A Handheld Neutron-Detection Sensor System Utilizing a New Class of Boron Carbide Diode

Kevin Osberg
LSI Logic Corporation, Fort Collins, CO

Nathan Schemm
University of Nebraska - Lincoln

M. Susan Hallbeck
University of Nebraska - Lincoln

Sina Balkir
University of Nebraska - Lincoln

Peter A. Dowben
University of Nebraska-Lincoln, pdowben@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physicsdowben

Part of the Physics Commons

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Peter Dowben Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
A Handheld Neutron-Detection Sensor System Utilizing a New Class of Boron Carbide Diode

Kevin Osberg, Nathan Schemm, Sina Balkır, Jennifer I. Brand, M. Susan Hallbeck, Peter A. Dowben, and Michael W. Hoffman

Abstract—A handheld neutron-detection sensor application is described in this paper. The sensor system utilizes a new class of boron carbide diode that interacts with incoming neutrons. To interface with the boron carbide diode, an integrated front end is designed in a 1.5-μm standard CMOS technology. With the diode and front-end microchip, a handheld neutron-detection system was realized with an embedded microcontroller for real-time processing. The handheld detector operation was then tested with a plutonium–beryllium neutron source. Test and measurement results confirm the validity of the approach and the functionality of the design.

Index Terms—Boron carbide, charge-sensitive amplifier, heteroisoimeric diode, neutron detection.

I. INTRODUCTION

A compact, reliable, and accurate neutron-detection system may have many different potential applications. In spite of the technical difficulties, neutron-emitting fissionable materials can be detected with solid-state detectors. Systems no larger than a cigarette pack could be used to screen shipping containers for hazardous or illegal radioactive materials and some interdiction is potentially possible. With detectors of sufficient area, baggage could quickly be screened at airports around the world. The monitoring of legacy nuclear weapons stockpiles, reactors, and stored materials in remote locations could also greatly benefit from compact low-power solid-state detection systems. Existing commercial neutron-detection instruments are not practical for such applications. The larger and less reliable gas and liquid neutron detectors currently available are bulky, expensive, and easily damaged, and they require large amounts of power.

Many existing and proposed solid-state neutron detectors also suffer from very low efficiencies and are not suitable for harsh environments [1]. However, recent work has resulted in a new and unique class of solid-state boron carbide semiconductors, which possesses excellent neutron-detection properties [2]–[4]. These boron carbide diodes have been observed to accurately detect single neutrons and potentially provide very high detection efficiencies. Boron carbide also has excellent mechanical properties, making it resistant to harsh environments.

A solid-state handheld neutron-detection sensor system utilizing this new class of diode is presented in this paper. This paper is outlined as follows: In Section II, the properties and operation of boron carbide diodes are described. Section III presents a custom-designed and -fabricated integrated charge amplifier circuit and other components as a sensor front end. The design and realization of the handheld neutron detector is also presented in this section. Test and measurement results that demonstrate the validity of the presented approach are presented in Section IV. Finally, Section V concludes this paper.

II. BORON CARBIDE NEUTRON DETECTOR DIODE

A. Background

Boron is a useful element for neutron detection. The stable isotope 10B has high cross section (approximately 3800 barns) for neutrons at lower energies (∼25 MeV) based on the 10B$(n,\alpha)^{7}$Li capture, giving

$$^{10}\text{B} + n \rightarrow ^{7}\text{Li}(0.84 \text{ MeV})$$

$$+ ^{4}\text{He}(1.47 \text{ MeV}) + \gamma(0.48 \text{ MeV}) \quad (1)$$

$$^{10}\text{B} + n \rightarrow ^{7}\text{Li}(1.02 \text{ MeV}) + ^{4}\text{He}(1.78 \text{ MeV}) \quad (2)$$

with 94% and 6% probabilities, respectively [5], [6]. Thus, an incoming epithermal (very low energy) neutron strikes a 10B atom, producing 7Li and 4He capture products, which can generate a substantial amount of electron–hole pairs due to their significant kinetic energies (generally 0.84 MeV for Li and 1.47 MeV for He). Natural boron is about 20% 10B and about 80% 11B, but enrichment of the 10B is certainly possible.

