 6. Average source contributions to PM2:5 at seven receptor locations around Denver, CO, during the winter of 1995–1996.
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Substantial information can be obtained from relatively

inexpensive chemical analyses of archived filters, al-

though these are not optimal for quantitative receptor

source apportionment. The cost of a receptor modeling

study needs to be balanced against the value of the in-

formation obtained from the study. Examples from a

modern receptor study in wintertime Denver showed

that emission estimates from gasoline vehicles were

substantially underestimated and fugitive dust emissions

were overestimated. The planned emissions reduction

strategies to focus on diesel emissions reductions would

not yield the expected benefits. Gasoline vehicle exhaust

from cold starts and high emitting (poorly maintained)

vehicles were identified as large contributors that were

not adequately represented by the inventory. The in-

tended control strategy of reducing oxides of nitrogen

emissions to improve ammonium nitrate levels was

confirmed by demonstrating that there is sufficient am-

monia to neutralize available nitric acid. The costs of

implementing emissions reduction strategies that did not

result in the desired effects on air quality would be

hundreds of times the cost of the receptor modeling

study and would prolong human exposure in the area to

excessive particle concentrations until the effective con-

trol strategies were identified.

Disclaimer
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