Previously reported neutron detector devices can be classified as either conversion layer or heterojunction diodes. In conversion-layer devices, a weakly conducting boron-rich layer...
is placed adjacent to a conventional semiconductor diode, and a portion of the charge tracks of the daughter fragment Li and He is then detected in the conventional diode (usually Si or a GaAs diode) [5], [6], [7]–[12]. The heterojunction diode contains boron in a boron carbide layer only on one side (typically the p-layer) and is somewhat similar in structure [2]–[4], [7], [13]. However, the boron-rich layer is a semiconductor, which is an integral part of the sensor diode. As described in [2], [4], and [7], both the heterojunction-diode and conversion-layer devices have pulse height spectra characteristic of strong contributions from 0.84 MeV 7Li and 1.47 MeV 4He, with weaker contributions from 1.02 MeV 7Li and 1.78 MeV 4He [2], [4]–[13], as shown in the capture reactions (1) and (2).

A key factor in efficient neutron detection is the ability of materials to capture the neutrons and provide a semiconductor suitable to both detect and transmit the signal without losses. Semiconducting boron carbides are a new class of materials that are multifunctional in precisely this way, making them ideal for applications such as neutron detection and radioactive decay calorimetry [2], [4], [7], [13]–[16]. As a new category of neutron detector device, the all boron carbide diode has been recently reported in [14] and [15]. The all boron carbide diode offers much improved detection efficiencies; consequently, there has been recent interest in boron carbide based neutron detectors [5], [6], [17].

B. The All Boron Carbide Diode

The all boron carbide is an entirely new class of diode called the “heteroisomeric diode,” where the n-type and p-type semiconducting materials are made from molecules that are identical in formula but different in atomic arrangement (isomers). This is not quite a homojunction diode as the n- and p-layers differ in polytype, but this is not a heterojunction either, as the two semiconductor layers are still very similar semiconductors. The conventional homojunction diode is made with one type of semiconductor (usually Si or GaAs) where doping is used to establish the majority carriers, i.e., holes in the p-layer and electrons in the n-layer, to form the diode. The heterojunction diode is formed typically from dissimilar materials: ZnSe/GaAs or even B$_3$C/Si [2] or B$_3$C/SiC [3].

The heteroisomeric diode is formed from boron carbides with only subtle differences in structure (largely the relative placement of carbon) [14]. Here, the p- and n-type boron carbide layers were deposited by plasma-enhanced chemical vapor deposition (PECVD) from two different isomers of closo-dicarbadodecaborane, namely 1) closo-1,2 dicarbadodecaborane (orthocarborane, C$_2$B$_{10}$H$_{12}$) and 2) closo-1,7 dicarbadodecaborane (metacarborane, C$_2$B$_{10}$H$_{12}$), which differ only by the carbon position within the icosahedral cage. The PECVD is similar to that described for both heterojunction [2], [3], [18], and homojunction diodes [19] of boron carbide.

The boron carbide semiconductor films formed are clearly self-doping materials, since the deposition and decomposition involves only the metacarborane and orthocarborane source molecules (n-type and p-type, respectively) [14]. Fig. 1 shows the conceptual diagram of a heteroisomeric diode, the source molecules that are decomposed to make the diode layers, and a fabricated sample. The $I-V$ characteristic of a diode suitable for neutron detection is also displayed in this figure.

To model thermal neutron detection for the all boron carbide device, constant straight paths were employed for the 7Li and 4He capture products, which are assumed to be emitted isotropically in opposite directions [20], [21]. These capture products lose kinetic energy along these paths, leading to charge pulse production. The probabilities for capture of a normally incident thermal neutron within a 2-μm-thick boron carbide layer result in deposition of energies [22]. The general decrease of capture probabilities with increasing energy deposition, punctuated by sum pulse height peaks at 2.31 and 2.8 MeV, corresponding to capture reactions 10B + n → 7Li + 4He + γ and 10B + n → 7Li + 4He, respectively, are attributable to the geometry of the device [20], [21]. These expectations were largely observed in the neutron-detection experiment that employs the heteroisomeric diode, which are discussed in Section IV.

Boron carbide diodes are the first real-time solid-state neutron detectors. Experimental current pulses in the range of hundreds of nanoamperes with 10–40-μs durations result from pulses with charge contents as large as 10^6 electron–hole pairs generated per neutron. With very high collection rates of the electron–hole pairs and operation from at least 20 °C–350 °C,
these detectors are potentially more efficient and reliable than any other neutron-detecting semiconductor reported to date [4].

III. SENSOR SYSTEM DESIGN

A handheld neutron detector that utilizes the aforementioned boron carbide diode is described in this section. The handheld is composed of two main modules, namely 1) a sensor front end and 2) a microcontroller-based section. The sensor front end is a charge-sensitive amplifier that converts the charge pulses from neutron-detection events to detectable voltage levels. The amplifier is essentially a lossy integrator with a feedback capacitor bank for charge-to-voltage conversion. The microcontroller-based section acts as a processing and control module for the overall handheld. These modules are presented next.

A. Sensor Front End Microchip

The ability of the charge amplifier to convert small charge signal inputs to a voltage signal make it particularly useful as a particle-detector interface [23], [24]. The low-noise charge amplifier used here as the neutron detector front end was first presented in [25] and [26]. The topology of the amplifier is shown in Fig. 2 and was designed and fabricated in a 5-V 1.5-μm standard CMOS process. The core of the charge amplifier consists of the folded-cascode pair M1 and M3 and active load M4. The cascode structure provides the charge amplifier with unity gain. The die photo of Fig. 3 shows the selectable bank of capacitors, charge amplifier, and two comparators that occupy an active area of 880 μm × 880 μm. For added flexibility, the second comparator is present on the die to facilitate the comparison of the waveforms with two different reference voltages simultaneously.

In order to fully tune the integrated circuitry, all bias voltages were generated off-chip. In addition, feedback capacitor \(C_f \) of Fig. 2 was realized through the use of different on-chip poly1/poly2 capacitors. Four capacitors were created with ideal values of 1.5, 3.5, 10, and 20 pF. These capacitors can then be connected as \(C_f \) through externally controlled switches. At the same time, multiple capacitors can be connected in parallel, providing a wide range of values for controlling the conversion gain. The die photo of Fig. 3 shows the selectable bank of capacitors, charge amplifier, and two comparators that occupy an active area of 880 μm × 880 μm. For added flexibility, the second comparator is present on the die to facilitate the comparison of the waveforms with two different reference voltages simultaneously.

\[
A \approx \frac{1}{C_f} \quad (4)
\]

B. Handheld Neutron Detector

With the integrated front end interfacing with the boron carbide diode, a standalone handheld neutron detector was designed and realized around an Atmel AT91 microcontroller. The microcontroller samples the charge amplifier analog output
1.3 Msamples/s with a 12-bit resolution and performs real-time processing on the waveform to provide information about the energy of each neutron capture event. A universal serial bus (USB) interface and custom software modules allow the handheld system to interface with a computer for capturing, displaying, and downloading results. The microcontroller also provides programmable bias voltages for the front-end chip through 12-bit digital-to-analog converters. A simplified architecture and control flow diagram for the design of the detector is shown in Fig. 4. The circuit board containing the microcontroller and sensor front-end chip can be seen in Fig. 5. The circuit board was also packaged with a 3.6-V NiMH rechargeable battery, LCD, and simple button interface for navigating display menus and adjusting the bias voltages of the front-end chip. Fig. 5 (bottom) shows the entire handheld with a boron carbide diode connected to the sensor port and USB cable connection. The overall package of the detector is comparable in size to a handheld personal digital assistant with a standby time of more than 24 h and continuous operation time of 10 h.

IV. EXPERIMENTAL RESULTS

The operation of the sensor front end section was first tested with inputs simulating the charge pulses of the boron carbide diode. A simple RC differentiator circuit was connected to the charge amplifier input through a coupling capacitor. The negative edges of a square-wave input to the differentiator create current pulses flowing in the correct direction. The charge content of the pulses can be controlled by the amplitude of the wave. The resulting output waves for one input falling edge are shown in Fig. 6. The top waveform is the voltage spike created by the charge amplifier. In this case, the integrated capacitors were configured to provide a 5-pF feedback capacitance. Based
Fig. 6. Oscilloscope captured waveforms of the charge amplifier (top) and comparator (bottom) waveforms created from simulated neutron input.

Fig. 7. Testing of the handheld neutron detector with a plutonium–beryllium neutron source. Radiation chamber insertion point for the neutron source is indicated by arrow.

on (4), the ideal gain should be 200 μV/\text{fC}. The measured gain based on the differentiator circuit and charge amplifier output is approximately 170 μV/\text{fC}. The slightly lower measured gain is due to the time constant of the charge amplifier feedback, which is comparable to the input pulse width. The bottom waveform of Fig. 6 is the comparator output, which shows the digital pulse created while the charge amplifier output exceeds $V_{\text{ref}} = 2.9$ V. Neutron testing was then conducted with a paraffin-moderated plutonium–beryllium neutron source. Fig. 7 displays the handheld next to the neutron source during testing. The boron carbide diode was placed inside the radiation chamber 1 cm away from its center with an extended cable in order to receive the calibrated neutron flux rate. The surface area of the diode used in the experiment was approximately 1 cm \times 1 cm. Also shown in this figure are various cables extending out of the handheld for testing purposes. Calculations on the source estimate a neutron flux rate of approximately 20 neutrons/ms over a 1 cm \times 1 cm area. A 15-pF capacitor setting for the charge-sensitive amplifier was used during the measurements reported here, and the boron carbide diode was reverse-biased at 3 V. A typical charge amplifier output waveform captured over a period of 10 ms by the sensor system is shown in Fig. 8. The waveform shows several large spikes resulting from neutron detection and confirms the output of the charge amplifier seen in Fig. 6. In this example, the average number of counts observed above a threshold of 1 V is 10 over a 10-ms period. Based on the estimated flux rate this threshold yields an effective detection efficiency of 5%. Moreover, if the threshold is decreased by 0.1 V, the efficiency approaches 20% as the partial charge sweeps induced by the geometry of the diode are also included in the detection counts. In addition, the waveform shows that the detected neutrons create voltage spikes that are noticeably larger in magnitude than the system’s noise floor for threshold levels between 0.9 and 1 V. For a 0.1-V increase in the height of the voltage pulse, the calculation using the measured charge amplifier gain of 170 μV/\text{fC} indicates that there are approximately 3×10^6 more electrons involved. Thus, in this application, the counting and classification operation of the detector are not impacted by the system noise floor, and the probability of noise signals for this threshold range is negligible while significant detector efficiencies are achieved. Furthermore, the slight increasing trend of the baseline in Fig. 8 may be attributed to the saturation tendency of the charge-sensitive amplifier due to the possible arrival of neutrons in clusters.

Further confirmation that the system is detecting actual neutrons can be seen by examining the pulse height spectra measured by the detector. Pulse height spectra are commonly used in particle-detection applications. As the energy of a neutron is proportional to the content of its charge pulse, the height (amplitude) of the voltage pulse created by the charge-sensitive amplifier directly translates into detected energy. Energy levels are then quantized as channels, and detected particles are assigned to a channel based on their energy. The number of events in each channel is then plotted versus the number of channels. The pulse height spectra measured from the neutron source by the detector is shown in the top curve of Fig. 9(a). The ideal predicted spectra based on boron carbide neutron-detection characteristics is also plotted in Fig. 9(b).

The pulse height spectra was calibrated through a comparison with a conversion-layer device. These devices possess the same Li and He capture products as in reactions (1) and (2) and, hence, provide a means for energy calibration [1]–[3], [11]–[17]. In particular, the relative positions of the distinct energy peaks mentioned in Section II can be used as the calibration reference for the pulse height spectra. Thus, the predicted curve shows a generally decreasing energy spectrum with the exception of two distinct peaks occurring at 2.31 and 2.8 MeV [20], [21]. This same general characteristic can also be seen in the measured spectra, with variations due to specific boron carbide diode properties that involve tailing and broadening due to incomplete charge collection and nonlinearities in the
Fig. 9. Measured versus theoretical neutron pulse height spectra. The top curve in (a) is the measured pulse height spectra, and the theoretical pulse height spectra adapted from [20] is shown in (b). The bottom curve in (a) shows the much lower spectra that resulted when neutrons were blocked from the diode.

detection circuits. The sum peaks are not directly observed because of the finite energy resolution in experiment. Nonetheless, the neutron counts above 1 V level in Fig. 8 approximately correspond to where the energy sum peaks are located in the spectra, whereas a 0.1-V drop in the level corresponds to the middle section of energy spectra. This is indicated roughly by a four times increase in the counts, which agrees with the increase in efficiency from 5% to 20% as previously mentioned.

While the energy sum peaks at 2.31 and 2.8 MeV are not readily apparent in the measured spectra, their presence can be seen by examining the overall signal shaping of the system. The detection of neutrons by the boron carbide diode is affected by a number of random variables. The angle of incidence between the neutron and the diode can decrease the number of charges generated by the capture products. Total charge collection is not possible, as varying amounts of recombination can occur in the depletion region. Finally, the nonlinear gain of the charge amplifier can misrepresent the charge content of different pulses. In this paper, these uncertainties have been modeled as a probability density function (PDF) with a normal distribution that has a standard deviation of $\sigma = 0.35$ MeV.

Taking the ideal PDF shown in Fig. 9(b) and the PDF modeling nonidealities, the system that relates the two functions is shown in Fig. 10. The system relates the fact that the PDF of the sum of two independent random variables is equal to the convolution of their PDFs [27]. Thus, by convolving the ideal PDF, with the PDF modeling the random variables of the system, the energy spectra in the presence of random nonidealities can be determined.

The system was modeled in MATLAB by first recreating the ideal spectra of Fig. 9(b) and then generating the Gaussian PDF. It should be noted that the ideal spectrum was scaled by a factor of 10^6 for convenience. When the two PDFs were convolved together, the resulting PDF is shown as the solid waveform in Fig. 11. The result shows that the random processes in the detection system cause the two ideal peaks to become much broader and lower. When this result is compared to a general envelope waveform modeling the observed output of Fig. 9(a), the observed peaks are a good match to the nonideal PDF. This can be seen in Fig. 11 where the measured output of the handheld detector is shown as the dashed line. The results show that neutrons are still being detected by the devices in the presence of the nonideal effects. The measured results then display this broadening of the 2.31- and 2.8-MeV peaks based on these effects. It should be noted that this is a simple model of the complex interactions of the boron carbide diode and detector and certainly suffers from inaccuracies. The results clearly convey how the nonidealities of the diode and the system broaden and lower the sharp 2.31- and 2.8-MeV peaks. This model does match well with the measured pulse height spectra.

Another verification of the system’s effectiveness at detecting neutrons can also be seen in the bottom curve Fig. 9(a). In this experiment, a 4-mm-thick cadmium foil was placed over the
boron carbide. The cadmium foil blocks most incoming neutrons from the detector and results in the substantially lower spectra shown by the bottom curve. This result can be attributed to the small number of neutrons detected due to imperfect shielding of the cadmium foil. Finally, there were not any observed neutron events after the handheld detector was removed from the radiation source altogether, which validates the finding that there are no false detections.

V. CONCLUSION

This paper presented the overall design of a compact handheld neutron detector utilizing a new class of heteroisomeric boron carbide diode. The handheld operation was tested to verify that the heteroisomeric diode reacts with incoming neutrons and that the custom-designed charge amplifier front end microchip detects the resulting charge pulses and converts them to a voltage signal. The microcontroller architecture then samples that voltage signal at a very high rate. Real-time processing methods on the sampled signal can then classify the energy of incoming neutrons. While there is a discrepancy between the actual and theoretical energy spectra, the results of this paper demonstrate how the nonidealities of the diode and system broaden and lower the energy sum peaks. Consequently, this agrees well with the measured pulse height spectra for experimental results. Hence, the results presented here conclusively show that this new class of boron carbide semiconductor device is, indeed, an effective neutron detector. It has also been shown that the heteroisomeric class of all boron carbide diodes is distinct from both the heterojunction-diode and conversion-layer devices. The pulse height spectra differ from heterojunction-diode and conversion-layer solid-state detectors because the depletion regions and both sides of the p-n junction contain a boron-rich semiconductor for neutron detection.

REFERENCES

Kevin Osberg was born in Lincoln, NE, in 1980. He received the B.S. degree in computer engineering and the M.S. degree in electrical engineering from the University of Nebraska-Lincoln, in 2003 and 2005, respectively. He is currently with LSI Logic Corporation, Fort Collins, CO. His research interests include analog and mixed-signal integrated circuit design for sensor applications, data converter, and amplifier design.
Nathan Schemm is currently working toward the B.S. degree in electrical engineering at the Department of Electrical Engineering, University of Nebraska-Lincoln.

His research interests include analog VLSI design and the integration and testing of such designs utilizing a microcontroller. Besides his work with the boron carbide diode, he is also interested in novel CMOS imager designs and applications, including work on various image-processing and compression circuits.

Sina Balkır received the B.S. degree in electrical engineering from Boğaziçi University, Istanbul, Turkey, in 1987 and the M.S. and Ph.D. degrees in electrical engineering from Northwestern University, Evanston, IL, in 1989 and 1992, respectively.

Between 1992 and 1998, he was with the Department of Electrical and Electronics Engineering, Boğaziçi University, as an Assistant and Associate Professor. He is currently with the Department of Electrical Engineering, University of Nebraska-Lincoln, where he serves as an Associate Professor.

His research interests include CAD of VLSI systems, analog VLSI design automation, and focal plane computation arrays for image processing.

Jennifer I. Brand received the B.S. and M.S. degrees from the University of Michigan, Ann Arbor, and the Ph.D. degree from the University of California, San Diego.

A traditional chemical engineer with national laboratory and private sector work experience, she is currently a Professor with the College of Engineering and Technology, University of Nebraska-Lincoln. Her research focuses on materials processing for sensors and advanced energy systems.

M. Susan Hallbeck received the B.S. degree in industrial engineering from the Iowa State University, Ames, in 1984, the M.S. degree in industrial engineering from Texas Tech University, Lubbock, in 1985, and the Ph.D. degree in industrial engineering and operations research from the Virginia Polytechnic Institute and State University, Blacksburg, in 1990.

She is currently a Professor with the Department of Industrial and Management Systems Engineering, University of Nebraska-Lincoln.

Peter A. Dowben received the B.A. degree in mathematics from Haverford College, Haverford, PA, in 1977 and the Ph.D. degree in physics from the University of Cambridge, Cambridge, U.K., in 1981.

After positions at the Free University of Berlin and the Fritz Haber Institute, Berlin, Germany, he joined the faculty of Syracuse University, Syracuse, NY. He is currently the Charles Bessey Professor of Physics and a Research Professor of chemistry with the Department of Physics and Astronomy, University of Nebraska-Lincoln.

Michael W. Hoffman received the B.S. degree from Rice University, Houston, TX, the M.S. degree from the University of Southern California, Los Angeles, and the Ph.D. degree from the University of Minnesota, Twin Cities, all in electrical engineering.

From 1985 to 1988, he was a Signal Processing System Engineer in the Space Communications Division, TRW Incorporated. In 1993, he joined the University of Nebraska-Lincoln, where he is currently an Associate Professor with the Department of Electrical Engineering. His research interests include data compression, joint source channel coding, and sensor array processing.